
µC/OS-II TM

The Real-Time Kernel

Jean J. Labrosse

Weston, FL 33326

User’s Manual

µC/OS-II User's Manual

1. µC/OS-II User Manual . 2

1.1 Preface . 3

1.2 Getting Started with µC/OS-II . 8

1.3 Real-Time Systems Concepts . 45

1.4 Kernel Structure . 94

1.5 Task Management . 151

1.6 Time Management . 183

1.7 Timer Management . 193

1.8 Event Control Blocks . 205

1.9 Semaphore Management . 219

1.10 Mutual Exclusion Semaphores . 235

1.11 Event Flag Management . 256

1.12 Message Mailbox Management . 285

1.13 Message Queue Management . 305

1.14 Memory Management . 333

1.15 Porting µC/OS-II . 350

1.16 80x86 Port with Emulated FP Support . 413

1.17 80x86 Port with Hardware FP Support . 460

1.18 Thread Safety of the Compiler’s Run-Time Library . 492

1.19 µC/OS-II API Reference . 500

1.20 µC/OS-II Configuration Manual . 670

1.21 PC Services . 697

1.22 C Coding Conventions . 724

1.23 Licensing Policy for µC/OS-II . 739

1.24 µC/OS-II Quick Reference . 740

1.25 TO Utility . 750

1.26 Bibliography . 752

µC/OS-II User Manual

µC/OS-II User's Manual

2Copyright 2015 Micrium Inc.

µC/OS-II User Manual

This book describes the design and implementation of µC/OS-II (pronounced

“Micro C O S 2”), which stands for Micro-Controller Operating System Version 2.

µC/OS-II is a completely portable, ROMable, scalable, preemptive, real-time, multitasking

kernel. µC/OS-II is written in ANSI C and contains a small portion of assembly language code

to adapt it to different processor architectures. To date, µC/OS-II has been ported to over 40

different processor architectures ranging from 8- to 64-bit CPUs.

µC/OS-II is based on µC/OS, The Real-Time Kernel that was first published in 1992.

Thousands of people around the world are using µC/OS and µC/OS-II in all kinds of

applications, such as cameras, avionics, high-end audio equipment, medical instruments,

musical instruments, engine controls, network adapters, highway telephone call boxes, ATM

machines, industrial robots, and more. Numerous colleges and universities have also used

µC/OS and µC/OS-II to teach students about real-time systems.

µC/OS-II is upward compatible with µC/OS V1.11 (the last released version) but provides

many improvements. If you currently have an application that runs with µC/OS, it should run

virtually unchanged with µC/OS-II. All of the services (i.e., function calls) provided by µC/OS

have been preserved. You may, however, have to change include files and product build files

to “point” to the new filenames.

This book contains all the source code for µC/OS-II and ports for the Intel 80x86 processor

running in real mode and for the large model. The code was developed and executed on a PC

running Microsoft’s Windows 2000 but should work just as well on Windows 95, 98 and NT.

Examples run in a DOS-compatible box under these environments. Development was done

using the Borland International C/C++ compiler V4.51. Although µC/OS-II was developed and

tested on a PC, µC/OS-II was actually targeted for embedded systems and can be ported easily

to many different processor architectures.

µC/OS-II User's Manual

3Copyright 2015 Micrium Inc.

Preface
Twenty-three years ago (1992), I wrote my first book called . µC/OS, The Real-Time Kernel

Towards the end of 1998, it was replaced by . The word MicroC/OS-II, The Real-Time Kernel

 now replaces the Greek letter on the book cover because bookstores didn’t know howMicro µ

to properly file µC/OS. However, for all intents and purposes, MicroC/OS and µC/OS are

synonymous and in this book, I will mostly use µC/OS-II.

Meets the requirements of Safety Critical Systems

In July of 2000, MicroC/OS-II was certified in an avionics product by the Federal Aviation

Administration (i.e. the FAA) for use in commercial aircraft by meeting the demanding

requirements of the RTCA DO-178B standard for software used in avionics equipment. In

order to meet the requirements of this standard it must be possible to demonstrate through

documentation and testing that the software is both robust and safe. This is particularly

important for an operating system as it demonstrates that it has the proven quality to be usable

in any application. Every feature, function and line of code of MicroC/OS-II has been

examined and tested to demonstrate that it is safe and robust enough to be used in Safety

Critical Systems where human life is on the line.

µC/OS-II Goals

My most important goal is to demystify real-time kernel internals. By understanding how a

kernel works, you are in a better position to determine whether you need a kernel for your own

products. Most of the concepts presented in this book are applicable to a large number of

commercial kernels. My next most important goal is to provide you with a quality product that

you can potentially use in your own products. µC/OS-II is not freeware nor is it open source

code. If you use µC/OS-II in a commercial product, you need to license its use (see Appendix

B,).Licensing Policy for µC/OS-II

Intended Audience

This book is intended for embedded system programmers, consultants and students interested

in real-time operating systems. µC/OS-II is a high performance, deterministic real-time kernel

and can be (and has been) used in commercial embedded products (see Appendix B, Licensing

). Policy for µC/OS-II

µC/OS-II User's Manual

4Copyright 2015 Micrium Inc.

Instead of writing your own kernel, you should consider µC/OS-II. You will find, as I did, that

writing a kernel is not as easy as it first looks.

I’m assuming that you know C and have a minimum knowledge of assembly language. You

should also understand microprocessor architectures.

What You Need to Use µC/OS-II

The code supplied with this book assumes that you will be using an IBM-PC/AT or compatible

(80386 Minimum) computer running under DOS 4.x or higher. The code was compiled with

the Borland C++ V4.51. You should have about 10 MBytes of free disk space on you hard

drive. I actually compiled and executed the sample code provided in this book on a 300 MHz

Pentium II computer running Microsoft’s Windows 2000. I have successfully compiled and

ran the code on Windows 95, 98 and NT based machines.

To use µC/OS-II on a different target processor (other than a PC), you will need to either port

µC/OS-II to that processor yourself or, obtain such a port from official µC/OS-II WEB site at

. You will also need appropriate software development tools such ashttp://www.micrium.com

an ANSI C compiler, an assembler, linker/locator and some way of debugging your

application.

The µC/OS Story

Many years ago, I designed a product based on an Intel 80C188 at Dynalco Controls, and I

needed a real-time kernel. I had been using a well-known kernel (I’ll call it kernel A) in my

work for a previous employer, but it was too expensive for the application I was designing. I

found a lower cost kernel ($1,000 at the time), I’ll call it kernel B, and started the design. I

spent about two months trying to get a couple of very simple tasks to run. I was calling the

vendor almost on a daily basis for help to make it work. The vendor claimed that kernel B was

written in C (the language); however, I had to initialize every single object using assembly

language code. Although the vendor was very patient, I decided that I had enough. The product

was falling behind schedule, and I really didn’t want to spend my time debugging this low-cost

kernel. It turns out that I was one of the vendor’s first customers, and the kernel really was not

fully tested and debugged.

To get back on track, I decided to go back and use kernel A. The cost was about $5,000 for

five development seats, and I had to pay a per-usage fee of about $200 for each unit that was

shipped. This was a lot of money at the time, but it bought some peace of mind. I got the kernel

http://www.micrium.com/

µC/OS-II User's Manual

5Copyright 2015 Micrium Inc.

up and running in about two days. Three months into the project, one of my engineers

discovered what looked like a bug in the kernel. I sent the code to the vendor, and sure enough,

the bug was confirmed as being in the kernel. The vendor provided a 90-day warranty, but that

had expired, so in order to get support, I had to pay an additional $500 per year for

maintenance. I argued with the salesperson for a few months that they should fix the bug since

I was actually doing them a favor. They wouldn’t budge. Finally, I gave in and bought the

maintenance contract, and the vendor fixed the bug six months later. Yes, six months later! I

was furious and, most importantly, late delivering the product. In all, it took close to a year to

get the product to work reliably with kernel A. I must admit, however, that I have had no

problems with it since.

As this was going on, I naively thought that it couldn’t be that difficult to write a kernel. All it

needs to do is save and restore processor registers. That’s when I decided to try to write my

own kernel (part time, nights and weekends). It took me about a year to get the kernel to work

as well, and in some ways better, than kernel A. I didn’t want to start a company and sell it

because there were already about 50 kernels out there, so why have another one?

Then I thought of writing a paper for a magazine. First I went to C User’s Journal (CUJ)

because the kernel was written in C. I had heard CUJ was offering $100 per published page

when other magazines were only paying $75 per page. My paper had 70 or so pages, so that

would be nice compensation for all the time I spent working on my kernel. Unfortunately, the

article was rejected for two reasons. First, the article was too long, and the magazine didn’t

want to publish a series. Second, they didn’t want “another kernel article.”

I decided to turn to Embedded Systems Programming (ESP) magazine because my kernel was

designed for embedded systems. I contacted the editor of ESP (Mr. Tyler Sperry) and told him

that I had a kernel I wanted to publish in his magazine. I got the same response from Tyler that

I did from CUJ: “Not another kernel article?” I told him that this kernel was different — it was

preemptive, it was comparable to many commercial kernels, and the source code could be

posted on the ESP BBS (Bulletin Board Service). I was calling Tyler two or three times a

week, basically begging him to publish my article. He finally gave in, probably because he was

tired of my calls. My article was edited down from 70 pages to about 30 pages and was

published in two consecutive months (May and June 1992). The article was probably the most

popular article in 1992. ESP had over 500 downloads of the code from the BBS in the first

month. Tyler may have feared for his life because kernel vendors were upset that he published

a kernel in his magazine. I guess that these vendors must have recognized the quality and

capabilities of µC/OS (called µCOS then). The article was really the first that exposed the

internal workings of a real-time kernel, so some of the secrets were out.

µC/OS-II User's Manual

6Copyright 2015 Micrium Inc.

About the time the article came out in ESP, I got a call from Dr. Bernard (Berney) Williams at

CMP Books, CMP Media, Inc. (publisher of CUJ) six months after the initial contact with

CUJ. He had left a message with my wife and told her that he was interested in the article. I

called him back and said, “Don’t you think you are a little bit late with this? The article is

being published in ESP.” Berney said, “No, No, you don’t understand. Because the article is so

long, I want to make a book out of it.” Initially, Berney simply wanted to publish what I had

(as is), so the book would only have 80 pages or so. I told him that if I was going to write a

book, I wanted to do it right. I then spent about six months adding content to what is now

known as the first edition. In all, the book published at about 250 pages. I changed the name

from µCOS to µC/OS because ESP readers had been calling it “mucus,” which didn’t sound

too healthy. Come to think of it, maybe it was a kernel vendor that first came up with the

name. Anyway, µC/OS, The Real-Time Kernel was born. Sales were somewhat slow to start.

Berney and I had projected about 4,000 to 5,000 copies would be sold in the life of the book,

but at the rate it was selling, I thought we’d be lucky if it sold 2,000 copies. Berney insisted

that these things take time to get known, so he continued advertising in CUJ for about a year.

A month or so before the book came out, I went to my first Embedded Systems Conference

(ESC) in Santa Clara, California (September 1992). I met Tyler Sperry for the first time, and I

showed him a copy of the first draft of my book. He very quickly glanced at it and asked if I

would like to speak at the next Embedded Systems Conference in Atlanta. Not knowing any

better, I said I would and asked him what I should talk about. He suggested “Using Small

Real-Time Kernels.” On the trip back from California, I was thinking, “What did I get myself

into? I’ve never spoken in front of a bunch of people before. What if I make a fool of myself?

What if what I speak about is common knowledge? People pay good money to attend this

conference.” For the next six months, I prepared my lecture. At the conference, I had more

than 70 attendees. In the first twenty minutes I must have lost one pound of sweat. After my

lecture, about 15 people or so came up to me to say that they were very pleased with the

lecture and liked my book. I was invited back to the conference but could not attend the one in

Santa Clara that year (1993) since my wife was due to have our second child, Sabrina. I was

able to attend the next conference in Boston (1994), and I have been a regular speaker at ESC

ever since. For the past couple of years, I’ve been on the conference Advisory Committee. I

now do at least three lectures at every conference and each has attendance between 100 and

300 people. My lectures are almost always ranked among the top 10% at the conference.

To date, well over 25,000 copies of my µC/OS and µC/OS-II books have been sold around the

world. I have received and answered thousands of e-mails from over 44 countries. I still try to

answer every single one. I believe that if you take the time to write me, I owe you a response.

In 1995, µC/OS, The Real-Time Kernel was translated into Japanese and published in Japan in

µC/OS-II User's Manual

7Copyright 2015 Micrium Inc.

a magazine called Interface. In 2001, µC/OS-II was translated to Chinese. A Korean

translation came out in early 2002. A Japanese translation is in the works and should be

available in 2002.

µC/OS and µC/OS-II have been ported to over 40 different processor architectures and the

number of ports is increasing. You should consult the Micrium web site to see if the processor

you intend to use is available.

Back in 1992, I never imagined that writing an article would change my life as it has. I met a

lot of very interesting people and made a number of good friends in the process.

Thanks for chosing this book and I hope you enjoy it!

Acknowledgments

First and foremost, I would like to thank my wife for her support, encouragement,

understanding, and especially patience. Once again, I underestimated the amount of work for

this edition – it was supposed to take just a few weeks and be out by January 2002. I would

also like to thank my children James (age 11) and Sabrina (age 8) for putting up with the long

hours I had to spend in front of the computer.

A very special thanks to Mr. Gino Vannelli (my favorite musician) for creating such wonderful

music. As far as I’m concerned, Gino redefines the word ‘perfection’. Thanks Gino for being

with me (in music) for almost 40 years.

I would also like to thank all the fine people at CMP Books for their help in making this book a

reality and for putting up with my insistence on having things done my way.

Finally, I would like to thank all the people who have purchased my µC/OS, µC/OS-II and

Embedded Systems Building Blocks books over the years.

µC/OS-II User's Manual

8Copyright 2015 Micrium Inc.

Getting Started with µC/OS-II
This chapter provides four examples on how to use µC/OS-II. I decided to include this chapter

early in the book so you could start using µC/OS-II as soon as possible. In fact, I assume you

know little about µC/OS-II and multitasking; concepts are introduced as needed.

The sample code was compiled using the Borland C/C++ compiler V4.51 and options were

selected to generate code for an Intel/AMD 80186 processor (large memory model). The code

was actually run and tested on a 300MHz Intel Pentium II PC, running in a DOS window using

Windows 2000. For all intents and purposes, a Pentium can be viewed as a superfast 80186

processor. The Borland C/C++ V4.52 (called the) is available from JKBorland Turbo C++ 4.5

Microsystems (and specifically: www.jkmicro.com)

.http://stores.jkmicro.com/borland-c-development-kit/

The PC was chosen as my target system for a number of reasons. First and foremost, when I

wrote the initial version of the book, it was a lot easier to test code on a PC than on any other

embedded environment (i.e., evaluation board, emulator, etc.): there were no EPROMs to burn

and no downloads to EPROM emulators, CPU emulators, etc. You simply compile, link, and

run. Second, the 80186 object code (real mode, large model) generated using the Borland

C/C++ compiler is compatible with all 80x86 derivative processors from Intel, AMD, and

others. Today, you can get evaluation board for next to nothing and the 80x86 might not be

the best embedded target but will nonetheless be covered in this document.

Installing µC/OS-II

You can download the example code from the Micrium website and you should refer to

Appendix F for instruction on how to install the source of µC/OS-II and executables of the

examples on your computer. The installation assumes that you will be installing the software

on either a Windows 95, 98, Me, NT, 2000 or XP based computer.

Example 1: Basic Multitasking

Example #1 demonstrates basic multitasking capabilities of µC/OS-II. Ten tasks display a

number between 0 and 9 at random locations on the screen. Each task displays only one of the

number. In other words, one task displays 0 at random locations, another task displays 1 and so

on.

http://www.jkmicro.com)
http://stores.jkmicro.com/borland-c-development-kit/

µC/OS-II User's Manual

9Copyright 2015 Micrium Inc.

The code for Example #1 is found in the directory of the\SOFTWARE\uCOS-II\EX1_x86L\BC45

instalation drive (the default is C:). You can open a DOS window (called inCommand Prompt

Windows 2000) and type:

CD \SOFTWARE\uCOS-II\Ex1_x86L\BC45\TEST

The CD command allows you to change directory and, in this case, go to the TEST directory of

Example #1. The TEST directory contains four files: , , and MAKETEST.BAT TEST.EXE TEST.LNK

. To execute example #1, simply type TEST at the command line prompt. The DOSTEST.MAK

window will run the program.TEST.EXE

After about one second, you should see the DOS window randomly fill up with numbers

between 0 and 9 as shown in Figure 1.1.

Figure - Figure 1.1 Example #1 running in a DOS window.

Example #1 basically consists of 13 tasks as displayed in the lower left of Figure 1.1. µC/OS-II

creates two internal tasks: the idle task and a task that determines CPU usage. The code in

Example #1 creates the other 11 tasks.

The source code for example #1 is found in , in the SOURCE directory. You can getTEST.C

there from the TEST directory by typing:

CD ..\SOURCE

µC/OS-II User's Manual

10Copyright 2015 Micrium Inc.

Portions of are shown in Listing 1.1. You can examine the actual code using yourTEST.C

favorite code editor.

Note: To describe listings and figures, I will place a reference in the margin. The reference

corresponds to an element of the listing or figure that I want to bring your attention to. For

example, means: “please refer to isting and locate the item ”. This notationL1.1(1) L 1.1 (1)

also applies to figures and thus would mean: “please look at igure and examineF3.1(2) F 3.1

item ”.(2)

#include "includes.h" (1)

#define TASK_STK_SIZE 512 (2)
#define N_TASKS 10

OS_STK TaskStk[N_TASKS][TASK_STK_SIZE]; (3)
OS_STK TaskStartStk[TASK_STK_SIZE]; (4)
char TaskData[N_TASKS]; (5)
OS_EVENT *RandomSem; (6)

Listing - Listing 1.1 Example #1, TEST.C

 First, you will notice that there is only a single #include statement. That’s because I like(1)

to place all my header files in a ‘master’ header file called . Each source fileINCLUDES.H

always references this single include file and thus, I never need to worry about

determining which headers I need; they all get included via . You can useINCLUDES.H

your code editor to view the contents of which is also found in the SOURCEINCLUDES.H

directory.

I will get back to Listing 1.1 later as needed. Like most C programs, we need a asmain()

shown in Listing 1.2.

µC/OS-II User's Manual

11Copyright 2015 Micrium Inc.

void main (void)
{
 PC_DispClrScr(DISP_FGND_WHITE + DISP_BGND_BLACK); (1)

 OSInit(); (2)

 PC_DOSSaveReturn(); (3)
 PC_VectSet(uCOS, OSCtxSw); (4)

 RandomSem = OSSemCreate(1); (5)

 OSTaskCreate(TaskStart, (void *)0, &TaskStartStk[TASK_STK_SIZE - 1], 0); (6)

 OSStart(); (7)
}

Listing - Listing 1.2 Example #1, TEST.C, main().

 µC/OS-II is a multitasking kernel and allows you to have up to 255 application tasks.(1)

µC/OS-II decides when to switch from one task to the other based on information you

provide to µC/OS-II. One of the items you must tell µC/OS-II is the priority of your

tasks. Changing between tasks is called a .context switch

main() starts by clearing the screen to ensure that no characters are left over from the

previous DOS session. The function is found in a file called (see PC_DispClrScr() PC.C

 for details). contains functions that provides services ifChapter 18, PC Services PC.C

you are running in a DOS environment (or a window under the Windows 95, 98, Me,

NT, 2000 or XP operating systems). The prefix allows you to easily determine thePC_

name of the file where the function comes from; in this case, . You should note thatPC.C

I specified white letters on a black background. Since the screen will be cleared, I simply

could have specified a black background and not specified a foreground. If I did this, and

you decided to return to the DOS prompt, you would not see anything on the screen! It’s

always better to specify a visible foreground just for this reason.

 A requirement of µC/OS-II is that you call before you invoke any of its other(2) OSInit()

services. creates two tasks: an idle task, which executes when no other task isOSInit()

ready to run, and a statistic task, which computes CPU usage.

 The current DOS ‘environment’ is saved by calling . This allows you(3) PC_DOSSaveReturn()

to return to DOS as if you had never started µC/OS-II. You can refer to Chapter 18, PC

 for a description of what does.Services PC_DOSSaveReturn()

 calls (see) to install the µC/OS-II context(4) main() PC_VectSet() Chapter 18, PC Services

µC/OS-II User's Manual

12Copyright 2015 Micrium Inc.

switch handler. Task-level context switching will be done by µC/OS-II by issuing an

80x86 INT instruction to this vector location. I decided to use vector 0x80 (i.e., 128)

because it’s not used by either DOS or the BIOS.

 A binary semaphore is created to guard access to the random number generator function(5)

provided by the Borland C/C++ library. A semaphore is an object provided by the kernel

to prevent multiple tasks from accessing the same resource (in this case a function) at the

same time. I decided to use a semaphore because I didn’t know whether or not the

random generator function was reentrant; I assumed it was not. By initializing the

semaphore to 1, I’m telling µC/OS-II to only allow one task to access the random

generator function at any given time. A semaphore must be ‘created’ before it can be

used. This is done by calling and specifying its initial value. OSSemCreate()

 returns a ‘handle’ (see Listing 1.1(6)) to the semaphore which must beOSSemCreate()

used to reference this particular semaphore.

 Before starting multitasking, you have to create at least one task. For this example, I(6)

called this task . You ‘create’ a task because you want to tell µC/OS-II toTaskStart()

manage the task. The function receives four arguments. The firstOSTaskCreate()

argument is a pointer to the task’s address, in this case . The secondTaskStart()

argument is a pointer to data that you want to pass to the task when it first starts. In this

case, there is nothing to pass and thus, I passed a NULL pointer but it could have been

anything. I’ll discuss the use of this argument in Example #4. The third argument is the

task’s top-of-stack (TOS). With µC/OS-II, as with most preemptive kernels, each task

requires its own stack space. Each task in µC/OS-II can have a different size but, for

simplicity, I made them all the same. On the 80x86 CPU, the stack grows downwards

and thus, we must pass the highest most ‘valid’ TOS address to . In thisOSTaskCreate()

case, the stack is called and is allocated at compile time. A stack must beTaskStartStk[]

declared having a type (see Listing 1.1(4)). The size of the stack is declared inOS_STK

Listing 1.1(2). For the 80x86, an is a 16-bit value and thus, the size of the stack isOS_STK

1024 bytes. Finally, we must specify the priority of the task being created. The lower the

priority number the higher the priority (i.e. its importance).

As previously mentioned, µC/OS-II allows you to create up to 255 tasks. However, each

task must have a unique priority number between 0 and 254. You’re the one that actually

decides what priority to give your tasks based on your application requirements. Priority

level 0 is the highest priority.

 is then called to start multitasking and give control to µC/OS-II. It is very(7) OSStart()

µC/OS-II User's Manual

13Copyright 2015 Micrium Inc.

important that you create at least one task before calling . Failure to do thisOSStart()

will certainly make your application crash. In fact, you may always want to create only

one task if you are planning on using the CPU usage statistic task.

OSStart()’s job is to determine which, of all the tasks created, is the most important one

(highest priority), and start executing this task. In our case, µC/OS-II created two low

priority tasks: the idle task and the statistic task. created with amain() TaskStart()

priority of 0. As I mentioned, priority 0 is the highest priority, and thus, willOSStart()

start executing .TaskStart()

You should note that doesn’t return back to . However, if you call OSStart() main()

, multitasking would be halted and your application would return back toPC_DOSReturn()

DOS (but not). In an embedded system, there is no need for an equivalentmain()

function to because you would most likely not be returning to anything!PC_DOSReturn()

As I mentioned in the previous section, will select as the mostOSStart() TaskStart()

important task to run first. is shown in Listing 1.3.TaskStart()

µC/OS-II User's Manual

14Copyright 2015 Micrium Inc.

void TaskStart (void *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 char s[100];
 INT16S key;

 pdata = pdata; (1)

 TaskStartDispInit(); (2)

 OS_ENTER_CRITICAL(); (3)
 PC_VectSet(0x08, OSTickISR); (4)
 PC_SetTickRate(OS_TICKS_PER_SEC); (5)
 OS_EXIT_CRITICAL(); (6)

 OSStatInit(); (7)

 TaskStartCreateTasks(); (8)

 for (;;) { (9)
 TaskStartDisp(); (10)

 if (PC_GetKey(&key) == TRUE) { (11)
 if (key == 0x1B) { (12)
 PC_DOSReturn(); (13)
 }
 }

 OSCtxSwCtr = 0; (14)
 OSTimeDlyHMSM(0, 0, 1, 0); (15)
 }
}

Listing - Listing 1.3 Example #1, TEST.C, TaskStart().

 begins by setting pdata to itself. I do this because some compilers would(1) TaskStart()

complain (error or warning) if pdata is not referenced. In other words, I ‘fake’ the usage

of pdata! pdata is a pointer passed to your task, when the task is created. The second

argument passed in is none other that the argument pdata of a task (seeOSTaskCreate()

L1.2(6)). Because I passed a NULL pointer (again see L1.2(6)), I am not passing

anything to .TaskStart()

 then calls to initialize the display as shown in Figure(2) TaskStart() TaskStartDispInit()

1.2. makes 25 consecutive calls to (see TaskStartDispInit() PC_DispStr() Chapter 18,

) to fill the 25 lines of text of a typical DOS window.PC Services

µC/OS-II User's Manual

15Copyright 2015 Micrium Inc.

Figure - Figure 1.2 Initialization of the display by TaskStartDispInit().

 (3) TaskStart() then invokes the macro OS_ENTER_CRITICAL() . OS_ENTER_CRITICAL() is

basically a processor-specific macro and its used to disable interrupts (see Chapter 13,

 Porting µC/OS-II).

 µC/OS-II, like all kernel, requires a time source to keep track of delays and timeouts. In(4)

real mode, the PC offers such a time source which occurs every 54.925 ms (18.20648

Hz) and is called a . allows us to replace the address where the PC goestick PC_VectSet()

to service the DOS tick with one that will be used by µC/OS-II. However, µC/OS-II will

still call the DOS tick handler every 54.925 ms. This technique is called and ischaining

setup by (see).PC_DOSSaveReturn() Chapter 18, PC Services

 We then change the tick rate rate from 18.2 Hz to 200 Hz. I selected 200 Hz because it’s(5)

almost an exact multiple of 18.2 Hz (i.e. 11 times faster). I never quite understood why

IBM selected 18.2 Hz instead of 20 Hz as the tick rate on the original PC. Instead of

setting up the 82C54 timer to divide the timer input frequency by 59,659 to obtain a nice

20 Hz, it appears that they left the 16-bit timer overflow every 65,536 pulses! Changing

the tick rate is handled by another PC service called and is passed thePC_SetTickRate()

desired tick rate (is set to 200 in).OS_TICKS_PER_SEC OS_CPU.H

 We then invoke the macro . is basically a(6) OS_EXIT_CRITICAL() OS_EXIT_CRITICAL()

µC/OS-II User's Manual

16Copyright 2015 Micrium Inc.

processor-specific macro and its used to reenable interrupts (see Chapter 13, Porting

). and must be used in pair.µC/OS-II OS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

 is called to determine the speed of your CPU (see (7) OSStatInit() Chapter 3, Kernel

). This allows µC/OS-II to know what percentage of the CPU is actually beingStructure

used by all the tasks.

 then calls to let µC/OS-II manage more tasks.(8) TaskStart() TaskStartCreateTasks()

Specifically, we will be adding N_TASKS identical tasks (see Listing 1.1(2)).

 is shown in Listing 1.4.TaskStartCreateTasks()

static void TaskStartCreateTasks (void)
{
 INT8U i;

 for (i = 0; i < N_TASKS; i++) {
 TaskData[i] = '0' + i; (1)
 OSTaskCreate(Task, (2)
 (void *)&TaskData[i], (3)
 &TaskStk[i][TASK_STK_SIZE - 1], (4)
 i + 1); (5)
 }
}

Listing - Listing 1.4 Example #1, TEST.C, TaskStartCreateTasks().

 An array is initialized to contain the ASCII characters ‘0’ to ‘9’ (see also Listing 1.1(5)).(1)

 The loop will initialize identical tasks called . will be responsible(2) N_TASKS Task() Task()

for placing an ASCII character at a random location on the screen. In fact, each instance

of will place a different character.Task()

 Each of these task will receive a pointer to the array of ASCII characters. Each task will(3)

in fact receive a pointer to a different character.

 Again, each task requires its own stack space (see Listing 1.1(3)).(4)

 With µC/OS-II, each task must have a unique priority. Since priority number 0 is already(5)

used by , I decided to create tasks with priorities 1 through 10.TaskStart()

µC/OS-II User's Manual

17Copyright 2015 Micrium Inc.

As each task is created, µC/OS-II determines whether the created task is more important

than the creator. If the created task had a higher priority then µC/OS-II would

immediately run the created task. However, since has the highest priorityTaskStart()

(priority 0), none of the created tasks will execute just yet.

We can now resume discussion of Listing 1.3.

 With µC/OS-II, each task must be an infinite loop.(9)

 is called to display information at the bottom of the DOS window (see(10) TaskStartDisp()

Figure 1.1). Specifically, will print the number of tasks created, theTaskStartDisp()

current CPU usage in percentage, the number of context switches, the version of

µC/OS-II and finally, whether your processor has a Floating-Point Unit (FPU) or not.

 then checks to see if you pressed a key by calling .(11) TaskStart() PC_GetKey()

 & (13) determines whether you pressed the ‘ESC’ key on your keyboard(12) TaskStart()

and if so, calls to exit this example and return back to the DOS prompt.PC_DOSReturn()

You can find out how this is done by refering to .Chapter 18, PC Services

 If you didn’t press the ‘Esc’ key, the global variable OSCtxSwCtr (the context switch(14)

counter) is cleared so that we can display the number of context switches in one second.

 Finally, is suspended (will not run) for one complete second by calling (15) TaskStart()

. The stands for ours, inutes, econds and illiseconds andOSTimeDlyHMSM() HMSM H M S M

corresponds to the arguments passed to . Because isOSTimeDlyHMSM() TaskStart()

suspended for one second, µC/OS-II will start exeuting the next most important task, in

this case at priority 1. You should note that without (or otherTask() OSTimeDlyHMSM()

similar functions), would be a true infinite loop and other tasks would neverTaskStart()

get a chance to run.

The code for is shown in Listing 1.5.Task()

µC/OS-II User's Manual

18Copyright 2015 Micrium Inc.

void Task (void *pdata)
{
 INT8U x;
 INT8U y;
 INT8U err;

 for (;;) { (1)
 OSSemPend(RandomSem, 0, &err); (2)
 x = random(80); (3)
 y = random(16); (4)
 OSSemPost(RandomSem); (5)

 PC_DispChar(x, y + 5, *(char *)pdata, DISP_FGND_LIGHT_GRAY); (6)
 OSTimeDly(1); (7)
 }
}

Listing - Listing 1.5 Example #1, TEST.C, Task().

 As I previously mentioned, a µC/OS-II task is typically an infinite loop.(1)

 The task starts by acquiring the semaphore which guards access to the Borland compiler(2)

random number generator function. This is done by calling and passing itOSSemPend()

the ‘handle’ (see L1.1(6)) of the semaphore which was created to guard access to the

random number generator function. The second argument of is used toOSSemPend()

specify a timeout. A value of 0 means that this task will wait forever for the semaphore.

Because the semaphore was initialized with a count of one and no other task has

requested the semaphore, is allowed to continue execution. If the semaphore wasTask()

‘owned’ by another task, µC/OS-II would have suspended this task, and executed the

next most important task.

 The random number generator function is called and a value between 0 and 79(3)

(inclusively) is returned. This happens to be the ‘X’ coordinate where we want to display

the character ‘0’ (for this task) on the screen.

 Again, the random number generator is called and returns a number between 0 and 15(4)

(inclusively). This value will be used to determine the ‘Y’ position of the character to

display.

 The semaphore is released by calling . Here we simply need to specify the(5) OSSemPost()

semaphore ‘handle’.

 We can now display the character that was passed to when was created.(6) Task() Task()

µC/OS-II User's Manual

19Copyright 2015 Micrium Inc.

For the first instance of , the character would be ‘0’ and the last instance, it’s ‘9’. ITask()

added an offset of 5 lines from the top so that I don’t overwrite the header at the top of

the display (see Figure 1.1).

 Finally, calls to tell µC/OS-II that it’s done executing and to give(7) Task() OSTimeDly()

other tasks a chance to run. The value of 1 means that I want this task to delay for one

clock tick or, 5 ms since the tick rate is 200 Hz. When is called, µC/OS-IIOSTimeDly()

suspends the calling function and executes the next most important task. In this case, it

would be another instance of which would display ‘1’. This process goes on forTask()

all instances of and thus, that’s why Figure 1.1 looks the way it does.Task()

If you have the Borland C/C++ V4.5x compiler installed in the \ directory, you canC: BC45

experiment with . After modifying , you can type MAKETEST from theTEST.C TEST.C

command line prompt of the TEST directory which builds a new . If you don’t haveTEST.EXE

the Borland C/C++ V4.5x or your have it installed in a different directory, you can make the

appropriate changes to , and .TEST.MAK INCLUDES.H TEST.LNK

The SOURCE directory contains four files: , , and . INCLUDES.H OS_CFG.H TEST.C TEST.LNK

 is used to determine µC/OS-II configuration options. is the linker commandOS_CFG.H TEST.LNK

file for the Borland linker, TLINK.

Example 2: Stack Checking

Example #2 demonstrates the stack checking feature of µC/OS-II. The amount of stack space

used by each task is displayed along with the amount of free stack space. Also, Example #2

shows the execution time of the stack checking function since it depends onOSTaskStkChk()

the size of each stack. It turns out that a heavily used stack requires less processing time.

The code for Example #2 is found in the directory. You can\SOFTWARE\uCOS-II\EX2_x86L\BC45

open a DOS window and type:

CD \SOFTWARE\uCOS-II\Ex2_x86L\BC45\TEST

To execute example #2, simply type TEST at the command line prompt. The DOS window

will run the program.TEST.EXE

After about one second, you should see the screen shown in Figure 1.3.

µC/OS-II User's Manual

20Copyright 2015 Micrium Inc.

Figure - Figure 1.3 Example #2 running in a DOS window.

Example #2 consists of 9 tasks as displayed in the lower left of Figure 1.3. Of those 9 tasks,

µC/OS-II creates two internal tasks: the idle task and a task that determines CPU usage.

Example #2 creates the other 7 tasks.

Example #2 shows you how you can display task statistics beyond the number of tasks created,

the number of context switches and the CPU usage. Specifically, Example #2 shows you how

you can find out how much stack space each task is actually using and how much execution

time it takes to determine the size of each task stack.

Example #2 makes use of the extended task create function () and theOSTaskCreateExt()

µC/OS-II stack-checking feature (). Stack checking is useful when you don’tOSTaskStkChk()

actually know ahead of time how much stack space you need to allocate for each task. In this

case, you would allocate much more stack space than you think you need and let µC/OS-II tell

you exactly how much stack space is actually used. You obviously need to run the application

long enough and under your worst case conditions to get valid numbers. Your final stack size

should accommodate system expansion, so make sure you allocate between 10 and 25 percent

more. In safety-critical applications, however, you may even want to consider 100 percent

more! What you get from stack checking is a ballpark figure; you are not looking for an exact

stack usage.

The µC/OS-II stack-checking function fills the stack of a task with zeros when the task is

created. You accomplish this by telling that you want to clear the stackOSTaskCreateExt()

µC/OS-II User's Manual

21Copyright 2015 Micrium Inc.

upon task creation and, that you’ll want to check the stack (i.e., by setting the

 and for the opt argument). If you intend to createOS_TASK_OPT_STK_CLR OS_TASK_OPT_STK_CHK

and delete tasks, you should set these options so that a new stack is cleared every time the task

is created. You should note that having clear the stack increases executionOSTaskCreateExt()

overhead, which obviously depends on the stack size.

µC/OS-II scans the stack starting at the bottom until it finds a nonzero entry. As the stack is

scanned, µC/OS-II increments a counter that indicates how many entries are free.

The source code for example #2 is found in , in the SOURCE directory. You can getTEST.C

there from the TEST directory by typing:

CD ..\SOURCE

Portions of are shown in Listing 1.6. You can examine the actual code using yourTEST.C

favorite code editor.

#include "includes.h" (1)

#define TASK_STK_SIZE 512 (2)

#define TASK_START_ID 0 (3)
#define TASK_CLK_ID 1
#define TASK_1_ID 2
#define TASK_2_ID 3
#define TASK_3_ID 4
#define TASK_4_ID 5
#define TASK_5_ID 6

#define TASK_START_PRIO 10 (4)
#define TASK_CLK_PRIO 11
#define TASK_1_PRIO 12
#define TASK_2_PRIO 13
#define TASK_3_PRIO 14
#define TASK_4_PRIO 15
#define TASK_5_PRIO 16

OS_STK TaskStartStk[TASK_STK_SIZE]; (5)
OS_STK TaskClkStk[TASK_STK_SIZE];
OS_STK Task1Stk[TASK_STK_SIZE];
OS_STK Task2Stk[TASK_STK_SIZE];
OS_STK Task3Stk[TASK_STK_SIZE];
OS_STK Task4Stk[TASK_STK_SIZE];
OS_STK Task5Stk[TASK_STK_SIZE];

OS_EVENT *AckMbox; (6)
OS_EVENT *TxMbox;

Listing - Listing 1.6 Example #2, TEST.C

Based on what you learned in Example #1, you should recognize:

µC/OS-II User's Manual

22Copyright 2015 Micrium Inc.

 as the master include file.(1) INCLUDES.H

 The size of each task stacks (). Again, I made all stack sizes the same for(2) TASK_STK_SIZE

simplicity but with µC/OS-II, the stack size for each task can be different.

 The storage for the task stacks.(5)

main() for example #2 is shown in Listing 1.7 and look very similar to the of examplemain()

#1. I will only describe the differences.

void main (void)
{
 OS_STK *ptos;
 OS_STK *pbos;
 INT32U size;

 PC_DispClrScr(DISP_FGND_WHITE);

 OSInit();

 PC_DOSSaveReturn();
 PC_VectSet(uCOS, OSCtxSw);

 PC_ElapsedInit(); (1)

 ptos = &TaskStartStk[TASK_STK_SIZE - 1]; (2)
 pbos = &TaskStartStk[0];
 size = TASK_STK_SIZE;
 OSTaskStkInit_FPE_x86(&ptos, &pbos, &size); (3)
 OSTaskCreateExt(TaskStart, (4)
 (void *)0,
 ptos, (5)
 TASK_START_PRIO, (6)
 TASK_START_ID, (7)
 pbos, (8)
 size, (9)
 (void *)0, (10)
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR); (11)

 OSStart();
}

Listing - Listing 1.7 Example #2, TEST.C, main()

 calls to initialize the elapsed time measurement function that(1) main() PC_ElapsedInit()

will be used to measure the execution time of . This function basicallyOSTaskStkChk()

measures the execution time (i.e. overhead) of two functions: and PC_ElapsedStart()

µC/OS-II User's Manual

23Copyright 2015 Micrium Inc.

. By measuring this time, we can determine fairly precisely how long itPC_ElapsedStop()

takes to execute code that’s wrapped between these two calls.

 & (3) in example #2 will be invoking the floating-point emulation library(2) TaskStart()

instead of making use of the Floating-Point Unit (FPU) which is present on 80486 and

higher-end PCs. The Borland compiler defaults to use its emulation library if an FPU is

not detected. In other words, if you were to run on a DOS based machineTEST.EXE

equiped with an Intel 80386EX (without an 80387 coprocessor) then, the floating-point

unit would be emulated. The emulation library is unfortunately non-reentrant and we

have to ‘trick’ it in order to allow multiple tasks to do floating-point math. For now, let

me just say that we have to modify the task stack to accommodate the floating-point

emulation library. This is accomplished by calling OSTaskStkInit_FPE_x86() (see

). You will notice from Figure 1.3 that the stack size reported for Chapter 14, 80x86 Port

 is 624 instead of 1024. That’s because OSTaskStkInit_FPE_x86() reservesTaskStart()

the difference for the floating-point emulation library.

 Instead of calling to create , we must call (4) OSTaskCreate() TaskStart()

 (the extended version of) because we modified theOSTaskCreateExt() OSTaskCreate()

stack and also because we want to check the stack size at run-time (described later).

 OSTaskStkInit_FPE_x86() modifies the top-of-stack pointer so we must pass the new(5)

pointer to .OSTaskCreateExt()

 Instead of passing a hard-coded priority (as I did in example #1), I created a #define(6)

symbol (see L1.6(4)).

 requires that you pass a task identifier (ID). The actual value can be(7) OSTaskCreateExt()

anything since this field is not actually used by µC/OS-II at this time.

 modifies the bottom-of-stack pointer so we must pass the new(8) OSTaskStkInit_FPE_x86()

pointer to .OSTaskCreateExt()

 also modifies the size of the stack so we must pass the new(9) OSTaskStkInit_FPE_x86()

size to .OSTaskCreateExt()

 One of ‘s argument is a Task Control Block (TCB) extension pointer.(10) OSTaskCreateExt()

This argument is not used in example #2 so we simply pass a NULL pointer.

µC/OS-II User's Manual

24Copyright 2015 Micrium Inc.

 Finally, the last argument to is a set of options (i.e. bits) that tell (11) OSTaskCreateExt()

 that we will be doing stack size checking and that we want to clearOSTaskCreateExt()

the stack when the task is created.

TaskStart() is similar to the one described in example #1 and is shown in Listing 1.8. Again, I

will only describe the differences.

void TaskStart (void *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT16S key;

 pdata = pdata;

 TaskStartDispInit(); (1)

 OS_ENTER_CRITICAL();
 PC_VectSet(0x08, OSTickISR);
 PC_SetTickRate(OS_TICKS_PER_SEC);
 OS_EXIT_CRITICAL();

 OSStatInit();

 AckMbox = OSMboxCreate((void *)0); (2)
 TxMbox = OSMboxCreate((void *)0);

 TaskStartCreateTasks(); (3)

 for (;;) {
 TaskStartDisp();

 if (PC_GetKey(&key)) {
 if (key == 0x1B) {
 PC_DOSReturn();
 }
 }

 OSCtxSwCtr = 0;
 OSTimeDly(OS_TICKS_PER_SEC); (4)
 }
}

Listing - Listing 1.8 Example #2, TEST.C, TaskStart()

 Although the function call is identical initializes the display as(1) TaskStartDispInit()

shown in Figure 1.4.

µC/OS-II User's Manual

25Copyright 2015 Micrium Inc.

Figure - Figure 1.4 Initialization of the display by TaskStartDispInit().

 µC/OS-II allows you to have tasks or ISRs send messages to other tasks. In example #2,(2)

I will have task #4 send a message to task #5 and, task #5 will respond back to task #4

with an acknowledgement message (described later). For this purpose, we need to create

two kernel objects that are called . A mailbox allows a task or an ISR to send amailboxes

‘pointer’ to another task. The mailbox only has room for a single pointer. What the

pointer points to is application specific and of course, both the sender and the receiver

need to agree about the contents of the message.

 creates six tasks using . These tasks will not(3) TaskStartCreateTasks() OSTaskCreateExt()

be doing floating-point operations and thus, there is no need to call

OSTaskStkInit_FPE_x86() to modify the stacks. However, I will be doing stack

checking on these tasks so I call with the proper options set.OSTaskCreateExt()

 In example #1, I called to delay for one second. I decided(4) OSTimeDlyHMSM() TaskStart()

to use to show you that you can use either method.OSTimeDly(OS_TICKS_PER_SEC)

However, is slightly faster than .OSTimeDly() OSTimeDlyHMSM()

The code for is shown in Listing 1.9. checks the size of the stack for each ofTask1() Task1()

the seven application tasks (the six tasks created by and itself).TaskStart() TaskStart()

µC/OS-II User's Manual

26Copyright 2015 Micrium Inc.

void Task1 (void *pdata)
{
 INT8U err;
 OS_STK_DATA data;
 INT16U time;
 INT8U i;
 char s[80];

 pdata = pdata;
 for (;;) {
 for (i = 0; i < 7; i++) {
 PC_ElapsedStart(); (1)
 err = OSTaskStkChk(TASK_START_PRIO + i, &data); (2)
 time = PC_ElapsedStop(); (3)
 if (err == OS_NO_ERR) {
 sprintf(s, "%4ld %4ld %4ld %6d", (4)
 data.OSFree + data.OSUsed,
 data.OSFree,
 data.OSUsed,
 time);
 PC_DispStr(19, 12 + i, s, DISP_FGND_YELLOW); (5)
 }
 }
 OSTimeDlyHMSM(0, 0, 0, 100); (6)
 }
}

Listing - Listing 1.9 Example #2, TEST.C, Task1()

 & (3) The execution time of is measured by wrapping (1) OSTaskStkChk() OSTaskStkChk()

with calls to and . returns thePC_ElapsedStart() PC_ElapsedStop() PC_ElapsedStop()

time difference in microseconds.

 is a service provided by µC/OS-II to allow your code to determine the(2) OSTaskStkChk()

actual stack usage of a task. You call by passing it the task priority ofOSTaskStkChk()

the task you want to check. The second argument to the function is a pointer to a data

structure that will hold information about the task’s stack. Specifically, OS_STK_DATA

contains the number of bytes used and the number of bytes free. returnsOSTaskStkChk()

an error code that indicates whether the call was successful. It would not be successful if

I had passed the priority number of a task that didn’t exist.

 & (5) The information retrieved by is formatted into a string and(4) OSTaskStkChk()

displayed.

 I decided to execute this task 10 times per second but in an actual product or application,(6)

you would most likely run stack checking every few seconds or so. In other words, it

might not make sense to consume valuable CPU processing time to determine worst case

µC/OS-II User's Manual

27Copyright 2015 Micrium Inc.

stack growth.

The code for and is shown in listing 1.10. Both of these task display aTask2() Task3()

spinning wheel. The two tasks are almost identical. allocates and initializes a ‘dummy’Task3()

array of 500 bytes. I wanted to ‘consume’ stack space to show you that wouldOSTaskStkChk()

report that has 502 bytes less than on its stack (500 bytes for the array and 2Task3() Task2()

bytes for the 16-bit integer). ’s wheel spins clockwise at 5 rotations per second and Task2()

’s wheel spins counterclockwise at 2.5 rotations per second.Task3()

Note: If you run example #2 in a window under Windows 95, 98, Me, NT, 2000 or XP, the

rotation may not appear as quick. Simply press and hold the ‘Alt’ key and then press the

‘Enter’ key on your keyboard to make the DOS window use the whole screen. You can go

back to window mode by repeating the operation.

void Task2 (void *data)
{
 data = data;
 for (;;) {
 PC_DispChar(70, 15, '|', DISP_FGND_WHITE + DISP_BGND_RED);
 OSTimeDly(10);
 PC_DispChar(70, 15, '/', DISP_FGND_WHITE + DISP_BGND_RED);
 OSTimeDly(10);
 PC_DispChar(70, 15, '-', DISP_FGND_WHITE + DISP_BGND_RED);
 OSTimeDly(10);
 PC_DispChar(70, 15, '\\', DISP_FGND_WHITE + DISP_BGND_RED);
 OSTimeDly(10);
 }
}

void Task3 (void *data)
{
 char dummy[500];
 INT16U i;

 data = data;
 for (i = 0; i < 499; i++) {
 dummy[i] = '?';
 }
 for (;;) {
 PC_DispChar(70, 16, '|', DISP_FGND_WHITE + DISP_BGND_BLUE);
 OSTimeDly(20);
 PC_DispChar(70, 16, '\\', DISP_FGND_WHITE + DISP_BGND_BLUE);
 OSTimeDly(20);
 PC_DispChar(70, 16, '-', DISP_FGND_WHITE + DISP_BGND_BLUE);
 OSTimeDly(20);
 PC_DispChar(70, 16, '/', DISP_FGND_WHITE + DISP_BGND_BLUE);
 OSTimeDly(20);
 }
}

Listing - Listing 1.10 Example #2, TEST.C, Task2() and Task3()

µC/OS-II User's Manual

28Copyright 2015 Micrium Inc.

Task4() and are shown in Listing 1.11.Task5()

void Task4 (void *data)
{
 char txmsg;
 INT8U err;

 data = data;
 txmsg = 'A';
 for (;;) {
 OSMboxPost(TxMbox, (void *)&txmsg); (1)
 OSMboxPend(AckMbox, 0, &err); (2)
 txmsg++; (3)
 if (txmsg == 'Z') {
 txmsg = 'A';
 }
 }
}
void Task5 (void *data)
{
 char *rxmsg;
 INT8U err;

 data = data;
 for (;;) {
 rxmsg = (char *)OSMboxPend(TxMbox, 0, &err); (4)
 PC_DispChar(70, 18, *rxmsg, DISP_FGND_YELLOW + DISP_BGND_RED);(5)
 OSTimeDlyHMSM(0, 0, 1, 0); (6)
 OSMboxPost(AckMbox, (void *)1); (7)
 }
}

Listing - Listing 1.11 Example #2, TEST.C, Task4() and Task5()

 sends a message (an ASCII character) to by posting the message to the(1) Task4() Task5()

TxMbox.

 then waits for an acknowledgement from by waiting on the AckMbox.(2) Task4() Task5()

The second argument to the call specifies a timeout and I specified to waitOSMboxPend()

forever because I passed a value of 0. By specifying a non-zero value, wouldTask4()

have given up waiting after the specified timeout. The timeout is specified as an integral

number of clock ticks.

 The message is changed when acknowledges the previous message.(3) Task5()

 When starts execution, it immediately waits (forever) for a message to arrive(4) Task5()

through the mailbox TxMbox.

µC/OS-II User's Manual

29Copyright 2015 Micrium Inc.

 When the message arrives, displays it on the screen.(5) Task5()

 & (7) then waits for one second before acknowledging . I decided to(6) Task5() Task4()

wait for one second so that you could see it change on the screen. In fact, there must

either be a delay in or one in otherwise, all lower priority tasks wouldTask5() Task4()

not be allowed to run!

Finally, the code for is shown in Listing 1.12. This task executes every second andTaskClk()

simply obtains the current date and time from a PC service called (see PC_GetDateTime()

) and displays it on the screen.Chapter 18, PC Services

void TaskClk (void *data)
{
 char s[40];

 data = data;
 for (;;) {
 PC_GetDateTime(s);
 PC_DispStr(60, 23, s, DISP_FGND_BLUE + DISP_BGND_CYAN);
 OSTimeDly(OS_TICKS_PER_SEC);
 }
}

Listing - Listing 1.12 Example #2, TEST.C, TaskClk()

If you have the Borland C/C++ V4.5x compiler installed in the \ directory, you canC: BC45

experiment with . After modifying , you can type from the commandTEST.C TEST.C MAKETEST

line prompt of the TEST directory which builds a new . If you don’t have the BorlandTEST.EXE

C/C++ V4.5x or your have it installed in a different directory, you can make changes to

, and accordingly.TEST.MAK INCLUDES.H TEST.LNK

The SOURCE directory contains four files: , , and . INCLUDES.H OS_CFG.H TEST.C TEST.LNK

 is used to determine µC/OS-II configuration options. is the linker commandOS_CFG.H TEST.LNK

file for the Borland linker, TLINK.

µC/OS-II User's Manual

30Copyright 2015 Micrium Inc.

Example 3: Extending Functionality with TCB

Example #3 shows how you can extend the functionality of µC/OS-II. Specifically, Example

#3 uses the TCB (Task Control Block) extension capability of , theOSTaskCreateExt()

user-defined context switch hook [], the user-defined statistic task hook [OSTaskSwHook()

], and message queues. In this example you will see how easy it is toOSTaskStatHook()

determine how many times a task executes, and how much time a task takes to execute. The

execution time can be used to determine the CPU usage of a task relative to the other tasks.

The code for Example #3 is found in the directory. You can\SOFTWARE\uCOS-II\EX3_x86L\BC45

open a DOS window and type:

CD \SOFTWARE\uCOS-II\Ex3_x86L\BC45\TEST

As usual, to execute example #3, simply type at the command line prompt. The DOSTEST

window will run the program.TEST.EXE

After about one second, you should see the screen shown in Figure 1.5. I let run for aTEST.EXE

couple of seconds before I captured the screen shot. Seven tasks are shown along with how

many times they executed (column), the execution time of each task in microseconds (Counter

 column), the total execution time since I started (column)Exec.Time(uS) Tot.Exec.Time(uS)

and finally, the percentage of execution time of each task relative to the other tasks (%Tot.

column).

Example #3 consists of 9 tasks as displayed in the lower left of Figure 1.5. Of those 9 tasks,

µC/OS-II creates two internal tasks: the idle task and a task that determines CPU usage.

Example #3 creates the other 7 tasks.

µC/OS-II User's Manual

31Copyright 2015 Micrium Inc.

Figure - Figure 1.5 Example #3 running in a DOS window.

Portions of TEST.C are shown in Listing 1.13. You can examine the actual code using your

favorite code editor.

µC/OS-II User's Manual

32Copyright 2015 Micrium Inc.

#include "includes.h"

#define TASK_STK_SIZE 512

#define TASK_START_ID 0
#define TASK_CLK_ID 1
#define TASK_1_ID 2
#define TASK_2_ID 3
#define TASK_3_ID 4
#define TASK_4_ID 5
#define TASK_5_ID 6

#define TASK_START_PRIO 10
#define TASK_CLK_PRIO 11
#define TASK_1_PRIO 12
#define TASK_2_PRIO 13
#define TASK_3_PRIO 14
#define TASK_4_PRIO 15
#define TASK_5_PRIO 16

#define MSG_QUEUE_SIZE 20

typedef struct { (1)
 char TaskName[30];
 INT16U TaskCtr;
 INT16U TaskExecTime;
 INT32U TaskTotExecTime;
} TASK_USER_DATA;

OS_STK TaskStartStk[TASK_STK_SIZE];
OS_STK TaskClkStk[TASK_STK_SIZE];
OS_STK Task1Stk[TASK_STK_SIZE];
OS_STK Task2Stk[TASK_STK_SIZE];
OS_STK Task3Stk[TASK_STK_SIZE];
OS_STK Task4Stk[TASK_STK_SIZE];
OS_STK Task5Stk[TASK_STK_SIZE];

TASK_USER_DATA TaskUserData[7]; (2)

OS_EVENT *MsgQueue; (3)
void *MsgQueueTbl[20];

Listing - Listing 1.13 Example #3, TEST.C

 A data structure is created to hold additional information about a task. Specifically, the(1)

data structure allows you to add a name to a task (µC/OS-II doesn’t directly provide this

feature), keep track of how many times a task has executed, how long a task takes to

execute and finally, the total time a task has executed.

 An array of the is allocated to hold information about each task created(2) TASK_USER_DATA

(except the idle and statistic task).

 µC/OS-II provides another message passing mechanism called a . A(3) message queue

message queue is like a mailbox except that instead of being able to send a single

µC/OS-II User's Manual

33Copyright 2015 Micrium Inc.

pointer, a queue can hold more than one message (i.e. pointers). A message queue thus

allows your tasks or ISRs to send messages to other tasks. What each of the pointers

point to is application specific and of course, both the sender and the receiver need to

agree about the contents of the messages. Two elements are needed to create a message

queue: an structure and an array of pointers. The depth of the queue isOS_EVENT

determined by the number of pointers allocated in the pointer array. In this case, the

message queue contains 20 entries.

main() is shown in Listing 1.14. Once more, only the new features will be described.

void main (void)
{
 PC_DispClrScr(DISP_BGND_BLACK);

 OSInit();

 PC_DOSSaveReturn();

 PC_VectSet(uCOS, OSCtxSw);

 PC_ElapsedInit();

 strcpy(TaskUserData[TASK_START_ID].TaskName, "StartTask"); (1)
 OSTaskCreateExt(TaskStart,
 (void *)0,
 &TaskStartStk[TASK_STK_SIZE - 1],
 TASK_START_PRIO,
 TASK_START_ID,
 &TaskStartStk[0],
 TASK_STK_SIZE,
 &TaskUserData[TASK_START_ID], (2)
 0);
 OSStart();
}

Listing - Listing 1.14 Example #3, TEST.C, main()

 Before a task is created, we assign a name to the task using the ANSI C library function (1)

. The name is stored in the data structure (see L1.13(1)) assigned to the task.strcpy()

 is created using and passed a pointer to its user data(2) TaskStart() OSTaskCreateExt()

structure. The Task Control Block (TCB) of each task in µC/OS-II can store a pointer to

a user provided data structure (see for details). This allowsChapter 3, Kernel Structure

you to extend the functionality of µC/OS-II as you will see shortly.

µC/OS-II User's Manual

34Copyright 2015 Micrium Inc.

The code for is shown in Listing 1.15.TaskStart()

void TaskStart (void *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT16S key;

 pdata = pdata;

 TaskStartDispInit();

 OS_ENTER_CRITICAL();
 PC_VectSet(0x08, OSTickISR);
 PC_SetTickRate(OS_TICKS_PER_SEC);
 OS_EXIT_CRITICAL();

 OSStatInit();

 MsgQueue = OSQCreate(&MsgQueueTbl[0], MSG_QUEUE_SIZE); (1)

 TaskStartCreateTasks(); (2)

 for (;;) {
 TaskStartDisp();

 if (PC_GetKey(&key)) {
 if (key == 0x1B) {
 PC_DOSReturn();
 }
 }

 OSCtxSwCtr = 0;
 OSTimeDly(OS_TICKS_PER_SEC);
 }
}

Listing - Listing 1.15 Example #3, TEST.C, TaskStart()

 Not much has been added except the creation of the message queue that will be used by (1)

, , and .Task1() Task2() Task3() Task4()

 Like with Example #2, create 6 tasks. The difference is that(2) TaskStartCreateTasks()

each task is assigned an entry in the array. As each task is created, it’sTaskUserData[]

assigned a name just like I did when I created (see L1.14(1)).TaskStart()

As soon as calls , µC/OS-II will locate the nextTaskStart() OSTimeDly(OS_TICKS_PER_SEC)

highest priority task that’s ready to run. This will be . Listing 1.16 shows the code for Task1()

, , and because I will discuss them next.Task1() Task2() Task3() Task4()

µC/OS-II User's Manual

35Copyright 2015 Micrium Inc.

void Task1 (void *pdata)
{
 char *msg;
 INT8U err;

 pdata = pdata;
 for (;;) {
 msg = (char *)OSQPend(MsgQueue, 0, &err); (1)
 PC_DispStr(70, 13, msg, DISP_FGND_YELLOW + DISP_BGND_BLUE); (2)
 OSTimeDlyHMSM(0, 0, 0, 100); (3)
 }
}

void Task2 (void *pdata)
{
 char msg[20];

 pdata = pdata;
 strcpy(&msg[0], "Task 2");
 for (;;) {
 OSQPost(MsgQueue, (void *)&msg[0]); (4)
 OSTimeDlyHMSM(0, 0, 0, 500); (5)
 }
}

void Task3 (void *pdata)
{
 char msg[20];

 pdata = pdata;
 strcpy(&msg[0], "Task 3");
 for (;;) {
 OSQPost(MsgQueue, (void *)&msg[0]); (6)
 OSTimeDlyHMSM(0, 0, 0, 500);
 }
}

void Task4 (void *pdata)
{
 char msg[20];

 pdata = pdata;
 strcpy(&msg[0], "Task 4");
 for (;;) {
 OSQPost(MsgQueue, (void *)&msg[0]); (7)
 OSTimeDlyHMSM(0, 0, 0, 500);
 }
}

Listing - Listing 1.16 Example #3, TEST.C, Task1() through Task4().

 waits forever for a message to arrive through a message queue.(1) Task1()

 When a message arrives, it is displayed on the screen.(2)

µC/OS-II User's Manual

36Copyright 2015 Micrium Inc.

 The task is delayed for 100 ms to allow you to see the message received.(3)

 sends the message "Task 2" to through the message queue.(4) Task2() Task1()

 waits for half a second before sending another message.(5) Task2()

 & (7) and sends their message and also waits half a second between(6) Task3() Task4()

messages.

Another task, (not shown) does nothing useful except delay itself for 1/10 of a second.Task5()

Note that all µC/OS-II tasks must call a service provided by µC/OS-II to either wait for time to

expire or for an event to occur. If this is not done, the task prevents all lower priority tasks

from running.

Finally, (also not shown) displays the current date and time once a second.TaskClk()

Events happen behind the scenes that are not apparent just by looking at the tasks in .TEST.C

µC/OS-II is provided in source form and it’s quite easy to add functionality to µC/OS-II

through special functions called . As of V2.52, there are 9 hook functions and thehooks

prototype for these functions are shown in Listing 1.17.

void OSInitHookBegin(void);
void OSInitHookEnd(void);
void OSTaskCreateHook(OS_TCB *ptcb);
void OSTaskDelHook(OS_TCB *ptcb);
void OSTaskIdleHook(void);
void OSTaskStatHook(void);
void OSTaskSwHook(void);
void OSTCBInitHook(OS_TCB *ptcb);
void OSTimeTickHook(void);

Listing - Listing 1.17 µC/OS-II’s hooks.

The hook functions are normally found in a file called , and are generally written byOS_CPU_C.C

the person who does the port for the processor you intend to use. However, if you set a

configuration constant called to 0, you can declare the hook functions in aOS_CPU_HOOKS_EN

different file. is one of many configuration constant found in the header file OS_CPU_HOOKS_EN

µC/OS-II User's Manual

37Copyright 2015 Micrium Inc.

. Every project that uses µC/OS-II needs its own version of because you mayOS_CFG.H OS_CFG.H

want to configure µC/OS-II differently for each projet. Each example provided in this book

contains its own in the SOURCE directory.OS_CFG.H

In example #3, I set to 0 and redefined the functionality of the hook functionsOS_CPU_HOOKS_EN

in . As shown in Listing 1.18, seven of the nine hooks don’t actually do anything andTEST.C

thus, don’t contain any code.

void OSInitHookBegin (void)
{
}

void OSInitHookEnd (void)
{
}

void OSTaskCreateHook (OS_TCB *ptcb)
{
 ptcb = ptcb;
}

void OSTaskDelHook (OS_TCB *ptcb)
{
 ptcb = ptcb;
}

void OSTaskIdleHook (void)
{
}

void OSTCBInitHook (OS_TCB *ptcb)
{
 ptcb = ptcb;
}

void OSTimeTickHook (void)
{
}

Listing - Listing 1.18 Example #3, TEST.C, empty hook functions.

The code for is shown in Listing 1.19 and allows us to measure the executionOSTaskSwHook()

time of each task, keeps track of how often each task executes, and accumulate total execution

times of each task. is called when µC/OS-II switches from a low priority taskOSTaskSwHook()

to a higher priority task.

µC/OS-II User's Manual

38Copyright 2015 Micrium Inc.

void OSTaskSwHook (void)
{
 INT16U time;
 TASK_USER_DATA *puser;

 time = PC_ElapsedStop(); (1)
 PC_ElapsedStart(); (2)
 puser = OSTCBCur->OSTCBExtPtr; (3)
 if (puser != (TASK_USER_DATA *)0) { (4)
 puser->TaskCtr++; (5)
 puser->TaskExecTime = time; (6)
 puser->TaskTotExecTime += time; (7)
 }
}

Listing - Listing 1.19 The task switch hook, OSTaskSwHook().

 A timer on the PC obtains the execution time of the task being ‘switched out’ through (1)

.PC_ElapsedStop()

 It is assumed that the timer was started by calling when the task was(2) PC_ElapsedStart()

‘switched in’. The first context switch will probably read an incorrect value, but this is

not really critical.

 When is called, the global pointer OSTCBCur points to the TCB of the(3) OSTaskSwHook()

current task while OSTCBHighRdy points to the TCB of the new task. In this case,

however, we don’t use OSTCBHighRdy. retrieves the pointer to theOSTaskSwHook()

TCB extension that was passed in .OSTaskCreateExt()

 We then check to make sure we don’t deference a NULL pointer. In fact, some of the(4)

tasks in this example do not contain a TCB extension pointer: the idle task and the

statistic task.

 We increment a counter that indicates how many times the task has executed. This(5)

counter is useful to determine if a particular task is running.

 The measured execution time (in microseconds) is stored in the TCB extension.(6)

 The total execution time (in microseconds) of the task is also stored in the TCB(7)

extension. This allows you to determine the percent of time each task takes with respect

to other tasks in an application (will be discussed shortly).

µC/OS-II User's Manual

39Copyright 2015 Micrium Inc.

When enabled (see in), the statistic task, calls theOS_TASK_STAT_EN OS_CFG.H OSTaskStat()

user-definable function that is shown in Listing 1.20. isOSTaskStatHook() OSTaskStatHook()

called every second.

void OSTaskStatHook (void)
{
 char s[80];
 INT8U i;
 INT32U total;
 INT8U pct;

 total = 0L;
 for (i = 0; i < 7; i++) {
 total += TaskUserData[i].TaskTotExecTime; (1)
 DispTaskStat(i); (2)
 }
 if (total > 0) {
 for (i = 0; i < 7; i++) {
 pct = 100 * TaskUserData[i].TaskTotExecTime / total; (3)
 sprintf(s, "%3d %%", pct);
 PC_DispStr(62, (4)
 i + 11,
 s,
 DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY);
 }
 }
 if (total > 1000000000L) {
 for (i = 0; i < 7; i++) {
 TaskUserData[i].TaskTotExecTime = 0L;
 }
 }
}

Listing - Listing 1.20 The statistic task hook, OSTaskStatHook().

 The total execution time of all the tasks (except the statistic task) is computed.(1)

 Individual statistics are displayed at the proper location on the screen by ,(2) DispTaskStat()

which takes care of converting the values into ASCII. In addition, alsoDispTaskStat()

displays the name of each task.

 & (4) The percent execution time is computed for each task and displayed.(3)

If you have the Borland C/C++ V4.5x compiler installed in the \ directory, you canC: BC45

experiment with . After modifying , you can type MAKETEST from theTEST.C TEST.C

command line prompt of the TEST directory which builds a new . If you don’t haveTEST.EXE

µC/OS-II User's Manual

40Copyright 2015 Micrium Inc.

the Borland C/C++ V4.5x or your have it installed in a different directory, you can make

changes to , and accordingly.TEST.MAK INCLUDES.H TEST.LNK

The SOURCE directory contains four files: , , and . INCLUDES.H OS_CFG.H TEST.C TEST.LNK

 is used to determine µC/OS-II configuration options. is the linker commandOS_CFG.H TEST.LNK

file for the Borland linker, TLINK.

Example 4: Ports

µC/OS-II is written entirely in C and requires some processor specific code to adapt it to

different processors. This processor specific code is called a . This book comes with twoport

ports for the Intel 80x86 family of processors: Ix86L (see Chapter 14) and Ix86L-FP (see

Chapter 15). Ix86L is used with 80x86 processors that are not fortunate enough to have an FPU

(floating-point unit) and Ix86L was used in all the examples so far. You should note that Ix86L

still runs on 80x86 processors that do have an FPU. Ix86L-FP allows your applications to

make use of the floating-point hardware capabilities of higher-end 80x86 compatible

processors. Example #4 uses Ix86L-FP.

In this example, I created 10 identical tasks each running 200 times per second. Each task

computes the sine and cosine of an angle (in degrees). The angle being computed by each task

is offset by 36 degrees (360 degrees divided by 10 tasks) from each other. Every time the task

executes, it increments the angle to compute by 0.01 degree.

The code for Example #4 is found in the directory. You can\SOFTWARE\uCOS-II\EX4_x86L\BC45

open a DOS window and type:

CD \SOFTWARE\uCOS-II\Ex4_x86L\BC45\TEST

As usual, to execute example #4, simply type TEST at the command line prompt. The DOS

window will run the program.TEST.EXE

After about two seconds, you should see the screen shown in Figure 1.6. I let run forTEST.EXE

a few seconds before I captured the screen shot.

Example #4 consists of 13 tasks as displayed in the lower left of Figure 1.6. Of those 13 tasks,

µC/OS-II creates two internal tasks: the idle task and a task that determines CPU usage.

Example #4 creates the other 11 tasks.

µC/OS-II User's Manual

41Copyright 2015 Micrium Inc.

Figure - Figure 1.6 Example #4 running in a DOS window.

By now, you should be able to find you way around . Example #4 doesn’t introduce tooTEST.C

many new concepts. However, there are a few subtleties done behind the scene which I’ll

describe after discussing a few items in . Listing 1.21 shows the code to create the 10TEST.C

identical applications tasks.

static void TaskStartCreateTasks (void)
{
 INT8U i;
 INT8U prio;

 for (i = 0; i < N_TASKS; i++) {
 prio = i + 1; (1)
 TaskData[i] = prio; (2)
 OSTaskCreateExt(Task,
 (void *)&TaskData[i], (3)
 &TaskStk[i][TASK_STK_SIZE - 1],
 prio,
 0,
 &TaskStk[i][0],
 TASK_STK_SIZE,
 (void *)0,
 OS_TASK_OPT_SAVE_FP); (4)
 }
}

Listing - Listing 1.21 Example #4, TEST.C, TaskStartCreateTasks().

 Because µC/OS-II doesn’t allow multiple tasks at the same priority, I offset the priority(1)

µC/OS-II User's Manual

42Copyright 2015 Micrium Inc.

of the identical tasks by 1 since task priority #0 is assigned to .TaskStart()

 The task priority of each task is placed in an array.(2)

 µC/OS-II allows you to pass an argument to a task when the task is first started. This(3)

argument is a pointer, and I generally call it pdata (pointer to data). The task priority

saved in the array is actually passed as the task argument, pdata.

 Each of the tasks will be doing floating point calculations and we want to tell the port(4)

(see Chapter 15) to save the floating-point registers during a context switch.

Listing 1.22 shows the actual task code.

void Task (void *pdata)
{
 FP32 x;
 FP32 y;
 FP32 angle;
 FP32 radians;
 char s[81];
 INT8U ypos;

 ypos = *(INT8U *)pdata + 7;
 angle = (FP32)(*(INT8U *)pdata) * (FP32)36.0; (1)
 for (;;) {
 radians = (FP32)2.0 * (FP32)3.141592 * angle / (FP32)360.0; (2)
 x = cos(radians);
 y = sin(radians);
 sprintf(s, " %2d %8.3f %8.3f %8.3f",
 *(INT8U *)pdata, angle, x, y);
 PC_DispStr(0, ypos, s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY);
 if (angle >= (FP32)360.0) {
 angle = (FP32)0.0;
 } else {
 angle += (FP32)0.01;
 }
 OSTimeDly(1); (3)
 }
}

Listing - Listing 1.22 Example #4, TEST.C, Task().

 The argument pdata points to an 8-bit integer containing the task priority. To make each(1)

task calculate different angles (not that it really matters), I decided to offset each task by

36 degrees.

µC/OS-II User's Manual

43Copyright 2015 Micrium Inc.

 and assumes radians instead of degrees and thus the conversion.(2) sin() cos()

 Each task is delayed by 1 clock tick (i.e. 50 milliseconds) and thus, each task will(3)

execute 200 times per second.

Except for specifying in , you could not tell thatOS_TASK_OPT_SAVE_FP TaskStartCreateTasks()

from that we are using a different port from the other examples. In fact, it may be aTEST.C

good idea to always specify the option when you create a task (using OS_TASK_OPT_SAVE_FP

) and, if the port supports floating-point hardware, µC/OS-II will take theOSTaskCreateExt()

necessary steps to save and retrieve the floating-point registers during a context switch. That’s

in fact one of the beauties of µC/OS-II: portability of your applications across different

processors.

In order to use a different port (at least for the 80x86), you only need to change the following

files:

INCLUDES.H (in the SOURCE directory):

Instead of including:

\software\ucos-ii\ \bc45\os_cpu.hix86l

you simply need to ‘point’ to a different directory:

\software\ucos-ii\ \bc45\os_cpu.hix86l-fp

TEST.LNK (in the SOURCE directory):

The linker command file includes the floating-point emulation library in the

non-floating-point version:

C:\BC45\LIB\EMU.LIB

and the hardware floating-point library needs to be referenced for the code that makes use

of the FPU:

µC/OS-II User's Manual

44Copyright 2015 Micrium Inc.

C:\BC45\LIB\FP87.LIB

TEST.MAK (in the TEST directory):

The directory of the port is changed from:

PORT=\SOFTWARE\uCOS-II\Ix86L\BC45

to:

PORT=\SOFTWARE\uCOS-II\Ix86L-FP\BC45

The compiler flags in the macro includes –f287 for the floating-point version ofC_FLAGS

the code, and omits it in the non-floating-point version.

µC/OS-II User's Manual

45Copyright 2015 Micrium Inc.

Real-Time Systems Concepts
Real-time systems are characterized by the severe consequences that result if logical as well as

timing correctness properties of the system are not met. There are two types of real-time

systems: SOFT and HARD. In a SOFT real-time system, tasks are performed by the system as

fast as possible, but the tasks don’t have to finish by specific times. In HARD real-time

systems, tasks have to be performed not only correctly but on time. Most real-time systems

have a combination of SOFT and HARD requirements. Real-time applications cover a wide

range, but most real-time systems are embedded. This means that the computer is built into a

system and is not seen by the user as being a computer. The following list shows a few

examples of embedded systems.

Process Control

Food processing
Chemical plants

Automotive

Engine controls
Anti-lock braking systems

Office Automation

FAX machines
Copiers

Computer Peripherals

Printers
Terminals
Scanners
Modems

Communication

Switches
Routers

Robots

Aerospace

Flight management systems
Weapons systems Jet engine controls

Domestic

Microwave ovens
Dishwashers
Washing machines
Thermostats

Real-time software applications are typically more difficult to design than non-real-time

applications. This chapter describes real-time concepts.

µC/OS-II User's Manual

46Copyright 2015 Micrium Inc.

Foreground/Background Systems

Small systems of low complexity are generally designed as shown in Figure 2.1. These

systems are called foreground/background or super-loops. An application consists of an

infinite loop that calls modules (i.e., functions) to perform the desired operations (background).

Interrupt Service Routines (ISRs) handle asynchronous events (foreground). Foreground is also

called interrupt level; background is called task level. Critical operations must be performed by

the ISRs to ensure that they are dealt with in a timely fashion. Because of this, ISRs have a

tendency to take longer than they should. Also, information for a background module made

available by an ISR is not processed until the background routine gets its turn to execute. This

is called the task level response. The worst case task-level response time depends on how long

the background loop takes to execute. Because the execution time of typical code is not

constant, the time for sµCcessive passes through a portion of the loop is non-deterministic.

Furthermore, if a code change is made, the timing of the loop is affected.

µC/OS-II User's Manual

47Copyright 2015 Micrium Inc.

Figure - Figure 2.1 Foreground/background systems.

Most high-volume microcontroller-based applications (e.g., microwave ovens, telephones,

toys, and so on) are designed as foreground/background systems. Also, in

microcontroller-based applications, it may be better (from a power consumption point of view)

to halt the processor and perform all of the processing in ISRs. However, you can also halt the

processor when µC/OS-II does not have any tasks to execute.

Critical Section of Code

A critical section of code, also called a critical region, is code that needs to be treated

indivisibly. Once the section of code starts executing, it must not be interrupted. To ensure this,

interrupts are typically disabled before the critical code is executed and enabled when the

critical code is finished (see also section 2.03, Shared Resource).

µC/OS-II User's Manual

48Copyright 2015 Micrium Inc.

Resource

A resource is any entity used by a task. A resource can thus be an I/O device, such as a printer,

a keyboard, or a display, or a variable, a structure, or an array.

Shared Resource

A shared resource is a resource that can be used by more than one task. Each task should gain

exclusive access to the shared resource to prevent data corruption. This is called mutual

exclusion, and techniques to ensure mutual exclusion are discussed in section 2.18, Mutual

Exclusion.

Multitasking

Multitasking is the process of scheduling and switching the CPU (Central Processing Unit)

between several tasks; a single CPU switches its attention between several sequential tasks.

Multitasking is like foreground/background with multiple backgrounds. Multitasking

maximizes the utilization of the CPU and also provides for modular construction of

applications. One of the most important aspects of multitasking is that it allows the application

programmer to manage complexity inherent in real-time applications. Application programs

are typically easier to design and maintain if multitasking is used.

Task

A task, also called a thread, is a simple program that thinks it has the CPU all to itself. The

design process for a real-time application involves splitting the work to be done into tasks

responsible for a portion of the problem. Each task is assigned a priority, its own set of CPU

registers, and its own stack area (as shown in Figure 2.2).

Each task typically is an infinite loop that can be in any one of five states: DORMANT,

READY, RUNNING, WAITING (for an event), or ISR (interrupted) (Figure 2.3). The

DORMANT state corresponds to a task that resides in memory but has not been made

available to the multitasking kernel. A task is READY when it can execute but its priority is

less than the currently running task. A task is RUNNING when it has control of the CPU. A

task is WAITING when it requires the occurrence of an event (waiting for an I/O operation to

complete, a shared resource to be available, a timing pulse to occur, time to expire, etc.).

Finally, a task is in the ISR state when an interrupt has occurred and the CPU is in the process

µC/OS-II User's Manual

49Copyright 2015 Micrium Inc.

of servicing the interrupt. Figure 2.3 also shows the functions provided by µC/OS-II to make a

task move from one state to another.

Figure - Figure 2.2 Multiple tasks

µC/OS-II User's Manual

50Copyright 2015 Micrium Inc.

Figure - Figure 2.3 Task states

Context Switch (or Task Switch)

When a multitasking kernel decides to run a different task, it simply saves the current task’s

context (CPU registers) in the current task’s context storage area — its stack (Figure 2.2).

Once this operation is performed, the new task’s context is restored from its storage area then

resumes execution of the new task’s code. This process is called a context switch or a task

switch. Context switching adds overhead to the application. The more registers a CPU has, the

higher the overhead. The time required to perform a context switch is determined by how

many registers have to be saved and restored by the CPU. Performance of a real-time kernel

should not be judged by how many context switches the kernel is capable of doing per second.

Kernel

The kernel is the part of a multitasking system responsible for the management of tasks (i.e.,

for managing the CPU’s time) and communication between tasks. The fundamental service

provided by the kernel is context switching. The use of a real-time kernel generally simplifies

the design of systems by allowing the application to be divided into multiple tasks managed by

the kernel.

A kernel adds overhead to your system because the services provided by the kernel require

execution time. The amount of overhead depends on how often you invoke these services. In a

µC/OS-II User's Manual

51Copyright 2015 Micrium Inc.

well designed application, a kernel will use up between 2 and 5% of CPU time. Because a

kernel is software that gets added to your application, it requires extra ROM (code space) and

additional RAM for the kernel data structures and, each task requires its own stack space,

which has a tendency to eat up RAM quickly.

Single-chip microcontrollers are generally not able to run a real-time kernel because they have

very little RAM. A kernel allows you to make better use of your CPU by providing you with

indispensable services such as semaphore management, mailboxes, queues, time delays, etc.

Once you design a system using a real-time kernel, you will not want to go back to a

foreground/background system.

Scheduler

The scheduler, also called the dispatcher, is the part of the kernel responsible for determining

which task will run next. Most real-time kernels are priority based. Each task is assigned a

priority based on its importance. The priority for each task is application specific. In a

priority-based kernel, control of the CPU is always given to the highest priority task ready to

run. When the highest priority task gets the CPU, however, is determined by the type of kernel

used. There are two types of priority-based kernels: non-preemptive and preemptive.

Non-Preemptive Kernel

Non-preemptive kernels require that each task does something to explicitly give up control of

the CPU. To maintain the illusion of concurrency, this process must be done frequently.

Non-preemptive scheduling is also called cooperative multitasking; tasks cooperate with each

other to share the CPU. Asynchronous events are still handled by ISRs. An ISR can make a

higher priority task ready to run, but the ISR always returns to the interrupted task. The new

higher priority task will gain control of the CPU only when the current task gives up the CPU.

One of the advantages of a non-preemptive kernel is that interrupt latency is typically low (see

the later discussion on interrupts). At the task level, non-preemptive kernels can also use

non-reentrant functions (discussed later). Non-reentrant functions can be used by each task

without fear of corruption by another task. This is because each task can run to completion

before it relinquishes the CPU. However, non-reentrant functions should not be allowed to give

up control of the CPU.

Task-level response using a non-preemptive kernel can be much lower than with

foreground/background systems because task-level response is now given by the time of the

µC/OS-II User's Manual

52Copyright 2015 Micrium Inc.

longest task.

Another advantage of non-preemptive kernels is the lesser need to guard shared data through

the use of semaphores. Each task owns the CPU, and you don’t have to fear that a task will be

preempted. This is not an absolute rule, and in some instances, semaphores should still be used.

Shared I/O devices may still require the use of mutual exclusion semaphores; for example, a

task might still need exclusive access to a printer.

The execution profile of a non-preemptive kernel is shown in Figure 2.4 and described below.

Figure - Figure 2.4 Non-preemptive kernel.

 A task is executing but gets interrupted.(1)

 If interrupts are enabled, the CPU vectors (jumps) to the ISR.(2)

 The ISR handles the event F2.4(3) and makes a higher priority task ready to run.(3)

 Upon completion of the ISR, a Return From Interrupt instruction is executed, and the(4)

µC/OS-II User's Manual

53Copyright 2015 Micrium Inc.

CPU returns to the interrupted task.

 The task code resumes at the instruction following the interrupted instruction.(5)

 When the task code completes, it calls a service provided by the kernel to relinquish the(6)

CPU to another task.

 The kernel sees that a higher priority task has been made ready-to-run (it doesn’t(7)

necessarily knows that it was from an ISR nor does it care) and thus, the kernel performs

a context switch so that it can run (i.e. execute) the higher priority task to handle the

event signaled by the ISR.

The most important drawback of a non-preemptive kernel is responsiveness. A higher priority

task that has been made ready to run may have to wait a long time to run because the current

task must give up the CPU when it is ready to do so. As with background execution in

foreground/background systems, task-level response time in a non-preemptive kernel is

non-deterministic; you never really know when the highest priority task will get control of the

CPU. It is up to your application to relinquish control of the CPU.

To summarize, a non-preemptive kernel allows each task to run until it voluntarily gives up

control of the CPU. An interrupt preempts a task. Upon completion of the ISR, the ISR returns

to the interrupted task. Task-level response is much better than with a foreground/background

system but is still non-deterministic. Very few commercial kernels are non-preemptive.

Preemptive Kernel

A preemptive kernel is used when system responsiveness is important. Because of this,

µC/OS-II and most commercial real-time kernels are preemptive. The highest priority task

ready to run is always given control of the CPU. When a task makes a higher priority task

ready to run, the current task is preempted (suspended) and the higher priority task is

immediately given control of the CPU. If an ISR makes a higher priority task ready, when the

ISR completes, the interrupted task is suspended and the new higher priority task is resumed.

The execution profile of a preemptive kernel is shown in Figure 2.5 and described below.

µC/OS-II User's Manual

54Copyright 2015 Micrium Inc.

Figure - Figure 2.5 Preemptive kernel

 A task is executing but gets interrupted.(1)

 If interrupts are enabled, the CPU vectors (jumps) to the ISR.(2)

 The ISR handles the event and makes a higher priority task ready to run. Upon(3)

completion of the ISR, a service provided by the kernel is invoked (i.e. a function

provided by the kernel is called).

 & (5) This function knows that a more important task has been made ready-to-run and(4)

thus, instead of returning back to the interrupted task, the kernel will perform a context

switch and execute the code of the more important task. When the more important task is

done, another function provided by the kernel is called to put the task to sleep waiting

for the event (i.e. the ISR) to occur.

 & (7) The kernel then ‘sees’ that a lower priority task needs to execute and another(6)

context switch is done to resume execution of the interrupted task.

µC/OS-II User's Manual

55Copyright 2015 Micrium Inc.

With a preemptive kernel, execution of the highest priority task is deterministic; you can

determine when it will get control of the CPU. Task-level response time is thus minimized by

using a preemptive kernel.

Application code using a preemptive kernel should not use non-reentrant functions, unless

exclusive access to these functions is ensured through the use of mutual exclusion semaphores,

because both a low- and a high-priority task can use a common function. Corruption of data

may occur if the higher priority task preempts a lower priority task that is using the function.

To summarize, a preemptive kernel always executes the highest priority task that is ready to

run. An interrupt preempts a task. Upon completion of an ISR, the kernel resumes execution to

the highest priority task ready to run (not the interrupted task). Task-level response is optimum

and deterministic. µC/OS-II is a preemptive kernel.

Reentrancy

A reentrant function can be used by more than one task without fear of data corruption. A

reentrant function can be interrupted at any time and resumed at a later time without loss of

data. Reentrant functions either use local variables (i.e., CPU registers or variables on the

stack) or protect data when global variables are used. An example of a reentrant function is

shown in Listing 2.1.

void strcpy(char *dest, char *src)
{
 while (*dest++ = *src++) {
 ;
 }
 *dest = NUL;
}

Listing - Listing 2.1 Reentrant function.

Because copies of the arguments to are placed on the task’s stack, can bestrcpy() strcpy()

invoked by multiple tasks without fear that the tasks will corrupt each other’s pointers.

An example of a non-reentrant function is shown in Listing 2.2. is a simple functionswap()

that swaps the contents of its two arguments. For the sake of discussion, I assume that you are

using a preemptive kernel, that interrupts are enabled, and that Temp is declared as a global

integer:

µC/OS-II User's Manual

56Copyright 2015 Micrium Inc.

int Temp;

void swap(int *x, int *y)
{
 Temp = *x;
 *x = *y;
 *y = Temp;
}

Listing - Listing 2.2 Non-reentrant function.

The programmer intended to make usable by any task. Figure 2.6 shows what couldswap()

happen if a low-priority task is interrupted while is executing:swap()

Figure - Figure 2.6 Non-reentrant function.

 When is interrupted Temp contains 1.(1) swap()

 & (3) The ISR makes the higher priority task ready-to-run, so at the completion of the(2)

ISR, the kernel (assuming µC/OS-II) is invoked to switch to this task. The high-priority

task sets Temp to 3 and swaps the contents of its variables correctly (i.e., z is 4 and t is

3).

 The high-priority task eventually relinquishes control to the low-priority task by calling a(4)

kernel service to delay itself for one clock tick (described later).

µC/OS-II User's Manual

57Copyright 2015 Micrium Inc.

 The lower priority task is thus resumed. Note that at this point, Temp is still set to 3!(5)

When the low-priority task resumes execution, it sets y to 3 instead of 1.

Note that this a simple example, so it is obvious how to make the code reentrant. You can

make reentrant with one of the following techniques:swap()

Declare Temp local to .swap()

Disable interrupts before the operation and enable them afterwards.

Use a semaphore (described later).

Other situations are not as easy to solve. An error caused by a non-reentrant function may

not show up in your application during the testing phase; it will most likely occur once the

product has been delivered! If you are new to multitasking, you will need to be careful

when using non-reentrant functions.

If the interrupt occurs either before or after , the x and y values for both tasks will beswap()

correct.

Round-Robin Scheduling

When two or more tasks have the same priority, the kernel allows one task to run for a

predetermined amount of time, called a quantum, then selects another task. This is also called

time slicing. The kernel gives control to the next task in line if

the current task has no work to do during its time slice or

the current task completes before the end of its time slice or

the time slice ends.

µC/OS-II does not currently support round-robin scheduling. Each task must have a unique

priority in your application.

µC/OS-II User's Manual

58Copyright 2015 Micrium Inc.

Task Priority

A priority is assigned to each task. The more important the task, the higher the priority given to

it. With most kernels, you are generally responsible for deciding what priority each task gets.

Static Priorities

Task priorities are said to be static when the priority of each task does not change during the

application’s execution. Each task is thus given a fixed priority at compile time. All the tasks

and their timing constraints are known at compile time in a system where priorities are static.

Dynamic Priorities

Task priorities are said to be dynamic if the priority of tasks can be changed during the

application’s execution; each task can change its priority at run time. This is a desirable feature

to have in a real-time kernel to avoid priority inversions.

Priority Inversions

Priority inversion is a problem in real-time systems and occurs mostly when you use a

real-time kernel. Figure 2.7 illustrates a priority inversion scenario. Task 1 has a higher priority

than Task 2, which in turn has a higher priority than Task 3.

µC/OS-II User's Manual

59Copyright 2015 Micrium Inc.

Figure - Figure 2.7 Priority inversion problem

 Task 1 and Task 2 are both waiting for an event to occur and Task 3 is executing.(1)

 At some point, Task 3 acquires a semaphore (see section 2.18.04, Semaphores), which it(2)

needs before it can access a shared resource.

 Task 3 performs some operations on the acquired resource.(3)

 The event that Task 1 was waiting for occurs and thus, the kernel suspends Task 3 and(4)

start executing Task 1 because Task 1 has a higher priority.

(5)

 Task 1 executes for a while until it also wants to access the resource (i.e. it attempts to(6)

get the semaphore that Task 3 owns). Because Task 3 owns the resource, Task 1 is

placed in a list of tasks waiting for the semaphore to be freed.

(7)

µC/OS-II User's Manual

60Copyright 2015 Micrium Inc.

 Task 3 is resumed and continues execution until it is preempted by Task 2 because the(8)

event that Task2 was waiting for occurred.

(9)

 Task 2 handles the event it was waiting for and, when it’s done, the kernel relinquishes(10)

the CPU back to Task 3.

(11)

 Task 3 finishes working with the resource and releases the semaphore. At this point, the(12)

kernel knows that a higher priority task is waiting for the semaphore, and a context

switch is done to resume Task 1.

 At this point, Task 1 has the semaphore and can access the shared resource.(13)

The priority of Task 1 has been virtually reduced to that of Task 3 because it was waiting for

the resource that Task 3 owned. The situation was aggravated when Task 2 preempted Task 3,

which further delayed the execution of Task 1.

You can correct this situation by raising the priority of Task 3, just for the time it takes to

access the resource, then restoring the original priority level when the task is finished. The

priority of Task 3 should be raised up to or above the highest priority of the other tasks

competing for the resource. A multitasking kernel should allow task priorities to change

dynamically to help prevent priority inversions. However, it takes some time to change a task’s

priority. What if Task 3 had completed access of the resource before it was preempted by Task

1 and then by Task 2? Had you raised the priority of Task 3 before accessing the resource and

then lowered it back when done, you would have wasted valuable CPU time. What is really

needed to avoid priority inversion is a kernel that changes the priority of a task automatically.

This is called priority inheritance and µC/OS-II provides this feature (see Chapter 8, Mutual

Exclusion Semaphores).

Figure 2.8 illustrates what happens when a kernel supports priority inheritance.

µC/OS-II User's Manual

61Copyright 2015 Micrium Inc.

Figure - Figure 2.8 Kernel that supports priority inheritance

 & (2) As with the previous example, Task 3 is running but this time, acquires a mutual(1)

exclusion semaphore (also called a) to access a shared resource.Mutex

 & (4) Task 3 accesses the resource and then is preempted by Task 1.(3)

 & (6) Task 1 executes and tries to obtain the mutex. The kernel sees that Task 3 has the(5)

mutex and knows that Task 3 has a lower priority than Task 1. In this case, the kernel

raises the priority of Task 3 to the same level as Task 1.

 The kernel places Task 1 in the mutex wait list and then resumes execution of Task 3 so(7)

that this task can continue with the resource.

 When Task 3 is done with the resource, it releases the mutex. At this point, the kernel(8)

reduces the priority of Task 3 to its original value and looks in the mutex wait list to see

µC/OS-II User's Manual

62Copyright 2015 Micrium Inc.

if a task is waiting for the mutex. The kernel sees that Task 1 is waiting and gives it the

mutex.

 Task 1 is now free to access the resource.(9)

 & (11) When Task 1 is done executing, the medium-priority task (i.e., Task 2) gets the(10)

CPU. Note that Task 2 could have been ready to run any time between F2.8(3) and

F2.8(10) without affecting the outcome. There is still some level of priority inversion

that cannot be avoided but far less than in the previous scenario.

Assigning Task Priorities

Assigning task priorities is not a trivial undertaking because of the complex nature of real-time

systems. In most systems, not all tasks are considered critical. Noncritical tasks should

obviously be given low priorities. Most real-time systems have a combination of SOFT and

HARD requirements. In a SOFT real-time system, tasks are performed as quickly as possible,

but they don’t have to finish by specific times. In HARD real-time systems, tasks have to be

performed not only correctly, but on time.

An interesting technique called Rate Monotonic Scheduling (RMS) has been established to

assign task priorities based on how often tasks execute. Simply put, tasks with the highest rate

of execution are given the highest priority (Figure 2.9).

µC/OS-II User's Manual

63Copyright 2015 Micrium Inc.

Figure - Figure 2.9 Assigning task priorities based on task execution rate

RMS makes a number of assumptions:

All tasks are periodic (they occur at regular intervals).

Tasks do not synchronize with one another, share resources, or exchange data.

The CPU must always execute the highest priority task that is ready to run. In other words,

preemptive scheduling must be used.

Given a set of n tasks that are assigned RMS priorities, the basic RMS theorem states that all

task HARD real-time deadlines will always be met if the inequality in Equation [2.1] is

verified.

[2.1]

where, E corresponds to the maximum execution time of task i and T corresponds to the i i

execution period of task i. In other words, E /T corresponds to the fraction of CPU time i i
required to execute task i. Table 2.1 shows the value for size n(2 - 1) based on the number1/ n

µC/OS-II User's Manual

64Copyright 2015 Micrium Inc.

of tasks. The upper bound for an infinite number of tasks is given by ln(2), or 0.693. This

means that to meet all HARD real-time deadlines based on RMS, CPU utilization of all

time-critical tasks should be less than 70 percent! Note that you can still have non-time-critical

tasks in a system and thus use 100 percent of the CPU’s time. Using 100 percent of your

CPU’s time is not a desirable goal because it does not allow for code changes and added

features. As a rule of thumb, you should always design a system to use less than 60 to 70

percent of your CPU.

RMS says that the highest rate task has the highest priority. In some cases, the highest rate task

may not be the most important task. Your application will thus dictate how you need to assign

priorities. However, RMS is an interesting starting point.

Table 2.1 Allowable CPU utilization based on number of tasks.

Number of Tasks n(2 - 1)1/ n

1 1.000

2 0.828

3 0.779

4 0.756

5 0.743

. .

. .

. .

0.693

Mutual Exclusion

The easiest way for tasks to communicate with each other is through shared data structures.

This is especially easy when all tasks exist in a single address space and can reference global

variables, pointers, buffers, linked lists, ring buffers, etc. Although sharing data simplifies the

exchange of information, you must ensure that each task has exclusive access to the data to

avoid contention and data corruption. The most common methods of obtaining exclusive

access to shared resources are

disabling interrupts,

performing test-and-set operations,

µC/OS-II User's Manual

65Copyright 2015 Micrium Inc.

disabling scheduling, and

using semaphores.

Disabling and Enabling Interrupts

The easiest and fastest way to gain exclusive access to a shared resource is by disabling and

enabling interrupts, as shown in the pseudocode in Listing 2.3.

Disable interrupts;
Access the resource (read/write from/to variables);
Reenable interrupts;

Listing - Listing 2.3 Disabling and enabling interrupts.

µC/OS-II uses this technique (as do most, if not all, kernels) to access internal variables and

data structures. In fact, µC/OS-II provides two macros that allow you to disable and then

enable interrupts from your C code: and ,OS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

respectively [see section ????, , and]. You alwaysOS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

need to use these macros in tandem, as shown in Listing 2.4.

void Function (void)
{
 OS_ENTER_CRITICAL();
 .
 . /* You can access shared data in here */
 .
 OS_EXIT_CRITICAL();
}

Listing - Listing 2.4 Using µC/OS-II macros to disable and enable interrupts.

You must be careful, however, not to disable interrupts for too long because this affects the

response of your system to interrupts. This is known as interrupt latency. You should consider

this method when you are changing or copying a few variables. Also, this is the only way that

a task can share variables or data structures with an ISR. In all cases, you should keep

interrupts disabled for as little time as possible.

If you use a kernel, you are basically allowed to disable interrupts for as much time as the

kernel does without affecting interrupt latency. Obviously, you need to know how long the

µC/OS-II User's Manual

66Copyright 2015 Micrium Inc.

kernel will disable interrupts. Any good kernel vendor will provide you with this information.

After all, if they sell a real-time kernel, time is important!

Test-And-Set

If you are not using a kernel, two functions could ‘agree’ that to access a resource, they must

check a global variable and if the variable is 0, the function has access to the resource. To

prevent the other function from accessing the resource, however, the first function that gets the

resource simply sets the variable to 1. This is commonly called a Test-And-Set (or TAS)

operation. Either the TAS operation must be performed indivisibly (by the processor) or you

must disable interrupts when doing the TAS on the variable, as shown in Listing 2.5.

Disable interrupts;
if (‘Access Variable’ is 0) {
 Set variable to 1;
 Reenable interrupts;
 Access the resource;
 Disable interrupts;
 Set the ‘Access Variable’ back to 0;
 Reenable interrupts;
} else {
 Reenable interrupts;
 /* You don’t have access to the resource, try back later; */
}

Listing - Listing 2.5 Using Test-And-Set to access a resource.

Some processors actually implement a TAS operation in hardware (e.g., the 68000 family of

processors have the TAS instruction).

µC/OS-II User's Manual

67Copyright 2015 Micrium Inc.

Disabling and Enabling the Scheduler

If your task is not sharing variables or data structures with an ISR, you can disable and enable

scheduling (see section ???, Locking and Unlocking the Scheduler), as shown in Listing 2.6

(using µC/OS-II as an example). In this case, two or more tasks can share data without the

possibility of contention. You should note that while the scheduler is locked, interrupts are

enabled, and if an interrupt occurs while in the critical section, the ISR is executed

immediately. At the end of the ISR, the kernel always returns to the interrupted task, even if a

higher priority task has been made ready to run by the ISR. Because the ISR would return to

the interrupted task, the behavior of the kernel is very similar to that of a non-preemptive

kernel (at least, while the scheduler is locked). The scheduler is invoked when

 is called to see if a higher priority task has been made ready to run by the taskOSSchedUnlock()

or an ISR. A context switch results if a higher priority task is ready to run. Although this

method works well, you should avoid disabling the scheduler because it defeats the purpose of

having a kernel in the first place. The next method should be chosen instead.

void Function (void)
{
 OSSchedLock();
 .
 . /* You can access shared data in here (interrupts are recognized) */
 .
 OSSchedUnlock();
}

Listing - Listing 2.6 Accessing shared data by disabling and enabling scheduling.

Semaphores

The semaphore was invented by Edgser Dijkstra in the mid-1960s. It is a protocol mechanism

offered by most multitasking kernels. Semaphores are used to

control access to a shared resource (mutual exclusion),

signal the occurrence of an event, and

allow two tasks to synchronize their activities.

A semaphore is a key that your code acquires in order to continue execution. If the semaphore

is already in use, the requesting task is suspended until the semaphore is released by its current

µC/OS-II User's Manual

68Copyright 2015 Micrium Inc.

owner. In other words, the requesting task says: “Give me the key. If someone else is using it, I

am willing to wait for it!” There are two types of semaphores: binary semaphores and counting

semaphores. As its name implies, a binary semaphore can only take two values: 0 or 1. A

counting semaphore allows values between 0 and 255, 65535, or 4294967295, depending on

whether the semaphore mechanism is implemented using 8, 16, or 32 bits, respectively. The

actual size depends on the kernel used. Along with the semaphore’s value, the kernel also

needs to keep track of tasks waiting for the semaphore’s availability.

Generally, only three operations can be performed on a semaphore: INITIALIZE (also called

CREATE), WAIT (also called PEND), and SIGNAL (also called POST). The initial value of

the semaphore must be provided when the semaphore is initialized. The waiting list of tasks is

always initially empty.

A task desiring the semaphore will perform a WAIT operation. If the semaphore is available

(the semaphore value is greater than 0), the semaphore value is decremented and the task

continues execution. If the semaphore’s value is 0, the task performing a WAIT on the

semaphore is placed in a waiting list. Most kernels allow you to specify a timeout; if the

semaphore is not available within a certain amount of time, the requesting task is made ready

to run and an error code (indicating that a timeout has occurred) is returned to the caller.

A task releases a semaphore by performing a SIGNAL operation. If no task is waiting for the

semaphore, the semaphore value is simply incremented. If any task is waiting for the

semaphore, however, one of the tasks is made ready to run and the semaphore value is not

incremented; the key is given to one of the tasks waiting for it. Depending on the kernel, the

task that receives the semaphore is either

the highest priority task waiting for the semaphore or

the first task that requested the semaphore (First In First Out, or FIFO).

Some kernels have an option that allows you to choose either method when the semaphore is

initialized. µC/OS-II only supports the first method. If the readied task has a higher priority

than the current task (the task releasing the semaphore), a context switch occurs (with a

preemptive kernel) and the higher priority task resumes execution; the current task is

suspended until it again becomes the highest priority task ready to run.

Listing 2.7 shows how you can share data using a semaphore (in µC/OS-II). Any task needing

access to the same shared data calls , and when the task is done with the data, theOSSemPend()

µC/OS-II User's Manual

69Copyright 2015 Micrium Inc.

task calls . Both of these functions are described later. You should note that aOSSemPost()

semaphore is an object that needs to be initialized before it’s used; for mutual exclusion, a

semaphore is initialized to a value of 1. Using a semaphore to access shared data doesn’t affect

interrupt latency. If an ISR or the current task makes a higher priority task ready to run while

accessing shared data, the higher priority task executes immediately.

OS_EVENT *SharedDataSem;
void Function (void)
{
 INT8U err;

 OSSemPend(SharedDataSem, 0, &err);
 .
 . /* You can access shared data in here (interrupts are recognized) */
 .
 OSSemPost(SharedDataSem);
}

Listing - Listing 2.7 Accessing shared data by obtaining a semaphore.

Semaphores are especially useful when tasks share I/O devices. Imagine what would happen if

two tasks were allowed to send characters to a printer at the same time. The printer would

contain interleaved data from each task. For instance, the printout from Task 1 printing “I am

Task 1!” and Task 2 printing “I am Task 2!” could result in:

I Ia amm T Tasask k1 !2!

In this case, use a semaphore and initialize it to 1 (i.e., a binary semaphore). The rule is simple:

to access the printer each task first must obtain the resource’s semaphore. Figure 2.10 shows

tasks competing for a semaphore to gain exclusive access to the printer. Note that the

semaphore is represented symbolically by a key, indicating that each task must obtain this key

to use the printer.

µC/OS-II User's Manual

70Copyright 2015 Micrium Inc.

Figure - Figure 2.10 Using a semaphore to get permission to access a printer

The above example implies that each task must know about the existence of the semaphore in

order to access the resource. There are situations when it is better to encapsulate the

semaphore. Each task would thus not know that it is actually acquiring a semaphore when

accessing the resource. For example, an RS-232C port is used by multiple tasks to send

commands and receive responses from a device connected at the other end (Figure 2.11).

The function is called with three arguments: the ASCII string containing theCommSendCmd()

command, a pointer to the response string from the device, and finally, a timeout in case the

device doesn’t respond within a certain amount of time. The pseudocode for this function is

shown in Listing 2.8.

µC/OS-II User's Manual

71Copyright 2015 Micrium Inc.

INT8U CommSendCmd(char *cmd, char *response, INT16U timeout)
{
 Acquire port's semaphore;
 Send command to device;
 Wait for response (with timeout);
 if (timed out) {
 Release semaphore;
 return (error code);
 } else {
 Release semaphore;
 return (no error);
 }
}

Listing - Listing 2.8 Encapsulating a semaphore.

Each task that needs to send a command to the device has to call this function. The semaphore

is assumed to be initialized to 1 (i.e., available) by the communication driver initialization

routine. The first task that calls acquires the semaphore, proceeds to send theCommSendCmd()

command, and waits for a response. If another task attempts to send a command while the port

is busy, this second task is suspended until the semaphore is released. The second task appears

simply to have made a call to a normal function that will not return until the function has

performed its duty. When the semaphore is released by the first task, the second task acquires

the semaphore and is allowed to use the RS-232C port.

Figure - Figure 2.11 Hiding a semaphore from tasks

A counting semaphore is used when a resource can be used by more than one task at the same

time. For example, a counting semaphore is used in the management of a buffer pool as shown

in Figure 2.12. Assume that the buffer pool initially contains 10 buffers. A task would obtain a

buffer from the buffer manager by calling . When the buffer is no longer needed, theBufReq()

task would return the buffer to the buffer manager by calling . The pseudocode forBufRel()

these functions is shown in Listing 2.9.

µC/OS-II User's Manual

72Copyright 2015 Micrium Inc.

BUF *BufReq(void)
{
 BUF *ptr;

 Acquire a semaphore;
 Disable interrupts;
 ptr = BufFreeList;
 BufFreeList = ptr->BufNext;
 Enable interrupts;
 return (ptr);
}

void BufRel(BUF *ptr)
{
 Disable interrupts;
 ptr->BufNext = BufFreeList;
 BufFreeList = ptr;
 Enable interrupts;
 Release semaphore;
}

Listing - Listing 2.9 Buffer management using a semaphore.

Figure - Figure 2.12 Using a counting semaphore

The buffer manager will satisfy the first 10 buffer requests because there are 10 keys. When all

semaphores are used, a task requesting a buffer is suspended until a semaphore becomes

µC/OS-II User's Manual

73Copyright 2015 Micrium Inc.

available. Interrupts are disabled to gain exclusive access to the linked list (this operation is

very quick). When a task is finished with the buffer it acquired, it calls to return theBufRel()

buffer to the buffer manager; the buffer is inserted into the linked list before the semaphore is

released. By encapsulating the interface to the buffer manager in and , theBufReq() BufRel()

caller doesn’t need to be concerned with the actual implementation details.

Semaphores are often overused. The use of a semaphore to access a simple shared variable is

overkill in most situations. The overhead involved in acquiring and releasing the semaphore

can consume valuable time. You can do the job just as efficiently by disabling and enabling

interrupts (see section 2.18.01, Disabling and Enabling Interrupts). Suppose that two tasks are

sharing a 32-bit integer variable. The first task increments the variable while the other task

clears it. If you consider how long a processor takes to perform either operation, you will

realize that you do not need a semaphore to gain exclusive access to the variable. Each task

simply needs to disable interrupts before performing its operation on the variable and enable

interrupts when the operation is complete. A semaphore should be used, however, if the

variable is a floating-point variable and the microprocessor doesn’t support floating point in

hardware. In this case, the processing time involved in processing the floating-point variable

could have affected interrupt latency if you had disabled interrupts.

Deadlock (or Deadly Embrace)

A deadlock, also called a deadly embrace, is a situation in which two tasks are each

unknowingly waiting for resources held by the other. Assume task T1 has exclusive access to

resource R1 and task T2 has exclusive access to resource R2. If T1 needs exclusive access to

R2 and T2 needs exclusive access to R1, neither task can continue. They are deadlocked. The

simplest way to avoid a deadlock is for tasks to

acquire all resources before proceeding,

acquire the resources in the same order, and

release the resources in the reverse order.

Most kernels allow you to specify a timeout when acquiring a semaphore. This feature allows a

deadlock to be broken. If the semaphore is not available within a certain amount of time, the

task requesting the resource resumes execution. Some form of error code must be returned to

µC/OS-II User's Manual

74Copyright 2015 Micrium Inc.

the task to notify it that a timeout occurred. A return error code prevents the task from thinking

it has obtained the resource. Deadlocks generally occur in large multitasking systems, not in

embedded systems (at least they better not!).

Synchronization

A task can be synchronized with an ISR (or another task when no data is being exchanged) by

using a semaphore as shown in Figure 2.13. Note that, in this case, the semaphore is drawn as a

flag to indicate that it is used to signal the occurrence of an event (rather than to ensure mutual

exclusion, in which case it would be drawn as a key). When used as a synchronization

mechanism, the semaphore is initialized to 0. Using a semaphore for this type of

synchronization is called a unilateral rendezvous. For example, a task can initiate an I/O

operation and then waits for the semaphore. When the I/O operation is complete, an ISR (or

another task) signals the semaphore and the task is resumed.

Figure - Figure 2.13 Synchronizing tasks and ISRs

If the kernel supports counting semaphores, the semaphore would accumulate events that have

not yet been processed. Note that more than one task can be waiting for an event to occur. In

this case, the kernel could signal the occurrence of the event either to

the highest priority task waiting for the event to occur or

the first task waiting for the event.

Depending on the application, more than one ISR or task could signal the occurrence of the

event.

µC/OS-II User's Manual

75Copyright 2015 Micrium Inc.

Two tasks can synchronize their activities by using two semaphores, as shown in Figure 2.14.

This is called a bilateral rendezvous. A bilateral rendezvous is similar to a unilateral

rendezvous, except both tasks must synchronize with one another before proceeding. A

bilateral rendezvous cannot be performed between a task and an ISR because an ISR cannot

wait on a semaphore.

For example, two tasks are executing as shown in Listing 2.10.

 & (2) When the first task reaches a certain point, it signals the second task then waits for(1)

a return signal.

 & (4) Similarly, when the second task reaches a certain point, it signals the first task and(3)

waits for a return signal. At this point, both tasks are synchronized with each other.

Figure - Figure 2.14 Tasks synchronizing their activities

µC/OS-II User's Manual

76Copyright 2015 Micrium Inc.

Task1()
{
 for (;;) {
 Perform operation;
 Signal task #2; (1)
 Wait for signal from task #2; (2)
 Continue operation;
 }
}

Task2()
{
 for (;;) {
 Perform operation;
 Signal task #1; (3)
 Wait for signal from task #1; (4)
 Continue operation;
 }
}

Listing - Listing 2.10 Bilateral rendezvous.

Event Flags

Event flags are used when a task needs to synchronize with the occurrence of multiple events.

The task can be synchronized when any of the events have occurred. This is called disjunctive

synchronization (logical OR). A task can also be synchronized when all events have occurred.

This is called conjunctive synchronization (logical AND). Disjunctive and conjunctive

synchronization are shown in Figure 2.15.

Common events can be used to signal multiple tasks, as shown in Figure 2.16. Events are

typically grouped. Depending on the kernel, a group consists of 8, 16, or 32 events, each

represented by a bit. (mostly 32 bits, though). Tasks and ISRs can set or clear any event in a

group. A task is resumed when all the events it requires are satisfied. The evaluation of which

task will be resumed is performed when a new set of events occurs (i.e., during a SET

operation).

Kernels like µC/OS-II which support event flags offer services to SET event flags, CLEAR

event flags, and WAIT for event flags (conjunctively or disjunctively).

µC/OS-II User's Manual

77Copyright 2015 Micrium Inc.

Figure - Figure 2.15 Disjunctive and conjunctive synchronization

Intertask Communication

It is sometimes necessary for a task or an ISR to communicate information to another task.

This information transfer is called intertask communication. Information may be

communicated between tasks in two ways: through global data or by sending messages.

When using global variables, each task or ISR must ensure that it has exclusive access to the

variables. If an ISR is involved, the only way to ensure exclusive access to the common

variables is to disable interrupts. If two tasks are sharing data, each can gain exclusive access

to the variables either by disabling and enabling interrupts or with the use of a semaphore (as

we have seen). Note that a task can only communicate information to an ISR by using global

variables. A task is not aware when a global variable is changed by an ISR, unless the ISR

signals the task by using a semaphore or unless the task polls the contents of the variable

periodically. To correct this situation, you should consider using either a message mailbox or a

message queue.

µC/OS-II User's Manual

78Copyright 2015 Micrium Inc.

Figure - Figure 2.16 Event flags

Message Mailboxes

Messages can be sent to a task through kernel services. A Message Mailbox, also called a

message exchange, is typically a pointer-size variable. Through a service provided by the

kernel, a task or an ISR can deposit a message (the pointer) into this mailbox. Similarly, one or

more tasks can receive messages through a service provided by the kernel. Both the sending

task and receiving task agree on what the pointer is actually pointing to.

A waiting list is associated with each mailbox in case more than one task wants to receive

messages through the mailbox. A task desiring a message from an empty mailbox is suspended

and placed on the waiting list until a message is received. Typically, the kernel allows the task

waiting for a message to specify a timeout. If a message is not received before the timeout

expires, the requesting task is made ready to run and an error code (indicating that a timeout

has occurred) is returned to it. When a message is deposited into the mailbox, either the highest

priority task waiting for the message is given the message () or the first task topriority based

request a message is given the message (First-In-First-Out, or FIFO). µC/OS-II only supports

the first mechanism – gives the message to the highest priority task waiting. Figure 2.17 shows

a task depositing a message into a mailbox. Note that the mailbox is represented by an I-beam

and the timeout is represented by an hourglass. The number next to the hourglass represents

the number of clock ticks (described later) the task will wait for a message to arrive.

µC/OS-II User's Manual

79Copyright 2015 Micrium Inc.

Kernels typically provide the following mailbox services.

Initialize the contents of a mailbox. The mailbox initially may or may not contain a

message.

Deposit a message into the mailbox (POST).

Wait for a message to be deposited into the mailbox (PEND).

Get a message from a mailbox if one is present, but do not suspend the caller if the

mailbox is empty (ACCEPT). If the mailbox contains a message, the message is extracted

from the mailbox. A return code is used to notify the caller about the outcome of the call.

Message mailboxes can also simulate binary semaphores. A message in the mailbox indicates

that the resource is available, and an empty mailbox indicates that the resource is already in use

by another task.

Figure - Figure 2.17 Message mailbox

Message Queues

A message queue is used to send one or more messages to a task. A message queue is basically

an array of mailboxes. Through a service provided by the kernel, a task or an ISR can deposit a

message (the pointer) into a message queue. Similarly, one or more tasks can receive messages

through a service provided by the kernel. Both the sending task and receiving task or tasks

have to agree as to what the pointer is actually pointing to. Generally, the first message

inserted in the queue will be the first message extracted from the queue (FIFO). In addition, to

extract messages in a FIFO fashion, µC/OS-II allows a task to get messages Last-In-First-Out

(LIFO).

As with the mailbox, a waiting list is associated with each message queue, in case more than

one task is to receive messages through the queue. A task desiring a message from an empty

queue is suspended and placed on the waiting list until a message is received. Typically, the

µC/OS-II User's Manual

80Copyright 2015 Micrium Inc.

kernel allows the task waiting for a message to specify a timeout. If a message is not received

before the timeout expires, the requesting task is made ready to run and an error code

(indicating a timeout has occurred) is returned to it. When a message is deposited into the

queue, either the highest priority task or the first task to wait for the message is given the

message. µC/OS-II only supports the first mechanism – gives the message to the highest

priority task waiting. Figure 2.18 shows an ISR (Interrupt Service Routine) depositing a

message into a queue. Note that the queue is represented graphically by a double I-beam. The

“10” indicates the number of messages that can accumulate in the queue. A “0” next to the

hourglass indicates that the task will wait forever for a message to arrive.

Kernels typically provide the message queue services listed below.

Initialize the queue. The queue is always assumed to be empty after initialization.

Deposit a message into the queue (POST).

Wait for a message to be deposited into the queue (PEND).

Get a message from a queue if one is present, but do not suspend the caller if the queue is

empty (ACCEPT). If the queue contains a message, the message is extracted from the

queue. A return code is used to notify the caller about the outcome of the call.

Figure - Figure 2.18 Message queue

Interrupts

An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event has

occurred. When an interrupt is recognized, the CPU saves part (or all) of its context (i.e.,

registers) and jumps to a special subroutine called an Interrupt Service Routine, or ISR. The

ISR processes the event, and upon completion of the ISR, the program returns to

the background for a foreground/background system,

the interrupted task for a non-preemptive kernel, or

µC/OS-II User's Manual

81Copyright 2015 Micrium Inc.

the highest priority task ready to run for a preemptive kernel.

Interrupts allow a microprocessor to process events when they occur. This prevents the

microprocessor from continuously polling (looking at) an event to see if it has occurred.

Microprocessors allow interrupts to be ignored and recognized through the use of two special

instructions: disable interrupts and enable interrupts, respectively. In a real-time environment,

interrupts should be disabled as little as possible. Disabling interrupts affects interrupt latency

(see section 2.26, Interrupt Latency) and may cause interrupts to be missed. Processors

generally allow interrupts to be nested. This means that while servicing an interrupt, the

processor will recognize and service other (more important) interrupts, as shown in Figure

2.19.

Interrupt Latency

Probably the most important specification of a real-time kernel is the amount of time interrupts

are disabled. All real-time systems disable interrupts to manipulate critical sections of code and

reenable interrupts when the critical section has executed. The longer interrupts are disabled,

the higher the interrupt latency. Interrupt latency is given by Equation [2.2].

[2.2] Maximum amount of time interrupts are disabled

 + Time to start executing the first instruction in the ISR

µC/OS-II User's Manual

82Copyright 2015 Micrium Inc.

Figure - Figure 2.19 Interrupt nesting

Interrupt Response

Interrupt response is defined as the time between the reception of the interrupt and the start of

the user code that handles the interrupt. The interrupt response time accounts for all the

overhead involved in handling an interrupt. Typically, the processor’s context (CPU registers)

is saved on the stack before the user code is executed.

For a foreground/background system, the user ISR code is executed immediately after saving

the processor’s context. The response time is given by Equation [2.3].

[2.3] Interrupt latency + Time to save the CPU’s context

For a non-preemptive kernel, the user ISR code is executed immediately after the processor’s

context is saved. The response time to an interrupt for a non-preemptive kernel is given by

Equation [2.4].

[2.4] Interrupt latency + Time to save the CPU’s context

For a preemptive kernel, a special function provided by the kernel needs to be called to notify

the kernel that an ISR is starting. This function allows the kernel to keep track of interrupt

nesting. The reason this function is needed will be explained in section 2.28, Interrupt

µC/OS-II User's Manual

83Copyright 2015 Micrium Inc.

Recovery. For µC/OS-II, this function is called . The response time to an interruptOSIntEnter()

for a preemptive kernel is given by Equation [2.5].

[2.5] Interrupt latency

 + Time to save the CPU’s context

 + Execution time of the kernel ISR entry function

A system’s worst case interrupt response time is its only response. Your system may respond

to interrupts in 50ms 99 percent of the time, but if it responds to interrupts in 250ms the other 1

percent, you must assume a 250ms interrupt response time.

Interrupt Recovery

Interrupt recovery is defined as the time required for the processor to return to the interrupted

code or to a higher priority task in the case of a preemptive kernel. Interrupt recovery in a

foreground/background system simply involves restoring the processor’s context and returning

to the interrupted task. Interrupt recovery is given by Equation [2.6].

[2.6] Time to restore the CPU’s context

 + Time to execute the return from interrupt instruction

As with a foreground/background system, interrupt recovery with a non-preemptive kernel

(Equation [2.7]) simply involves restoring the processor’s context and returning to the

interrupted task.

[2.7] Time to restore the CPU’s context

 + Time to execute the return from interrupt instruction

For a preemptive kernel, interrupt recovery is more complex. Typically, a function provided by

the kernel is called at the end of the ISR. For µC/OS-II, this function is called andOSIntExit()

allows the kernel to determine if all interrupts have nested. If they have nested (i.e., a return

from interrupt would return to task-level code), the kernel determines if a higher priority task

has been made ready-to-run as a result of the ISR. If a higher priority task is ready-to-run as a

result of the ISR, this task is resumed. Note that, in this case, the interrupted task will resume

only when it again becomes the highest priority task ready-to-run. For a preemptive kernel,

interrupt recovery is given by Equation [2.8].

[2.8] Time to determine if a higher priority task is ready

µC/OS-II User's Manual

84Copyright 2015 Micrium Inc.

 + Time to restore the CPU’s context of the highest priority task

 + Time to execute the return from interrupt instruction

Interrupt Latency, Response, and Recovery

Figures 2.20 through 2.22 show the interrupt latency, response, and recovery for a

foreground/background system, a non-preemptive kernel, and a preemptive kernel,

respectively.

You should note that for a preemptive kernel, the exit function either decides to return to the

interrupted task [F2.22(A)] or to a higher priority task that the ISR has made ready to run

[F2.22(B)]. In the later case, the execution time is slightly longer because the kernel has to

perform a context switch. I made the difference in execution time somewhat to scale assuming

µC/OS-II on an Intel 80186 processor (see Table 14.3, Execution times of µC/OS-II services

on 33MHz 80186). This allows you to see the cost (in execution time) of switching context.

ISR Processing Time

Although ISRs should be as short as possible, there are no absolute limits on the amount of

time for an ISR. One cannot say that an ISR must always be less than 100ms, 500ms, or 1ms.

If the ISR code is the most important code that needs to run at any given time, it could be as

long as it needs to be. In most cases, however, the ISR should recognize the interrupt, obtain

data or a status from the interrupting device, and signal a task to perform the actual processing.

You should also consider whether the overhead involved in signaling a task is more than the

processing of the interrupt. Signaling a task from an ISR (i.e., through a semaphore, a mailbox,

or a queue) requires some processing time. If processing your interrupt requires less than the

time required to signal a task, you should consider processing the interrupt in the ISR itself and

possibly enabling interrupts to allow higher priority interrupts to be recognized and serviced.

µC/OS-II User's Manual

85Copyright 2015 Micrium Inc.

Figure - Figure 2.20 Interrupt latency, response, and recovery (foreground/background)

Nonmaskable Interrupts (NMIs)

Sometimes, an interrupt must be serviced as quickly as possible and cannot afford to have the

latency imposed by a kernel. In these situations, you may be able to use the Nonmaskable

Interrupt (NMI) provided on most microprocessors. Because the NMI cannot be disabled,

interrupt latency, response, and recovery are minimal. The NMI is generally reserved for

drastic measures such as saving important information during a power down. If, however, your

application doesn’t have this requirement, you could use the NMI to service your most

time-critical ISR. The following equations show how to determine the interrupt latency [2.9],

response [2.10], and recovery [2.11], respectively, of an NMI.

[2.9] Interrupt Latency =

 Time to execute longest instruction

 + Time to start executing the NMI ISR

[2.10] Interrupt Response =

 Interrupt latency

 + Time to save the CPU’s context

[2.11] Interrupt Recovery =

 Time to restore the CPU’s context

 + Time to execute the return from interrupt instruction

µC/OS-II User's Manual

86Copyright 2015 Micrium Inc.

I have used the NMI in an application to respond to an interrupt that could occur every 150ms.

The processing time of the ISR took from 80 to 125ms, and the kernel I used had an interrupt

response of about 45ms. As you can see, if I had used maskable interrupts, the ISR could have

been late by 20ms (125µs + 45µs > 150µs).

When you are servicing an NMI, you cannot use kernel services to signal a task because NMIs

cannot be disabled to access critical sections of code. However, you can still pass parameters to

and from the NMI. Parameters passed must be global variables and the size of these variables

must be read or written indivisibly; that is, not as separate byte read or write instructions.

Figure - Figure 2.21 Interrupt latency, response, and recovery (non-preemptive kernel)

µC/OS-II User's Manual

87Copyright 2015 Micrium Inc.

Figure - Figure 2.22 Interrupt latency, response, and recovery (preemptive kernel)

NMIs can be disabled by adding external circuitry, as shown in Figure 2.23. Assuming that

both the interrupt and the NMI are positive-going signals, a simple AND gate is inserted

between the interrupt source and the processor’s NMI input. Interrupts are disabled by writing

a 0 to an output port. You wouldn’t want to disable interrupts to use kernel services, but you

could use this feature to pass parameters (i.e., larger variables) to and from the ISR and a task.

Figure - Figure 2.23 Disabling nonmaskable interrupts

Now, suppose that the NMI service routine needs to signal a task every 40 times it executes. If

the NMI occurs every 150ms, a signal would be required every 6ms (40 x 150ms). From a

NMI ISR, you cannot use the kernel to signal the task, but you could use the scheme shown in

Figure 2.24. In this case, the NMI service routine would generate a hardware interrupt through

an output port (i.e., bring an output high). Since the NMI service routine typically has the

highest priority and interrupt nesting is typically not allowed while servicing the NMI ISR, the

µC/OS-II User's Manual

88Copyright 2015 Micrium Inc.

interrupt would not be recognized until the end of the NMI service routine. At the completion

of the NMI service routine, the processor would be interrupted to service this hardware

interrupt. This ISR would clear the interrupt source (i.e., bring the port output low) and post to

a semaphore that would wake up the task. As long as the task services the semaphore well

within 6ms, your deadline would be met.

Figure - Figure 2.24 Signaling a task from a nonmaskable interrupt

Clock Tick

A clock tick is a special interrupt that occurs periodically. This interrupt can be viewed as the

system’s heartbeat. The time between interrupts is application specific and is generally

between 10 and 200ms. The clock tick interrupt allows a kernel to delay tasks for an integral

number of clock ticks and to provide timeouts when tasks are waiting for events to occur. The

faster the tick rate, the higher the overhead imposed on the system.

All kernels allow tasks to be delayed for a certain number of clock ticks. The resolution of

delayed tasks is one clock tick; however, this does not mean that its accuracy is one clock tick.

Figures 2.25 through 2.27 are timing diagrams showing a task delaying itself for one clock

tick. The shaded areas indicate the execution time for each operation being performed. Note

that the time for each operation varies to reflect typical processing, which would include loops

and conditional statements (i.e., if/else, switch, and ?:). The processing time of the Tick ISR

has been exaggerated to show that it too is subject to varying execution times.

Case 1 (Figure 2.25) shows a situation where higher priority tasks and ISRs execute prior to

the task, which needs to delay for one tick. As you can see, the task attempts to delay for 20ms

but because of its priority, actually executes at varying intervals. This causes the execution of

the task to jitter.

µC/OS-II User's Manual

89Copyright 2015 Micrium Inc.

Figure - Figure 2.25 Delaying a task for one tick (Case 1)

Case 2 (Figure 2.26) shows a situation where the execution times of all higher priority tasks

and ISRs are slightly less than one tick. If the task delays itself just before a clock tick, the task

will execute again almost immediately! Because of this, if you need to delay a task at least one

clock tick, you must specify one extra tick. In other words, if you need to delay a task for at

least five ticks, you must specify six ticks!

Figure - Figure 2.26 Delaying a task for one tick (Case 2)

Case 3 (Figure 2.27) shows a situation in which the execution times of all higher priority tasks

and ISRs extend beyond one clock tick. In this case, the task that tries to delay for one tick

actually executes two ticks later and misses its deadline. This might be acceptable in some

applications, but in most cases it isn’t.

These situations exist with all real-time kernels. They are related to CPU processing load and

possibly incorrect system design. Here are some possible solutions to these problems:

µC/OS-II User's Manual

90Copyright 2015 Micrium Inc.

Increase the clock rate of your microprocessor.

Increase the time between tick interrupts.

Rearrange task priorities.

Avoid using floating-point math (if you must, use single precision).

Get a compiler that performs better code optimization.

Write time-critical code in assembly language.

If possible, upgrade to a faster microprocessor in the same family; that is, 8086 to 80186,

68000 to 68020, etc.

Regardless of what you do, jitter will always occur.

Figure - Figure 2.27 Delaying a task for one tick (Case 3)

µC/OS-II User's Manual

91Copyright 2015 Micrium Inc.

Memory Requirements

If you are designing a foreground/background system, the amount of memory required depends

solely on your application code.With a multitasking kernel, things are quite different. To begin

with, a kernel requires extra code space (ROM). The size of the kernel depends on many

factors. Depending on the features provided by the kernel, you can expect anywhere from 1 to

100K bytes. A minimal kernel for an 8-bit CPU that provides only scheduling, context

switching, semaphore management, delays, and timeouts should require about 1 to 3K bytes of

code space. The total code space is given by Equation [2.12].

[2.12] Application code size + Kernel code size

Because each task runs independently of the others, it must be provided with its own stack area

(RAM). As a designer, you must determine the stack requirement of each task as closely as

possible (this is sometimes a difficult undertaking). The stack size must not only account for

the task requirements (local variables, function calls, etc.), it must also account for maximum

interrupt nesting (saved registers, local storage in ISRs, etc.). Depending on the target

processor and the kernel used, a separate stack can be used to handle all interrupt-level code.

This is a desirable feature because the stack requirement for each task can be substantially

reduced. Another desirable feature is the ability to specify the stack size of each task on an

individual basis (µC/OS-II permits this). Conversely, some kernels require that all task stacks

be the same size. All kernels require extra RAM to maintain internal variables, data structures,

queues, etc. The total RAM required if the kernel does not support a separate interrupt stack is

given by Equation [2.13].

[2.13] Application code requirements

 + Data space (i.e., RAM) needed by the kernel itself

 + SUM(task stacks + MAX(ISR nesting))

If the kernel supports a separate stack for interrupts, the total RAM required is given by

Equation [2.14].

[2.14] Application code requirements

 + Data space (i.e., RAM) needed by the kernel

 + SUM(task stacks)

 + MAX(ISR nesting)

µC/OS-II User's Manual

92Copyright 2015 Micrium Inc.

Unless you have large amounts of RAM to work with, you need to be careful how you use the

stack space. To reduce the amount of RAM needed in an application, you must be careful how

you use each task’s stack for

large arrays and structures declared locally to functions and ISRs,

function (i.e., subroutine) nesting,

interrupt nesting,

library functions stack usage, and

function calls with many arguments.

To summarize, a multitasking system requires more code space (ROM) and data space (RAM)

than a foreground/background system. The amount of extra ROM depends only on the size of

the kernel, and the amount of RAM depends on the number of tasks in your system.

Advantages and Disadvantages of Real-Time Kernels

A real-time kernel, also called a Real-Time Operating System, or RTOS, allows real-time

applications to be designed and expanded easily; functions can be added without requiring

major changes to the software. In fact, if you add low priority tasks to your system, the

responsiveness of your system to high priority task will almost not be affected! The use of an

RTOS simplifies the design process by splitting the application code into separate tasks. With a

preemptive RTOS, all time-critical events are handled as quickly and as efficiently as possible.

An RTOS allows you to make better use of your resources by providing you with valuable

services, such as semaphores, mailboxes, queues, time delays, timeouts, etc.

You should consider using a real-time kernel if your application can afford the extra

requirements: extra cost of the kernel, more ROM/RAM, and 2 to 4 percent additional CPU

overhead.

The one factor I haven’t mentioned so far is the cost associated with the use of a real-time

kernel. In some applications, cost is everything and would preclude you from even considering

an RTOS.

There are currently about 100+ RTOS vendors. Products are available for 8-, 16-, 32-, and

µC/OS-II User's Manual

93Copyright 2015 Micrium Inc.

even 64-bit microprocessors. Some of these packages are complete operating systems and

include not only the real-time kernel but also an input/output manager, windowing systems

(display), a file system, networking, language interface libraries, debuggers, and cross-platform

compilers. The cost to use an RTOS varies from 0 USD (US Dollars) to well overdevelopment

30,000 USD. The RTOS vendor may also require on a per-target-system basis.royalties

Royalties are like buying a chip from the RTOS vendor that you include with each unit sold.

The RTOS vendors call this silicon software. The royalty fee varies between 5 USD to more

than 500 USD per unit. Like any other software package these days, you also need to consider

the maintenance cost, which can set you back another 15% of the development cost of the

RTOS per year!

Real-Time Systems Summary

Table 2.2 summarizes the three types of real-time systems: foreground/background,

non-preemptive kernel, and preemptive kernel.

 Foreground /
Background

Non-Preemptive Kernel Preemptive Kernel

Interrupt latency
(Time)

MAX(Longest
instruction, User int.
disable) + Vector to
ISR

MAX(Longest instruction, User
int. disable, Kernel int. disable)
+ Vector to ISR

MAX(Longest instruction, User int.
disable, Kernel int. disable) +
Vector to ISR

Interrupt response
(Time)

Int. latency + Save
CPU’s context

Int. latency + Save CPU’s
context

Interrupt latency + Save CPU’s
context + Kernel ISR entry function

Interrupt recovery
(Time)

Restore background’s
context + Return from
int.

Restore task’s context +
Return from int.

Find highest priority task + Restore
highest priority task’s context +
Return from interrupt

Task response
(Time)

Background Longest task + Find highest
priority task + Context switch

Find highest priority task + Context
switch

ROM size Application code Application code + Kernel
code

Application code + Kernel code

RAM size Application RAM Application RAM + Kernel
RAM + SUM(Task stacks +
MAX(ISR stack))

Application RAM + Kernel RAM +
SUM(Task stacks + MAX(ISR
stack))

Services available? Application code must
provide

Yes Yes

Table - Table 2.2 Real-time systems summary.

µC/OS-II User's Manual

94Copyright 2015 Micrium Inc.

Kernel Structure
This chapter describes some of the structural aspects of µC/OS-II. You will learn:

How µC/OS-II handles access to critical sections of code

What a task is, and how µC/OS-II knows about your tasks

How tasks are scheduled

How µC/OS-II determines the percent CPU your application is using

How to write Interrupt Service Routines (ISRs)

What a clock tick is and how µC/OS-II handles it

How to initialize µC/OS-II

How to start multitasking

Application Services

This chapter also describes the application services listed in table 3.1. The code for

 and can be disabled by setting to 0 in OSSchedLock() OSSchedUnlock() OS_SCHED_LOCK_EN

 as shown in table 3.1. You should note that the other services cannot be ‘compiledOS_CFG.H

out’ because they are an integral part of the core services offered by µC/OS-II.

µC/OS-II User's Manual

95Copyright 2015 Micrium Inc.

µC/OS-II Core Service Enabled when set to 1 in OS_CFG.H

OS_ENTER_CRITICAL()

OS_EXIT_CRITICAL()

OSInit()

OSStart()

OSIntEnter()

OSIntExit()

OSSchedLock() OS_SCHED_LOCK_EN

OSSchedUnlock() OS_SCHED_LOCK_EN

OSVersion()

Table - Table 3.1 Core services configuration constants in OS_CFG.H.

Figure 3.1 shows the µC/OS-II architecture and its relationship with the hardware. When you

use µC/OS-II in an application, you are responsible for providing the Application Software and

the µC/OS-II Configuration sections. This book and CD contain all the source code for the

Processor-Independent Code section as well as the Processor-Specific Code section for the

Intel 80x86, real mode, large model. If you intend to use µC/OS-II on a different processor,

you need to either obtain a copy of a port for the processor you intend to use or write one

yourself if the desired processor port is not available. Check the official µC/OS-II Web site at

www.micrium.com for a list of available ports.

µC/OS-II User's Manual

96Copyright 2015 Micrium Inc.

Figure - Figure 3.1 µC/OS-II File Structure

Critical Sections, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

µC/OS-II, like all real-time kernels, needs to disable interrupts in order to access critical

sections of code and to re-enable interrupts when done. This allows µC/OS-II to protect critical

code from being entered simultaneously from either multiple tasks or ISRs. The interrupt

disable time is one of the most important specifications that a real-time kernel vendor can

provide because it affects the responsiveness of your system to real-time events. µC/OS-II tries

to keep the interrupt disable time to a minimum, but with µC/OS-II, interrupt disable time is

largely dependent on the processor architecture and the quality of the code generated by the

compiler.

µC/OS-II User's Manual

97Copyright 2015 Micrium Inc.

Processors generally provide instructions to disable/enable interrupts, and your C compiler

must have a mechanism to perform these operations directly from C. Some compilers allow

you to insert in-line assembly language statements into your C source code. This makes it quite

easy to insert processor instructions to enable and disable interrupts. Other compilers contain

language extensions to enable and disable interrupts directly from C.

To hide the implementation method chosen by the compiler manufacturer, µC/OS-II defines

two macros to disable and enable interrupts: and ,OS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

respectively. Because these macros are processor specific, they are found in a file called

. Each processor port thus has its own file.OS_CPU.H OS_CPU.H

OS_ENTER_CRITICAL() and are always used in pair to wrap critical sectionsOS_EXIT_CRITICAL()

of code as shown below:

{
 .
 .
 OS_ENTER_CRITICAL();
 /* µC/OS-II critical code section */
 OS_EXIT_CRITICAL();
 .
 .
}

Your application can also use and to protect yourOS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

own critical sections of code. Be careful, however, because your application will crash (i.e.

hang) if you disable interrupts before calling a service such as (see chapter 5).OSTimeDly()

This happens because the task is suspended until time expires, but because interrupts are

disabled, you would never service the tick interrupt! Obviously, all the PEND calls are also

subject to this problem, so be careful. As a general rule, you should always call µC/OS-II

services with interrupts enabled!

OS_ENTER_CRITICAL() and can be implemented using three differentOS_EXIT_CRITICAL()

methods. The actual method used by your port depends on the capabilities of the processor as

well as the compiler used (see Chapter 13, Porting µC/OS-II). The method used is selected by

the #define constant which is defined in of the port you will beOS_CRITICAL_METHOD OS_CPU.H

using for your application (i.e. product).

µC/OS-II User's Manual

98Copyright 2015 Micrium Inc.

OS_CRITICAL_METHOD == 1

The first and simplest way to implement these two macros is to invoke the processor

instruction to disable interrupts for and the enable interrupts instructionOS_ENTER_CRITICAL()

for . However, there is a little problem with this scenario. If you call aOS_EXIT_CRITICAL()

µC/OS-II function with interrupts disabled, on return from a µC/OS-II service (i.e. function),

interrupts would be enabled! If you had disabled interrupts prior to calling µC/OS-II, you may

want them to be disabled on return from the µC/OS-II function. In this case, this

implementation would not be adequate. However, with some processors/compilers, this is the

only method you can use.

OS_CRITICAL_METHOD == 2

The second way to implement is to save the interrupt disable status ontoOS_ENTER_CRITICAL()

the stack and then disable interrupts. is simply implemented by restoringOS_EXIT_CRITICAL()

the interrupt status from the stack. Using this scheme, if you call a µC/OS-II service with

interrupts either enabled or disabled, the status is preserved across the call. In other words,

interrupts would be enabled after the call if they were enabled before the call and, interrupts

would be disabled after the call if they were disabled before the call. Be careful when you call

a µC/OS-II service with interrupts disabled because you are extending the interrupt latency of

your application. The pseudo code for these macros is shown below:

#define OS_ENTER_CRITICAL() \
 asm(" PUSH PSW") \
 asm(" DI")
#define OS_EXIT_CRITICAL() \
 asm(" POP PSW")

Here, I’m assuming that your compiler will allow you to execute inline assembly language

statements directly from your C code as shown above. You will need to consult your compiler

documentation for this.

The PUSH PSW instruction pushes the ‘Processor Status Word’, PSW (also known as the

condition code register or, processor flags) onto the stack. The DI instruction stands for

‘Disable Interrupts’. Finally, the POP PSW instruction is assumed to restore the original state

of the interrupt flag from the stack. The instructions I used are only for illustration purposes

and may not be actual processor instructions.

µC/OS-II User's Manual

99Copyright 2015 Micrium Inc.

Some compilers do not optimize inline code real well and thus, this method may not work

because the compiler may not be ‘smart’ enough to know that the stack pointer was changed

(by the PUSH instruction). Specifically, the processor you are using may provide a ‘stack

pointer relative’ addressing mode which the compiler can use to access local variables or

function arguments using and offset from the stack pointer. Of course, if the stack pointer is

changed by the macro then all these stack offsets may be wrong andOS_ENTER_CRITICAL()

would most likely lead to incorrect behavior.

OS_CRITICAL_METHOD == 3

Some compiler provides you with extensions that allow you to obtain the current value of the

PSW (Processor Status Word) and save it into a local variable declared within a C function.

The variable can then be used to restore the PSW back as shown in listing 3.1 Below.

void Some_uCOS_II_Service (arguments)

{
 OS_CPU_SR cpu_sr (1)

 .
 cpu_sr = get_processor_psw(); (2)
 disable_interrupts(); (3)
 .
 /* Critical section of code */ (4)
 .
 set_processor_psw(cpu_sr); (5)
 .
}

Listing - Listing 3.1. Saving and restoring the PSW

 is a µC/OS-II data type that is declared in the processor specific file .(1) OS_CPU_SR OS_CPU.H

When you select this critical section method, and OS_ENTER_CRITICAL()

 always assume the presence of the cpu_sr variable. In other words,OS_EXIT_CRITICAL()

if you use this method to protect your own critical sections, you will need to declare a

cpu_sr variable in your function.

 To enter a critical section, a function provided by the compiler vendor is called to obtain(2)

the current state of the PSW (condition code register, processor flags or whatever else

this register is called for your processor). I called this function forget_processor_psw()

sake of discussion but it will likely have a different name for your compiler.

µC/OS-II User's Manual

100Copyright 2015 Micrium Inc.

 Another compiler provided function () is called to, of course,(3) disable_interrupt()

disable interrupts.

 At this point, the critical code can be execute.(4)

 Once the critical section has completed, interrupts can be re-enabled by calling another(5)

compiler specific extension that, for sake of discussion, I called .set_processor_psw()

The function receives as an argument the previous state of the PSW. It’s assumed that

this function will restore the processor PSW to this value.

Because I don’t know what the compiler functions are (there is no standard naming

convention), the µC/OS-II macros are used to encapsulate the functionality as follows:

#define OS_ENTER_CRITICAL() \
 cpu_sr = get_processor_psw(); \
 disable_interrupts();
#define OS_EXIT_CRITICAL() \
 set_processor_psw(cpu_sr);

Tasks

A task is typically an infinite loop function as shown in Listing 3.2.

void YourTask (void *pdata) (1)
{
 for (;;) { (2)
 /* USER CODE */
 Call one of uC/OS-II’s services:
 OSFlagPend();
 OSMboxPend();
 OSMutexPend();
 OSQPend();
 OSSemPend();
 OSTaskDel(OS_PRIO_SELF);
 OSTaskSuspend(OS_PRIO_SELF);
 OSTimeDly();
 OSTimeDlyHMSM();
 /* USER CODE */
 }
}

Listing - Listing 3.2 A task is an infinite loop.

µC/OS-II User's Manual

101Copyright 2015 Micrium Inc.

 The return type must always be declared void. An argument is passed to your task code(1)

when the task first starts executing. Notice that the argument is a pointer to a void. This

allows your application to pass just about any kind of data to your task. The pointer is a

“universal” vehicle used to pass your task the address of a variable, a structure, or even

the address of a function if necessary! It is possible (see Example 1 in Chapter 1) to

create many identical tasks, all using the same function (or task body). For example, you

could have four asynchronous serial ports that each are managed by their own task.

However, the task code is actually identical. Instead of copying the code four times, you

can create a task that receives a pointer to a data structure that defines the serial port’s

parameters (baud rate, I/O port addresses, interrupt vector number, etc.) as an argument.

 You could also use a statement, if you prefer. A task looks just like any other(2) while (1)

C function containing a return type and an argument, but it never returns.

Alternatively, the task can delete itself upon completion as shown in Listing 3.3. Note that the

task code is not actually deleted; µC/OS-II simply doesn’t know about the task anymore, so the

task code will not run. Also, if the task calls , the task never returns.OSTaskDel()

void YourTask (void *pdata)
{
 /* USER CODE */
 OSTaskDel(OS_PRIO_SELF);
}

Listing - Listing 3.3 A task that deletes itself when done.

µC/OS-II can manage up to 64 tasks; however, the current version of µC/OS-II uses two tasks

for system use. I that you don’t use priorities 0, 1, 2, 3, , recommend OS_LOWEST_PRIO-3

, , and because I may use them in futureOS_LOWEST_PRIO-2 OS_LOWEST_PRIO-1 OS_LOWEST_PRIO

versions µC/OS-II. However, if you need to keep your application as tight as possible then go

ahead and use whatever priorities you need as long as you don’t use . OS_LOWEST_PRIO

 is a #define constant defined in the file . Therefore, you can have upOS_LOWEST_PRIO OS_CFG.H

to 63 of your own application tasks unless you decide to not use the top and bottom four

priorities as I recommend. In this case, you would have up to 56 of your own tasks.

µC/OS-II User's Manual

102Copyright 2015 Micrium Inc.

Each task must be assigned a unique priority level from 0 to , inclusively.OS_LOWEST_PRIO–2

The lower the priority number, the higher the priority of the task. µC/OS-II always executes the

highest priority task ready to run. In the current version of µC/OS-II, the task priority number

also serves as the task identifier. The priority number (i.e., task identifier) is used by some

kernel services such as and .OSTaskChangePrio() OSTaskDel()

In order for µC/OS-II to manage your task, you must “create” a task by passing its address

along with other arguments to one of two functions: or . OSTaskCreate() OSTaskCreateExt()

 is an extended version of and provides additional features.OSTaskCreateExt() OSTaskCreate()

These two functions are explained in Chapter 4, Task Management.

Task States

Figure 3.2 shows the state transition diagram for tasks under µC/OS-II. At any given time, a

task can be in any one of five states.

The TASK DORMANT state corresponds to a task that resides in program space (ROM or

RAM) but has not been made available to µC/OS-II. A task is made available to µC/OS-II by

calling either or . These calls are simply used to tellOSTaskCreate() OSTaskCreateExt()

µC/OS-II the starting address of your task, what priority you want to give to the task being

‘created’, how much stack space will your task use and so on. When a task is created, it is

made ready to run and placed in the TASK READY state. Tasks may be created before

multitasking starts or dynamically by a running task. If multitasking has started and a task

created by another task has a higher priority than its creator, the created task is given control of

the CPU immediately. A task can return itself or another task to the dormant state by calling

.OSTaskDel()

Multitasking is started by calling . MUST only be called once duringOSStart() OSStart()

startup and starts the highest priority task that has been created during your initialization code.

The highest priority task is thus placed in the TASK RUNNING state. Only one task can be

running at any given time. A ready task will not run until all higher priority tasks are either

placed in the wait state or are deleted.

µC/OS-II User's Manual

103Copyright 2015 Micrium Inc.

Figure - Figure 3.2 Task states

The running task may delay itself for a certain amount of time by calling either or OSTimeDly()

. This task would be placed in the TASK WAITING state until the timeOSTimeDlyHMSM()

specified in the call expires. Both of these functions force an immediate context switch to the

next highest priority task that is ready to run. The delayed task is made ready to run by

 when the desired time delay expires (see section 3.??, Clock Tick). OSTimeTick() OSTimeTick()

is an internal function to µC/OS-II and thus, you don’t have to actually call this function from

your code.

The running task may also need to wait until an event occurs by calling either , OSFlagPend()

, , , or . If the event did not already occur,OSSemPend() OSMutexPend() OSMboxPend() OSQPend()

the task that calls one of these functions is placed in the TASK WAITING state until the

occurrence of the event. When a task pends on an event, the next highest priority task is

immediately given control of the CPU. The task is made ready when the event occurs or, when

a timeout expires. The occurrence of an event may be signaled by either another task or an

ISR.

A running task can always be interrupted, unless the task or µC/OS-II disables interrupts as we

have seen. The task thus enters the ISR RUNNING state. When an interrupt occurs, execution

of the task is suspended and the ISR takes control of the CPU. The ISR may make one or more

tasks ready to run by signaling one or more events. In this case, before returning from the ISR,

µC/OS-II determines if the interrupted task is still the highest priority task ready to run. If a

µC/OS-II User's Manual

104Copyright 2015 Micrium Inc.

higher priority task is made ready to run by the ISR, the new highest priority task is resumed;

otherwise, the interrupted task is resumed.

When all tasks are waiting either for events or for time to expire, µC/OS-II executes an internal

task called the idle task, .OS_TaskIdle()

Task Control Blocks (OS_TCBs)

When a task is created, it is assigned a Task Control Block, (Listing 3.??). A taskOS_TCB

control block is a data structure that is used by µC/OS-II to maintain the state of a task when it

is preempted. When the task regains control of the CPU, the task control block allows the task

to resume execution exactly where it left off. All OS_TCBs reside in RAM. You will notice

that I organized its fields to allow for data structure packing while maintaining a logical

grouping of members.

µC/OS-II User's Manual

105Copyright 2015 Micrium Inc.

typedef struct os_tcb {
 OS_STK *OSTCBStkPtr;

 #if OS_TASK_CREATE_EXT_EN > 0
 void *OSTCBExtPtr;
 OS_STK *OSTCBStkBottom;
 INT32U OSTCBStkSize;
 INT16U OSTCBOpt;
 INT16U OSTCBId;
 #endif

 struct os_tcb *OSTCBNext;
 struct os_tcb *OSTCBPrev;

 #if OS_TASK_CREATE_EXT_EN > 0u
 #if defined(OS_TLS_TBL_SIZE) && (OS_TLS_TBL_SIZE > 0u)
 OS_TLS OSTCBTLSTbl[OS_TLS_TBL_SIZE];
 #endif
 #endif

 #if ((OS_Q_EN > 0u) && (OS_MAX_QS > 0u)) || (OS_MBOX_EN > 0u) || (OS_SEM_EN > 0u) || (OS_MUTEX_EN > 0u)
 OS_EVENT *OSTCBEventPtr;
 #endif

 #if (OS_EVENT_EN) && (OS_EVENT_MULTI_EN > 0u)
 OS_EVENT **OSTCBEventMultiPtr;
 #endif

 #if ((OS_Q_EN > 0) && (OS_MAX_QS > 0)) || (OS_MBOX_EN > 0)
 void *OSTCBMsg;
 #endif

 #if (OS_FLAG_EN > 0u) && (OS_MAX_FLAGS > 0u)
 #if OS_TASK_DEL_EN > 0
 OS_FLAG_NODE *OSTCBFlagNode;
 #endif
 OS_FLAGS OSTCBFlagsRdy;
 #endif

 INT16U OSTCBDly;
 INT8U OSTCBStat;
 INT8U OSTCBStatPend;
 INT8U OSTCBPrio;

 INT8U OSTCBX;
 INT8U OSTCBY;
 INT8U OSTCBBitX;
 INT8U OSTCBBitY;

 #if OS_TASK_DEL_EN > 0u
 BOOLEAN OSTCBDelReq;
 #endif

#if OS_TASK_PROFILE_EN > 0u
 INT32U OSTCBCtxSwCtr;
 INT32U OSTCBCyclesTot;
 INT32U OSTCBCyclesStart;
 OS_STK *OSTCBStkBase;
 INT32U OSTCBStkUsed;
#endif
#if OS_TASK_NAME_EN > 0u
 INT8U *OSTCBTaskName;
#endif

#if OS_TASK_REG_TBL_SIZE > 0u
 INT32U OSTCBRegTbl[OS_TASK_REG_TBL_SIZE];
#endif

µC/OS-II User's Manual

106Copyright 2015 Micrium Inc.

 } OS_TCB;

Listing - Listing 3.4 The µC/OS-II task control block.

.OSTCBStkPtr

contains a pointer to the current top-of-stack for the task. µC/OS-II allows each task to have its

own stack, but just as important, each stack can be any size. Some commercial kernels assume

that all stacks are the same size unless you write complex hooks. This limitation wastes RAM

when all tasks have different stack requirements because the largest anticipated stack size has

to be allocated for all tasks. should be the only field in the data structure.OSTCBStkPtr OS_TCB

which is accessed from assembly language code (from the context-switching code). I decided

to place .OSTCBStkPtr as the first entry in the structure to make accessing this field easier

from assembly language code (it ought to be at offset zero).

.OSTCBExtPtr

is a pointer to a user-definable task control block extension. This allows you or the user of

µC/OS-II to extend the task control block without having to change the source code for

µC/OS-II. .OSTCBExtPtr is only used by , so you need to set OSTaskCreateExt()

 in to 1 to enable this field. Once enabled, you could useOS_TASK_CREATE_EXT_EN OS_CFG.H

.OSTCBExtPtr to point to a data structure that contains the name of the task, keep track of the

execution time of the task, or the number of times a task has been switched-in (see Example 3

in Chapter 1). Notice that I decided to place this pointer immediately after the stack pointer in

case you need to access this field from assembly language. This makes calculating the offset

from the beginning of the data structure easier.

.OSTCBStkBottom

is a pointer to the bottom of the task’s stack. If the processor’s stack grows from high-to-low

memory locations, then .OSTCBStkBottom will point at the lowest valid memory location for

the stack. Similarly, if the processor’s stack grows from low-to-high memory locations, then

.OSTCBStkBottom will point at the highest valid stack address. .OSTCBStkBottom is used by

 to check the size of a task’s stack at run time. This allows you to determine theOSTaskStkChk()

amount of free stack space available for each stack. Stack checking can only occur if you

create a task with , so you need to set in toOSTaskCreateExt() OS_TASK_CREATE_EXT_EN OS_CFG.H

1 to enable this field.

µC/OS-II User's Manual

107Copyright 2015 Micrium Inc.

.OSTCBStkSize

holds the size of the stack in number of elements instead of bytes (is declared in OS_STK

). This means that if a stack contains 1,000 entries and each entry is 32 bits wide, thenOS_CPU.H

the actual size of the stack is 4,000 bytes. Similarly, a stack where entries are 16 bits wide

would contain 2,000 bytes for the same 1,000 entries. .OSTCBStkSize is used by

. Again, this field is valid only if you set in toOSTaskStkChk() OS_TASK_CREATE_EXT_EN OS_CFG.H

1.

.OSTCBOpt

holds “options” that can be passed to , so this field is valid only if you set OSTaskCreateExt()

 in to 1. µC/OS-II currently defines only three options (seeOS_TASK_CREATE_EXT_EN OS_CFG.H

uCOS_II.H): OS_TASK_OPT_STK_CHK, OS_TASK_OPT_STK_CLR, and

OS_TASK_OPT_SAVE_FP.

OS_TASK_OPT_STK_CHK is used to specify to that stack checking is enabledOSTaskCreateExt()

for the task being created. Stack checking is not performed automatically by µC/OS-II because

I didn’t want to use valuable of CPU time unless you actually want to do stack checking. Stack

checking is performed by your application code by calling (see Chapter 4,OSTaskStkChk()

Task Management).

OS_TASK_OPT_STK_CLR indicates that the stack needs to be cleared (i.e. µC/OS-II writes zeros in

every location of the stack) when the task is created. The stack only needs to be cleared if you

intend to do stack checking. If you do not specify and you then createOS_TASK_OPT_STK_CLR

and delete tasks, stack checking will report incorrect stack usage. If you never delete a task

once it’s created and your startup code clears all RAM, you can save valuable execution time

by NOT specifying this option. Passing increases the execution time of OS_TASK_OPT_STK_CLR

 because it clears the content of the stack. The larger your stack, the longerOSTaskCreateExt()

it takes. Again, stack checking is invoked by your application code and not automatically by

µC/OS-II.

OS_TASK_OPT_SAVE_FP tells that the task will be doing floating-pointOSTaskCreateExt()

computations. If the processor provides hardware-assisted floating-point capability, the

floating-point registers need to be saved for the task being created and during a context switch.

µC/OS-II User's Manual

108Copyright 2015 Micrium Inc.

.OSTCBId

is used to hold an identifier for the task. This field is currently not used and has only been

included for future expansion.

.OSTCBNext and .OSTCBPrev

are used to doubly link OS_TCBs. The forward link (pointed to by .OSTCBNext) chain of

OS_TCBs is used by to update the .OSTCBDly field for each task. The OSTimeTick() OS_TCB

for each task is linked (using both pointers) when the task is created, and the is removedOS_TCB

from the list when the task is deleted. A doubly linked list permits an element in the chain to be

quickly inserted or removed.

.OSTCBEventPtr

is a pointer to an event control block and is described later (see Chapter 6, Event Control

Blocks).

.OSTCBMsg

is a pointer to a message that is sent to a task. The use of this field is described later (see

Chapter 10 and 11).

.OSTCBFlagNode

is a pointer to an event flag node (see Chapter 9, Event Flag Management). This field is only

used by when we are deleting a task that waits on an event flag group. This fieldOSTaskDel()

is present in the only when in is set to 1.OS_TCB OS_FLAG_EN OS_CFG.H

.OSTCBFlagsRdy

contains the event flags that made the task ready to run when the task was waiting on an event

flag group (see Chapter 9, Event Flag Management). This field is present in the onlyOS_TCB

when in is set to 1.OS_FLAG_EN OS_CFG.H

µC/OS-II User's Manual

109Copyright 2015 Micrium Inc.

.OSTCBDly

is used when a task needs to be delayed for a certain number of clock ticks or a task needs to

pend for an event to occur with a timeout. In this case, this field contains the number of clock

ticks the task is allowed to wait for the event to occur. When this variable is 0, the task is not

delayed or has no timeout when waiting for an event.

.OSTCBStat

contains the state of the task. When .OSTCBStat is 0, the task is ready to run. Other values can

be assigned to .OSTCBStat, and these values are described in uCOS_II.H (see).OS_STAT_???

.OSTCBPrio

contains the task priority. A high-priority task has a low .OSTCBPrio value (i.e., the lower the

number, the higher the actual priority).

.OSTCBX, .OSTCBY, .OSTCBBitX, and .OSTCBBitY

are used to accelerate the process of making a task ready to run or to make a task wait for an

event (to avoid computing these values at run time). The values for these fields are computed

when the task is created or when the task’s priority is changed. The values are obtained as

shown in Listing 3.5.

OSTCBY = priority >> 3;
OSTCBBitY = OSMapTbl[priority >> 3];
OSTCBX = priority & 0x07;
OSTCBBitX = OSMapTbl[priority & 0x07];

Listing - Listing 3.5 Calculating

.OSTCBDelReq

is a boolean used to indicate whether or not a task requested that the current task be deleted.

The use of this field is described later (see Chapter 4, Task Management). This field is present

in the only when in is set to 1.OS_TCB OS_TASK_DEL_EN OS_CFG.H

You probably noticed that some of the fields in the structured are wrapped withOS_TCB

µC/OS-II User's Manual

110Copyright 2015 Micrium Inc.

conditional compilation statements. This is done to allow you to reduce the amount of RAM

needed by µC/OS-II if you don’t need all the features that µC/OS-II provides.

The maximum number of tasks (OS_MAX_TASKS) that an application can have is specified

in and determines the number of OS_TCBs allocated for your application. You canOS_CFG.H

reduce the amount of RAM needed by setting to the actual number of tasksOS_MAX_TASKS

needed in your application. All OS_TCBs are placed in . Note that µC/OS-IIOSTCBTbl[]

allocates (see uCOS_II.H) extra OS_TCBs for internal use. Currently, one isOS_N_SYS_TASKS

used for the idle task, and another is used for the statistic task (if in OS_TASK_STAT_EN OS_CFG.H

is set to 1). When µC/OS-II is initialized, all OS_TCBs in the table are linked in a singly-linked

list of free OS_TCBs, as shown in Figure 3.3. When a task is created, the pointed to by OS_TCB

 is assigned to the task, and is adjusted to point to the next OSTCBFreeList OSTCBFreeList OS_TCB

in the chain. When a task is deleted, its is returned to the list of free OS_TCBs.OS_TCB

Figure - Figure 3.3 List of free OS_TCBs

An is initialized by the function (see Listing 3.6) when a task is created. OS_TCB OS_TCBInit()

 is called by either or (see Chapter 4, TaskOS_TCBInit() OSTaskCreate() OSTaskCreateExt()

Management). receives seven arguments:OS_TCBInit()

prio is the task priority,

ptos is a pointer to the top of stack once the stack frame has been built by (will beOSTaskStkInit()
described in Chapter 13, Porting µC/OS-II) and is stored in the field of the ..OSTCBStkPtr OS_TCB

pbos is a pointer to the stack bottom and is stored in the .OSTCBStkBottom field of the .OS_TCB

id is the task identifier and is saved in the field..OSTCBId

stk_size is the total size of the stack and is saved in the field of the OS_TCB..OSTCBStkSize

µC/OS-II User's Manual

111Copyright 2015 Micrium Inc.

pext is the value to place in the field of the ..OSTCBExtPtr OS_TCB

opt is the options and is saved in the field.OS_TCB .OSTCBOpt

µC/OS-II User's Manual

112Copyright 2015 Micrium Inc.

INT8U OS_TCBInit (INT8U prio,
 OS_STK *ptos,
 OS_STK *pbos,
 INT16U id,
 INT32U stk_size,
 void *pext,
 INT16U opt)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_TCB *ptcb;
#if OS_TASK_REG_TBL_SIZE > 0u
 INT8U i;
#endif
#if OS_TASK_CREATE_EXT_EN > 0u
#if defined(OS_TLS_TBL_SIZE) && (OS_TLS_TBL_SIZE > 0u)
 INT8U j;
#endif
#endif

 OS_ENTER_CRITICAL();
 ptcb = OSTCBFreeList; (1)
 if (ptcb != (OS_TCB *)0) { (2)
 OSTCBFreeList = ptcb->OSTCBNext;
 OS_EXIT_CRITICAL();
 ptcb->OSTCBStkPtr = ptos; (3)
 ptcb->OSTCBPrio = (INT8U)prio;
 ptcb->OSTCBStat = OS_STAT_RDY;
 ptcb->OSTCBStatPend = OS_STAT_PEND_OK;
 ptcb->OSTCBDly = 0;
#if OS_TASK_CREATE_EXT_EN > 0u
 ptcb->OSTCBExtPtr = pext; (4)
 ptcb->OSTCBStkSize = stk_size;
 ptcb->OSTCBStkBottom = pbos;
 ptcb->OSTCBOpt = opt;
 ptcb->OSTCBId = id;
#else
 pext = pext;
 stk_size = stk_size;
 pbos = pbos;
 opt = opt;
 id = id;
#endif

#if OS_TASK_DEL_EN > 0u
 ptcb->OSTCBDelReq = OS_ERR_NONE; (5)
#endif

#if OS_LOWEST_PRIO <= 63u
 ptcb->OSTCBY = (INT8U)(prio >> 3u); (6)
 ptcb->OSTCBX = (INT8U)(prio & 0x07u);
#else
 ptcb->OSTCBY = (INT8U)((INT8U)(prio >> 4u) & 0xFFu);
 ptcb->OSTCBX = (INT8U) (prio & 0x0Fu);
#endif

 ptcb->OSTCBBitY = (OS_PRIO)(1uL << ptcb->OSTCBY);
 ptcb->OSTCBBitX = (OS_PRIO)(1uL << ptcb->OSTCBX);

#if OS_EVENT_EN > 0u
 ptcb->OSTCBEventPtr = (OS_EVENT *)0; (7)
#if (OS_EVENT_MULTI_EN > 0u)
 ptcb->OSTCBEventMultiPtr = (OS_EVENT **)0;

µC/OS-II User's Manual

113Copyright 2015 Micrium Inc.

#endif

#endif

#if (OS_FLAG_EN > 0u) && (OS_MAX_FLAGS > 0u) && (OS_TASK_DEL_EN > 0u)
 ptcb->OSTCBFlagNode = (OS_FLAG_NODE *)0; (8)
#endif

#if OS_MBOX_EN || (OS_Q_EN && (OS_MAX_QS >= 2))
 ptcb->OSTCBMsg = (void *)0;
#endif

#if OS_TASK_PROFILE_EN > 0u
 ptcb->OSTCBCtxSwCtr = 0uL;
 ptcb->OSTCBCyclesStart = 0uL;
 ptcb->OSTCBCyclesTot = 0uL;
 ptcb->OSTCBStkBase = (OS_STK *)0;
 ptcb->OSTCBStkUsed = 0uL;
#endif
#if OS_TASK_NAME_EN > 0u
 ptcb->OSTCBTaskName = (INT8U *)(void *)"?";
#endif
#if OS_TASK_REG_TBL_SIZE > 0u
 for (i = 0u; i < OS_TASK_REG_TBL_SIZE; i++) {
 ptcb->OSTCBRegTbl[i] = 0u;
 }

#endif
 OSTCBInitHook(ptcb); (9)

 OS_ENTER_CRITICAL();
 OSTCBPrioTbl[prio] = ptcb; (10)
 OS_EXIT_CRITICAL();

 OSTaskCreateHook(ptcb); (11)

#if OS_TASK_CREATE_EXT_EN > 0u
#if defined(OS_TLS_TBL_SIZE) && (OS_TLS_TBL_SIZE > 0u)
 for (j = 0u; j < OS_TLS_TBL_SIZE; j++) {
 ptcb->OSTCBTLSTbl[j] = (OS_TLS)0;
 }
 OS_TLS_TaskCreate(ptcb);
#endif
#endif

 OS_ENTER_CRITICAL(); (12)
 ptcb->OSTCBNext = OSTCBList;
 ptcb->OSTCBPrev = (OS_TCB *)0;
 if (OSTCBList != (OS_TCB *)0) {
 OSTCBList->OSTCBPrev = ptcb;
 }
 OSTCBList = ptcb;
 OSRdyGrp |= ptcb->OSTCBBitY; (13)
 OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
 OSTaskCtr++;
 OS_EXIT_CRITICAL();
 return (OS_ERR_NONE); (14)
 }
 OS_EXIT_CRITICAL();
 return (OS_NO_MORE_TCB);
}

Listing - Listing 3.6

µC/OS-II User's Manual

114Copyright 2015 Micrium Inc.

 first tries to obtain an from the pool.(1) OS_TCBInit() OS_TCB OS_TCB

 & (3) If the pool contains a free OS_TCB, it is initialized. Note that once an is(2) OS_TCB

allocated, can re-enable interrupts because at this point the creator of theOS_TCBInit()

task owns the and it cannot be corrupted by another concurrent task creation. OS_TCB

 can thus proceed to initialize some of the fields with interruptsOS_TCBInit() OS_TCB

enabled.

 If you enabled code generation for (is set to(4) OSTaskCreateExt() OS_TASK_CREATE_EXT_EN

1 in) then additional fields in are filled-in.OS_CFG.H OS_TCB

 The presence of the flag .OSTCBDelReq in depends on whether (5) OS_TCB OS_TASK_DEL_EN

 has been enabled (see). In other words, if you never intend to delete tasks, youOS_CFG.H

can save yourself the storage area of a BOOLEAN in every single OS_TCB.

 In order to save a bit of processing time during scheduling, precalculates(6) OS_TCBInit()

some fields. I decided to exchange execution time in favor of data space storage.

 If you don’t intend to use any semaphores, mutexes, message mailboxes and message(7)

queues in your application then the field .OSTCBEventPtr in the would not beOS_TCB

present.

 If you enabled event flags (i.e. you set to 1 in) then the pointer to(8) OS_FLAGS_EN OS_CFG.H

an event flag node is intitialized to point to nothing because the task is not waiting for an

event flag, it’s only being created.

 In V2.04, I added a call to a function that can be defined in the processor’s port file – (9)

. This allows you to add extensions to the OS_TCB. For example, youOSTCBInitHook()

could initialize and store the contents of floating-point registers, MMU registers, or

anything else that can be associated with a task. However, you would typically store this

additional information in memory that would be allocated by your application. Note that

interrupts are enabled when calls .OS_TCBInit() OSTCBInitHook()

 disables interrupts when it needs to insert the into the doubly linked(10) OS_TCBInit() OS_TCB

list of tasks that have been created.

 then calls , which is a user-specified function that(11) OS_TCBInit() OSTaskCreateHook()

µC/OS-II User's Manual

115Copyright 2015 Micrium Inc.

allows you to extend the functionality of or . OSTaskCreate() OSTaskCreateExt()

 can be declared either in (if is set to 1)OSTaskCreateHook() OS_CPU_C.C OS_CPU_HOOKS_EN

or elsewhere (if is set to 0). Note that interrupts are enabled when OS_CPU_HOOKS_EN

 calls .OS_TCBInit() OSTaskCreateHook()

You should note that I could have called only one of the two hook functions:

 or . The reason there are two functions is to allowOSTCBInitHook() OSTaskCreateHook()

you to group (i.e. encapsulate) items that are tied with the in andOS_TCB OSTCBInitHook()

other task related initialization in .OSTaskCreateHook()

 The list starts at , and the of a new task is always inserted at the(12) OSTCBList OS_TCB

beginning of the list.

 & (14) Finally, the task is made ready to run, and returns to its caller [(13) OS_TCBInit()

 or] with a code indicating that an has beenOSTaskCreate() OSTaskCreateExt() OS_TCB

allocated and initialized.

Ready List

Each task is assigned a unique priority level between 0 and , inclusive (see OS_LOWEST_PRIO

). Task priority is always assigned to the idle task when µC/OS-II isOS_CFG.H OS_LOWEST_PRIO

initialized. Note that and are unrelated. You can have only 10OS_MAX_TASKS OS_LOWEST_PRIO

tasks in an application while still having 32 priority levels (if you set to 31).OS_LOWEST_PRIO

Each task that is ready to run is placed in a ready list consisting of two variables, and OSRdyGrp

. Task priorities are grouped (eight tasks per group) in . Each bit in OSRdyTbl[] OSRdyGrp

 indicates when a task in a group is ready to run. When a task is ready to run, it alsoOSRdyGrp

sets its corresponding bit in the ready table, . The size of depends on OSRdyTbl[] OSRdyTbl[]

 (see uCOS_II.H). This allows you to reduce the amount of RAM (data space)OS_LOWEST_PRIO

needed by µC/OS-II when your application requires few task priorities.

To determine which priority (and thus which task) will run next, the scheduler in µC/OS-II

determines the lowest priority number that has its bit set in . The relationshipOSRdyTbl[]

between and is shown in Figure 3.4 and is given by the following rules.OSRdyGrp OSRdyTbl[]

Bit 0 in is 1 when any bit in is 1.OSRdyGrp OSRdyTbl[0]

µC/OS-II User's Manual

116Copyright 2015 Micrium Inc.

Bit 1 in is 1 when any bit in is 1.OSRdyGrp OSRdyTbl[1]

Bit 2 in is 1 when any bit in is 1.OSRdyGrp OSRdyTbl[2]

Bit 3 in is 1 when any bit in is 1.OSRdyGrp OSRdyTbl[3]

Bit 4 in is 1 when any bit in is 1.OSRdyGrp OSRdyTbl[4]

Bit 5 in is 1 when any bit in is 1.OSRdyGrp OSRdyTbl[5]

Bit 6 in is 1 when any bit in is 1.OSRdyGrp OSRdyTbl[6]

Bit 7 in is 1 when any bit in is 1.OSRdyGrp OSRdyTbl[7]

The code in Listing 3.7 is used to place a task in the ready list. prio is the task’s priority.

OSRdyGrp |= OSMapTbl[prio >> 3];
OSRdyTbl[prio >> 3] |= OSMapTbl[prio & 0x07];

Listing - Listing 3.7 Making a task ready to run.

As you can see from Figure 3.4, the lower three bits of the task’s priority are used to determine

the bit position in , and the next three most significant bits are used to determineOSRdyTbl[]

the index into . Note that (see) is in ROM and is used toOSRdyTbl[] OSMapTbl[] OS_CORE.C

equate an index from 0 to 7 to a bit mask, as shown in Table 3.1.

Table 3.1 Contents of .OSMapTbl[]

Index Bit Mask (Binary)

0 00000001

1 00000010

2 00000100

µC/OS-II User's Manual

117Copyright 2015 Micrium Inc.

3 00001000

4 00010000

5 00100000

6 01000000

7 10000000

Figure - Figure 3.4 The µC/OS-II ready list

A task is removed from the ready list by reversing the process using the code in Listing 3.8.

µC/OS-II User's Manual

118Copyright 2015 Micrium Inc.

if ((OSRdyTbl[prio >> 3] &= ~OSMapTbl[prio & 0x07]) == 0)
 OSRdyGrp &= ~OSMapTbl[prio >> 3];

Listing - Listing 3.8 Removing a task from the ready list.

This code clears the ready bit of the task in and clears the bit in only if allOSRdyTbl[] OSRdyGrp

tasks in a group are not ready to run; that is, all bits in are 0. AnotherOSRdyTbl[prio >> 3]

table lookup is performed, rather than scanning through the table starting with , toOSRdyTbl[0]

find the highest priority task ready to run. is a priority resolution table (see OSUnMapTbl[256]

). Eight bits represent when tasks are ready in a group. The least significant bit hasOS_CORE.C

the highest priority. Using this byte to index returns the bit position of theOSUnMapTbl[]

highest priority bit set — a number between 0 and 7. Determining the priority of the highest

priority task ready to run is accomplished with the code in Listing 3.9.

y = OSUnMapTbl[OSRdyGrp]; /* Determine Y position in OSRdyTbl[] */
x = OSUnMapTbl[OSRdyTbl[y]]; /* Determine X position in OSRdyTbl[Y] */
prio = (y << 3) + x;

Listing - Listing 3.9 Finding the highest priority task ready to run.

For example, as shown in Figure 3.5, if contains 01101000 (binary) or 0x68, then theOSRdyGrp

table lookup yields a value of 3, which corresponds to bit 3 in OSUnMapTbl[OSRdyGrp] OSRdyGrp

. Note that bit positions are assumed to start on the right with bit 0 being the rightmost bit.

Similarly, if contains 11100100 (binary) or 0xE4, then OSRdyTbl[3] OSUnMapTbl[OSRdyTbl[3]]

results in a value of 2 (bit 2). The task priority (prio) is then 26 (i.e. 3 x 8 + 2). Getting a

pointer to the for the corresponding task is done by indexing into usingOS_TCB OSTCBPrioTbl[]

the task’s priority.

µC/OS-II User's Manual

119Copyright 2015 Micrium Inc.

Figure - Figure 3.5 Finding the highest priority task ready to run

Task Scheduling

µC/OS-II always executes the highest priority task ready to run. The determination of which

task has the highest priority, and thus which task will be next to run, is determined by the

scheduler. Task-level scheduling is performed by . ISR-level scheduling is handledOS_Sched()

by another function [] described later. The code for is shown in ListingOSIntExit() OS_Sched()

3.10. µC/OS-II task-scheduling time is constant irrespective of the number of tasks created in

an application.

µC/OS-II User's Manual

120Copyright 2015 Micrium Inc.

void OS_Sched (void)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT8U y;

 OS_ENTER_CRITICAL();
 if ((OSIntNesting == 0u) && (OSLockNesting == 0u)) { (1)
 y = OSUnMapTbl[OSRdyGrp]; (2)
 OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
 if (OSPrioHighRdy != OSPrioCur) { (3)
 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy]; (4)
#if OS_TASK_PROFILE_EN > 0u
 OSTCBHighRdy->OSTCBCtxSwCtr++; /* Inc. # of context switches to this task */
#endif
 OSCtxSwCtr++; (5)
#if OS_TASK_CREATE_EXT_EN > 0u
#if defined(OS_TLS_TBL_SIZE) && (OS_TLS_TBL_SIZE > 0u)
 OS_TLS_TaskSw();
#endif
#endif
 OS_TASK_SW(); (6)
 }
 }
 OS_EXIT_CRITICAL();
}

Listing - Listing 3.10 Task scheduler.

 exits if called from an ISR (i.e.,) or if scheduling has been(1) OS_Sched() OSIntNesting > 0

disabled because your application called at least once (i.e., OSSchedLock() OSLockNesting

).> 0

 If is not called from an ISR and the scheduler is enabled, then (2) OS_Sched() OS_Sched()

determines the priority of the highest priority task that is ready to run. A task that is

ready to run has its corresponding bit set in .OSRdyTbl[]

 Once the highest priority task has been found, verifies that the highest(3) OS_Sched()

priority task is not the current task. This is done to avoid an unnecessary context switch

which would be time consuming. Note that µC/OS (V1.xx) used to obtain OSTCBHighRdy

and compared it with . On 8- and some 16-bit processors, this operation wasOSTCBCur

relatively slow because a comparison was made of pointers instead of 8-bit integers as it

is now done in µC/OS-II. Also, there is no point in looking up in OSTCBHighRdy

 (see L3.10(4)) unless you actually need to do a context switch. TheOSTCBPrioTbl[]

µC/OS-II User's Manual

121Copyright 2015 Micrium Inc.

combination of comparing 8-bit values instead of pointers and looking up OSTCBHighRdy

only when needed should make µC/OS-II faster than µC/OS on 8- and some 16-bit

processors.

 To perform a context switch, must point to the of the highest(4) OSTCBHighRdy OS_TCB

priority task, which is done by indexing into using .OSTCBPrioTbl[] OSPrioHighRdy

 Next, the statistic counter (a 32-bit variable) is incremented to keep track of(5) OSCtxSwCtr

the number of context switches. This counter serves no other purpose except that it

allows you to determine the number of context switches in one second. Of course, do to

this, you’d have to save in another variable (ex.) everyOSCtxSwCtr OSCtxSwCtrPerSec

second and then clear .OSCtxSwCtr

 Finally, the macro is invoked to do the actual context switch.(6) OS_TASK_SW()

A context switch simply consists of saving the processor registers on the stack of the task

being suspended and restoring the registers of the higher priority task from its stack. In

µC/OS-II, the stack frame for a ready task always looks as if an interrupt has just occurred and

all processor registers were saved onto it. In other words, all that µC/OS-II has to do to run a

ready task is restore all processor registers from the task’s stack and execute a return from

interrupt. To switch context, you would implement so that you simulate anOS_TASK_SW()

interrupt. Most processors provide either software interrupt or TRAP instructions to

accomplish this. The interrupt service routine (ISR) or trap handler (also called the exception

handler) must vector to the assembly language function . expects to have OSCtxSw() OSCtxSw()

 point to the of the task to be switched-in and point to the OSTCBHighRdy OS_TCB OSTCBCur OS_TCB

of the task being suspended. Refer to Chapter 13, Porting µC/OS-II, for additional details on

. For now, you only need to know that will suspends execution of theOSCtxSw() OS_TASK_SW()

current task and allows the CPU to resume execution of the more important task.

All of the code in is considered a critical section. Interrupts are disabled to preventOS_Sched()

ISRs from setting the ready bit of one or more tasks during the process of finding the highest

priority task ready to run. Note that could be written entirely in assembly languageOS_Sched()

to reduce scheduling time. was written in C for readability and portability and toOS_Sched()

minimize assembly language.

µC/OS-II User's Manual

122Copyright 2015 Micrium Inc.

Task Level Context Switch, OS_TASK_SW()

As we discussed in the previous section, once the scheduler has determined that a more

important task needs to run, is called to perform a context switch. The context ofOS_TASK_SW()

a task is generally the contents of all of the CPU registers. The context switch code simply

needs to save the register values of the task being preempted and load into the CPU the values

of the registers for the task to resume.

OS_TASK_SW() is a macro that ‘normally’ invokes a microprocessor software interrupt because

µC/OS-II assumes that context switching will be done by interrupt level code. What µC/OS-II

thus needs is a processor instruction that behaves just like a hardware interrupt (thus the name

software interrupt). A macro is used to make µC/OS-II portable across multiple platforms by

encapsulating the actual processor specific software interrupt mechanism. You will learn more

about how to implement in Chapter 13, Porting µC/OS-II.OS_TASK_SW()

Figure 3.6 shows the state of some µC/OS-II variables and data structures just prior to calling

. For sake of discussion, I ‘created’ a fictituous CPU containing seven registers:OS_TASK_SW()

A Stack Pointer (SP)

A Program Counter (PC)

A Processor Status Word (PSW)

Four general purpose registers (R1, R2, R3 and R4)

µC/OS-II User's Manual

123Copyright 2015 Micrium Inc.

Figure - Figure 3.6 µC/OS-II structures when OS_TASK_SW() is called

 points to the of the task being suspended (the Low Priority Task).(1) OSTCBCur OS_TCB

 The CPU’s stack pointer (SP register) points to the current top-of-stack of the task being(2)

preempted.

 points to the of the task that will execute after completing the(3) OSTCBHighRdy OS_TCB

context switch.

 The field in the points to the top-of-stack of the task to resume.(4) .OSTCBStkPtr OS_TCB

 The stack of the task to resume contains the desired register values to load into the CPU.(5)

These values could have been saved by a previous context switch as we will see shortly.

For the time being, let’s simply assume that they have the desired values.

Figure 3.7 shows the state of the variables and data structures after calling andOS_TASK_SW()

µC/OS-II User's Manual

124Copyright 2015 Micrium Inc.

after saving the context of the task to suspend.

Figure - Figure 3.7 Saving the current task’s context

 Calling invokes the software interrupt instruction which forces the(1) OS_TASK_SW()

processor to save the current value of the PSW and the PC onto the current task’s stack.

The processor then ‘vectors’ to the software interrupt handler which will be responsible

to complete the remaining steps of the context switch.

 The software interrupt handler starts by saving the general purpose registers R1, R2, R3(2)

and R4 in this order.

 The stack pointer register is then saved into the current task’s OS_TCB. At this point,(3)

both the CPU’s SP register and are pointing to the same locationOSTCBCur->OSTCBStkPtr

into the current task’s stack.

Figure 3.8 shows the state of the variables and data structures after executing the last part of

µC/OS-II User's Manual

125Copyright 2015 Micrium Inc.

the context switch code.

Figure - Figure 3.8 Resuming the current task

 Because the new ‘current’ task will now be the task being resumed, the context switch(1)

code copies to .OSTCBHighRdy OSTCBCur

 The stack pointer of the task to resume is extracted from the (from (2) OS_TCB

) and loaded into the CPU’s SP register. At this point, the SPOSTCBHighRdy->OSTCBStkPtr

register point at the stack location containing the value of register R4.

 The general purpose registers are popped from the stack in the reverse order (R4, R3, R2(3)

and R1).

 The PC and PSW registers are loaded back into the CPU by executing a return from(4)

interrupt instruction. Because the PC is changed, code execution resumes where the PC

is pointing to, which happens to be in the new task’s code.

µC/OS-II User's Manual

126Copyright 2015 Micrium Inc.

The pseudo code for the context switch is shown in Listing 3.11. is generally writtenOSCtxSw()

in assembly language because most C compilers cannot manipulate CPU registers directly

from C. In Chapter 14, 80x86 Large Model Port, we will see how as well as otherOSCtxSw()

µC/OS-II functions look on a real processor, the Intel 80x86.

void OSCtxSw (void)
{
 PUSH R1, R2, R3 and R4 onto the current stack; See F3.6(2)
 OSTCBCur->OSTCBStkPtr = SP; See F3.6(3)
 OSTCBCur = OSTCBHighRdy; See F3.7(1)
 SP = OSTCBHighRdy->OSTCBStkPtr; See F3.7(2)
 POP R4, R3, R2 and R1 from the new stack; See F3.7(3)
 Execute a return from interrupt instruction; See F3.7(4)
}

Listing - Listing 3.11 Context Switch pseudo code.

Locking and Unlocking the Scheduler

The function (Listing 3.12) is used to prevent task rescheduling until itsOSSchedLock()

counterpart, (Listing 3.13), is called. The task that calls keepsOSSchedUnlock() OSSchedLock()

control of the CPU even though other higher priority tasks are ready to run. Interrupts,

however, are still recognized and serviced (assuming interrupts are enabled). OSSchedLock()

and must be used in pairs. The variable keeps track of theOSSchedUnlock() OSLockNesting

number of times has been called. This allows nested functions to contain criticalOSSchedLock()

code that other tasks cannot access. µC/OS-II allows nesting up to 255 levels deep. Scheduling

is re-enabled when is 0. and must be used withOSLockNesting OSSchedLock() OSSchedUnlock()

caution because they affect the normal management of tasks by µC/OS-II.

µC/OS-II User's Manual

127Copyright 2015 Micrium Inc.

void OSSchedLock (void)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

 if (OSRunning == OS_TRUE) { (1)
 OS_ENTER_CRITICAL();
 if (OSIntNesting == 0u) {
 if (OSLockNesting < 255u) { (2)
 OSLockNesting++;
 }
 }
 OS_EXIT_CRITICAL();
 }
}

Listing - Listing 3.12 Locking the scheduler.

 It only makes sense to lock the scheduler if multitasking has started (i.e. was(1) OSStart()

called).

 Before incrementing , we need to make sure that we have not exceeded(2) OSLockNesting

the allowable number of nesting levels.

After calling , your application must not make any system calls that suspendOSSchedLock()

execution of the current task; that is, your application cannot call , , OSFlagPend() OSMboxPend()

, , , , , or OSMutexPend() OSQPend() OSSemPend() OSTaskSuspend(OS_PRIO_SELF) OSTimeDly()

 until returns to 0 because prevents other tasksOSTimeDlyHMSM() OSLockNesting OSSchedLock()

from running and thus your system will lockup.

You may want to disable the scheduler when a low-priority task needs to post messages to

multiple mailboxes, queues, or semaphores (see Chapter 6, Intertask Communication &

Synchronization) and you don’t want a higher priority task to take control until all mailboxes,

queues, and semaphores have been posted to.

µC/OS-II User's Manual

128Copyright 2015 Micrium Inc.

void OSSchedUnlock (void)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

 if (OSRunning == TRUE) { (1)
 OS_ENTER_CRITICAL();
 if (OSLockNesting > 0) { (2)
 OSLockNesting--; (3)
 if ((OSLockNesting == 0) && (OSIntNesting == 0)) { (4)
 OS_EXIT_CRITICAL();
 OS_Sched(); (5)
 } else {
 OS_EXIT_CRITICAL();
 }
 } else {
 OS_EXIT_CRITICAL();
 }
 }
}

Listing - Listing 3.13 Unlocking the scheduler.

 It only makes sense to unlock the scheduler if multitasking has started (i.e. (1) OSStart()

was called).

 We make sure is not already 0. If it was, it would be an indication that(2) OSLockNesting

you called too many times. In other words, you would not have theOSSchedUnlock()

same number of as .OSSchedLock() OSSchedUnlock()

 is decremented.(3) OSLockNesting

 & (5) We only want to allow the scheduler to execute when all nesting have completed. (4)

 is called from a task because events could have made higher priorityOSSchedUnlock()

tasks ready to run while scheduling was locked.

Idle Task

µC/OS-II always creates a task (a.k.a. the idle task) that is executed when none of the other

tasks is ready to run. The idle task, , is always set to the lowest priority,OS_TaskIdle()

OS_LOWEST_PRIO. The code for the idle task is shown in Listing 3.14. The idle task can

never be deleted by application software.

µC/OS-II User's Manual

129Copyright 2015 Micrium Inc.

void OS_TaskIdle (void *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

 pdata = pdata;
 for (;;) {
 OS_ENTER_CRITICAL();
 OSIdleCtr++; (1)
 OS_EXIT_CRITICAL();
 OSTaskIdleHook(); (2)
 }
}

Listing - Listing 3.14 The µC/OS-II idle task.

 increments a 32-bit counter called , which is used by the(1) OS_TaskIdle() OSIdleCtr

statistics task (see section 3.??, Statistics Task) to determine the percent CPU time

actually being consumed by the application software. Interrupts are disabled then

enabled around the increment because on 8- and most 16-bit processors, a 32-bit

increment requires multiple instructions that must be protected from being accessed by

higher priority tasks or ISRs.

 calls which is a function that you can write to do just(2) OS_TaskIdle() OSTaskIdleHook()

about anything you want. You can use to STOP the CPU so that it canOSTaskIdleHook()

enter low-power mode. This is useful when your application is battery powered.

 MUST ALWAYS be ready to run so don’t call one of the PENDOS_TaskIdle()

functions, functions or from .OSTimeDly???() OSTaskSuspend() OSTaskIdleHook()

Statistics Task

µC/OS-II contains a task that provides run-time statistics. This task is called andOS_TaskStat()

is created by µC/OS-II if you set the configuration constant (see) toOS_TASK_STAT_EN OS_CFG.H

1. When enabled, (see OS_CORE.C) executes every second and computes theOS_TaskStat()

percent CPU usage. In other words, tells you how much of the CPU time isOS_TaskStat()

used by your application, as a percentage. This value is placed in the signed 8-bit integer

variable . The resolution of is 1 percent.OSCPUUsage OSCPUUsage

If your application is to use the statistic task, you must call (see OS_CORE.C)OSStatInit()

from the first and only task created in your application during initialization. In other words,

µC/OS-II User's Manual

130Copyright 2015 Micrium Inc.

your startup code must create only one task before calling . From this one task, youOSStart()

must call before you create your other application tasks. The single task that youOSStatInit()

create will, of course, be allowed to create other tasks. The pseudocode in Listing 3.15 shows

what needs to be done.

void main (void)
{
 OSInit(); /* Initialize uC/OS-II (1)*/
 /* Install uC/OS-II's context switch vector */
 /* Create your startup task (for sake of discussion, TaskStart()) (2)*/
 OSStart(); /* Start multitasking (3)*/
}

void TaskStart (void *pdata)
{
 /* Install and initialize µC/OS-II’s ticker (4)*/
 OSStatInit(); /* Initialize statistics task (5)*/
 /* Create your application task(s) */
 for (;;) {
 /* Code for TaskStart() goes here! */
 }
}

Listing - Listing 3.15 Initializing the statistic task.

Because your application must create only one task, , µC/OS-II has only threeTaskStart()

tasks to manage when calls : , , and .main() OSStart() TaskStart() OSTaskIdle() OS_TaskStat()

Please note that you don’t have to call the startup task: — you can call it anythingTaskStart()

you like. Your startup task will have the highest priority because µC/OS-II sets the priority of

the idle task to and the priority of the statistic task to – 1OS_LOWEST_PRIO OS_LOWEST_PRIO

internally.

Figure 3.9 illustrates the flow of execution when initializing the statistic task.

µC/OS-II User's Manual

131Copyright 2015 Micrium Inc.

Figure - Figure 3.9 Statistic task initialization

 The first function that you must call in µC/OS-II is , which initializes µC/OS-II.(1) OSInit()

 Next, you need to install the interrupt vector that will be used to perform context(2)

switches. Note that on some processors (specifically the Motorola 68HC11), there is no

need to “install” a vector because the vector is already resident in ROM.

 You must create by calling either or .(3) TaskStart() OSTaskCreate() OSTaskCreateExt()

 Once you are ready to multitask, call , which schedules for(4) OSStart() TaskStart()

execution because it has the highest priority.

 is responsible for initializing and starting the ticker. You want to initialize(5) TaskStart()

the ticker in the first task to execute because you don’t want to receive a tick interrupt

µC/OS-II User's Manual

132Copyright 2015 Micrium Inc.

until you are actually multitasking.

 Next, calls . determines how high the idle(6) TaskStart() OSStatInit() OSStatInit()

counter (OSIdleCtr) can count if no other task in the application is executing. A Pentium

II running at 333MHz increments this counter to a value of about 15,000,000. OSIdleCtr

is still far from wrapping around the 4,294,967,296 limit of a 32-bit value. At the rate

processor speeds are getting, it will not be too long before overflows. If thisOSIdleCtr

becomes a problem, you can always introduce some software delays in

. Because really doesn’t execute any ‘useful’ code, it’sOSTaskIdleHook() OS_TaskIdle()

OK to throw away CPU cycles.

 starts off by calling , which puts to sleep for two(7) OSStatInit() OSTimeDly() TaskStart()

ticks. This is done to synchronize to the ticker. µC/OS-II then picks theOSStatInit()

next highest priority task that is ready to run, which happens to be .OS_TaskStat()

 You will see the code for later, but as a preview, the very first thing (8) OS_TaskStat()

 does is check to see if the flag is set to FALSE and delays forOS_TaskStat() OSStatRdy

two seconds if it is.

 It so happens that is initialized to FALSE by , so in(9) OSStatRdy OSInit() OS_TaskStat()

fact puts itself to sleep for two seconds. This causes a context switch to the only task that

is ready to run, .OSTaskIdle()

 The CPU stays in until the two ticks of expire.(10) OS_TaskIdle() TaskStart()

 & (12) After two ticks, resumes execution in and is(11) TaskStart() OSStatInit() OSIdleCtr

cleared.

 Then, delays itself for one full second. Because no other task is ready to(13) OSStatInit()

run, again gets control of the CPU.OS_TaskIdle()

 During that time, is continuously incremented.(14) OSIdleCtr

 After one second, is resumed, still in , and the value that (15) TaskStart() OSStatInit()

 reached during that one second is saved in .OSIdleCtr OSIdleCtrMax

 & (17) sets to TRUE, which allows to perform a(16) OSStatInit() OSStatRdy OS_TaskStat()

CPU usage computation after its delay of two seconds expires.

µC/OS-II User's Manual

133Copyright 2015 Micrium Inc.

The code for is shown in Listing 3.16.OSStatInit()

void OSStatInit (void)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

 OSTimeDly(2);
 OS_ENTER_CRITICAL();
 OSIdleCtr = 0L;
 OS_EXIT_CRITICAL();
 OSTimeDly(OS_TICKS_PER_SEC / 10u);
 OS_ENTER_CRITICAL();
 OSIdleCtrMax = OSIdleCtr;
 OSStatRdy = OS_TRUE;
 OS_EXIT_CRITICAL();
}

Listing - Listing 3.16 Initializing the statistic task.

The code for is shown in Listing 3.17.OS_TaskStat()

µC/OS-II User's Manual

134Copyright 2015 Micrium Inc.

void OS_TaskStat (void *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT32U run;
 INT32U max;
 INT8S usage;

 pdata = pdata;
 while (OSStatRdy == OS_FALSE) { (1)
 OSTimeDly(2 * OS_TICKS_PER_SEC / 10u);
 }
 OSIdleCtrMax /= 100uL; (2)
 if (OSIdleCtrMax == 0uL) {
 OSCPUUsage = 0u;
#if OS_TASK_SUSPEND_EN > 0u
 (void)OSTaskSuspend(OS_PRIO_SELF);
#else
 for (;;) {
 OSTimeDly(OS_TICKS_PER_SEC);
 }
#endif
 }
 OS_ENTER_CRITICAL();
 OSIdleCtr = OSIdleCtrMax * 100uL;
 OS_EXIT_CRITICAL();

 for (;;) {
 OS_ENTER_CRITICAL();
 OSIdleCtrRun = OSIdleCtr; (3)
 OSIdleCtr = 0L;
 OS_EXIT_CRITICAL();
 OSCPUUsage = (INT8U)(100uL - OSIdleCtrRun / OSIdleCtrMax); (4)

 OSTaskStatHook(); (5)

#if (OS_TASK_STAT_STK_CHK_EN > 0u) && (OS_TASK_CREATE_EXT_EN > 0u)
 OS_TaskStatStkChk();
#endif

 OSTimeDly(OS_TICKS_PER_SEC / 10u);
 }
}

Listing - Listing 3.17 Statistics task.

 I’ve already discussed why has to wait for the flag to be set to(1) OS_TaskStat() OSStatRdy

TRUE in the previous paragraphs. The task code executes every second and basically

determines how much CPU time is actually consumed by all the application tasks. When

you start adding application code, the idle task will get less of the processor’s time, and

 will not be allowed to count as high as it did when nothing else was running.OSIdleCtr

Remember that saved this maximum value in .OSStatInit() OSIdleCtrMax

 Every second, the value of the idle counter is copied into the global variable (3)

µC/OS-II User's Manual

135Copyright 2015 Micrium Inc.

. This variable thus holds the maximum value of the idle counter for theOSIdleCtrRun

second that just passed. This value is not used anywhere else by µC/OS-II but can be

monitored (and possibly displayed) by your application. The idle counter is then reset to

0 for the next measurement.

 CPU utilization (Equation [3.1]) is stored in the variable :(4) OSCPUUsage

[3.1]

 The above equation needs to be re-written because (2) OSIdleCtr / OSIdleCtrMax would

always yield 0 because of the integer operation. The new equation is:

[3.2]

Multiplying by 100 limits the maximum value that can take,OSIdleCtr OSIdleCtr

especially on fast processors. In other words, in order for the multiplication of

 to not overflow, must never be higher than 42,949,672! With fastOSIdleCtr OSIdleCtr

processors, it’s quite likely that can reach this value. To correct this potentialOSIdleCtr

problem, all we need to do is divide by 100 instead as shown below.OSIdleCtrMax

[3.3]

The local variable max is thus precomputed to hold divided by 100.OSIdleCtrMax

 Once the above computation is performed, (5) OS_TaskStat() calls OSTaskStatHook() , a

user-definable function that allows the statistic task to be expanded. Indeed, your

application could compute and display the total execution time of all tasks, the percent

time actually consumed by each task, and more (see Chapter 1, Example 3).

µC/OS-II User's Manual

136Copyright 2015 Micrium Inc.

Interrupts under µC/OS-II

µC/OS-II requires that an Interrupt Service Routine (ISR) be written in assembly language.

However, if your C compiler supports in-line assembly language, you can put the ISR code

directly in a C source file.

The pseudocode for an ISR is shown in Listing 3.18.

YourISR:
 Save all CPU registers; (1)
 Call OSIntEnter() or, increment OSIntNesting directly; (2)
 if (OSIntNesting == 1) { (3)
 OSTCBCur->OSTCBStkPtr = SP; (4)
 }
 Clear interrupting device; (5)
 Re-enable interrupts (optional) (6)
 Execute user code to service ISR; (7)
 Call OSIntExit(); (8)
 Restore all CPU registers; (9)
 Execute a return from interrupt instruction; (10)

Listing - Listing 3.18 ISRs under µC/OS-II

 Your code should save all CPU registers onto the current task stack. Note that on some(1)

processors, like the Motorola 68020 (and higher), a different stack is used when

servicing an interrupt. µC/OS-II can work with such processors as long as the registers

are saved on the interrupted task’s stack when a context switch occurs.

 µC/OS-II needs to know that you are servicing an ISR, so you need to either call (2)

 or increment the global variable . can beOSIntEnter() OSIntNesting OSIntNesting

incremented directly if your processor performs an increment operation to memory using

a single instruction. If your processor forces you to read in a register,OSIntNesting

increment the register, store the result back in , then call . OSIntNesting OSIntEnter()

 wraps these three instructions with code to disable and then enableOSIntEnter()

interrupts, thus ensuring exclusive access to , which is considered a sharedOSIntNesting

resource. Incrementing directly is much faster than calling OSIntNesting OSIntEnter()

and is thus the preferred way. One word of caution: some implementations of

 cause interrupts to be enabled when returns. In these cases,OSIntEnter() OSIntEnter()

you need to clear the interrupt source before calling ; otherwise, yourOSIntEnter()

interrupt will be re-entered continuously and your application will crash!

µC/OS-II User's Manual

137Copyright 2015 Micrium Inc.

Certain processors such as the Motorola 68020 allow interrupts to be nested even though

you are just starting to service an interrupt. The beginning of the ISR needs to be

different for these processors. I will not get into this here but, it may be worthwhile for

you to download the 68020 port from the to see how to handle thisMicrium web site

situation.

 & (4) We check to see if this is the first interrupt level and if it is, we immediately save(3)

the stack pointer into the current task’s OS_TCB. You should note that I added these two

lines of code since V2.04. If you have a port that assumes V2.04 or earlier, you should

simply add these two lines in ALL your ISRs.

 You must clear the interrupt source because you stand the chance of re-entering the ISR(5)

if you decide to re-enable interrupts.

 You can re-enable interrupts if you want to allow interrupt nesting. µC/OS-II allows you(6)

to nest interrupts because it keeps track of ISR nesting in .OSIntNesting

 Once the previous steps have been accomplished, you can start servicing the interrupting(7)

device. This section is obviously application specific.

 The conclusion of the ISR is marked by calling , which decrements the(8) OSIntExit()

interrupt nesting counter. When the nesting counter reaches 0, all nested interrupts have

completed and µC/OS-II needs to determine whether a higher priority task has been

awakened by the ISR (or any other nested ISR). If a higher priority task is ready to run,

µC/OS-II returns to the higher priority task rather than to the interrupted task.

 If the interrupted task is still the most important task to run, returns to the(9) OSIntExit()

interrupted task.

 At that point the saved registers are restored and a return from interrupt instruction is(10)

executed. Note that µC/OS-II will return to the interrupted task if scheduling has been

disabled ().OSLockNesting > 0

The above description is further illustrated in Figure 3.10.

http://micrium.com/downloadcenter/

µC/OS-II User's Manual

138Copyright 2015 Micrium Inc.

Figure - Figure 3.10 Servicing an interrupt

 The interrupt is received but is not recognized by the CPU, either because interrupts have(1)

been disabled by µC/OS-II or your application or because the CPU has not completed

executing the current instruction.

 & (3) Once the CPU recognizes the interrupt, the CPU vectors (at least on most(2)

microprocessors) to the ISR.

 As described above, the ISR saves the CPU registers (i.e., the CPU’s context).(4)

 Once this is done, your ISR notifies µC/OS-II by calling or by(5) OSIntEnter()

incrementing . You also need to save the stack pointer into the currentOSIntNesting

task’s OS_TCB.

µC/OS-II User's Manual

139Copyright 2015 Micrium Inc.

 Your ISR code then gets to execute. Your ISR should do as little work as possible and(6)

defer most of the work at the task level. A task is notified of the ISR by calling either

, , , , or . The receivingOSFlagPost() OSMboxPost() OSQPost() OSQPostFront() OSSemPost()

task may or may not be pending at the event flag, mailbox, queue, or semaphore when

the ISR occurs and the post is made.

 Once the user ISR code has completed, your need to call . As can be seen(7) OSIntExit()

from the timing diagram, takes less time to return to the interrupted taskOSIntExit()

when there is no higher priority task (HPT) readied by the ISR.

 & (9) In this case, the CPU registers are then simply restored and a return from interrupt(8)

instruction is executed.

 If the ISR makes a higher priority task ready to run, then takes longer to(10) OSIntExit()

execute because a context switch is now needed.

 & (12) The registers of the new task are restored, and a return from interrupt instruction(11)

is executed.

The code for is shown in Listing 3.19 and the code for is shown inOSIntEnter() OSIntExit()

Listing 3.20. Very little needs to be said about .OSIntEnter()

void OSIntEnter (void)
{
 if (OSRunning == TRUE) {
 if (OSIntNesting < 255u) {
 OSIntNesting++;
 }
 }
}

Listing - Listing 3.19 Notify µC/OS-II about beginning an ISR.

µC/OS-II User's Manual

140Copyright 2015 Micrium Inc.

void OSIntExit (void)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

 OS_ENTER_CRITICAL();
 if (OSRunning == TRUE) {
 if (OSIntNesting > 0u) { (1)
 OSIntNesting--;
 }
 if ((OSIntNesting == 0u) && (OSLockNesting == 0u)) {
 OS_SchedNew(); (2)
 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
 if (OSPrioHighRdy != OSPrioCur) {
#if OS_TASK_PROFILE_EN > 0u
 OSTCBHighRdy->OSTCBCtxSwCtr++;
#endif
 OSCtxSwCtr++;
#if OS_TASK_CREATE_EXT_EN > 0u
#if defined(OS_TLS_TBL_SIZE) && (OS_TLS_TBL_SIZE > 0u)
 OS_TLS_TaskSw();
#endif
#endif

 OSIntCtxSw(); (3)
 }
 }
 }
 OS_EXIT_CRITICAL();
}

Listing - Listing 3.20 Notify µC/OS-II about leaving an ISR.

OSIntExit() looks strangely like except for three differences:OS_Sched()

 The interrupt nesting counter is decremented in and rescheduling occurs(1) OSIntExit()

when both the interrupt nesting counter and the lock nesting counter () areOSLockNesting

0.

 The Y index needed for is stored in the global variable . This is(2) OSRdyTbl[] OSIntExitY

done because prior to V2.51, needed to account for local variables andOSIntCtxSw()

return addresses. As of V2.51, doesn’t need to account for these. However,OSIntCtxSw()

I decided to leave as a global for backwards compatibility with previousOSIntExitY

ports.

 If a context switch is needed, calls instead of as(3) OSIntExit() OSIntCtxSw() OS_TASK_SW()

it did in .OS_Sched()

You need to call instead of because the ISR has already saved theOSIntCtxSw() OS_TASK_SW()

µC/OS-II User's Manual

141Copyright 2015 Micrium Inc.

CPU registers onto the interrupted task and thus shouldn’t be saved again. Implementation

details about are provided in Chapter 13, Porting µC/OS-II.OSIntCtxSw()

Some processors, like the Motorola 68HC11, require that you implicitly re-enable interrupts in

order to allow nesting. This can be used to your advantage. Indeed, if your ISR needs to be

serviced quickly and it doesn’t need to notify a task about itself, you don’t need to call

 (or increment) or as long as you don’t enableOSIntEnter() OSIntNesting OSIntExit()

interrupts within the ISR. The pseudocode in Listing 3.21 shows this situation. In this case, the

only way a task and this ISR can communicate is through global variables.

M68HC11_ISR: /* Fast ISR, MUST NOT enable interrupts */
 All register saved automatically by the CPU;
 Execute user code to service the interrupt;
 Execute a return from interrupt instruction;

Listing - Listing 3.21 ISRs on a Motorola 68HC11.

Clock Tick

µC/OS-II requires that you provide a periodic time source to keep track of time delays and

timeouts. A tick should occur between 10 and 100 times per second, or Hertz. The faster the

tick rate, the more overhead µC/OS-II will impose on the system. The actual frequency of the

clock tick depends on the desired tick resolution of your application. You can obtain a tick

source either by dedicating a hardware timer or generating an interrupt from an AC power line

(50/60Hz) signal.

You MUST enable ticker interrupts AFTER multitasking has started; that is, after calling

. In other words, you should initialize ticker interrupts in the first task that executesOSStart()

following a call to . A common mistake is to enable ticker interrupts after OSStart() OSInit()

and before as shown in Listing 3.22.OSStart()

µC/OS-II User's Manual

142Copyright 2015 Micrium Inc.

void main(void)
{
 .
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 /* Application initialization code ... */
 /* ... Create at least one task by calling OSTaskCreate() */
 .
 .
 Enable TICKER interrupts; /* DO NOT DO THIS HERE!!! */
 .
 .
 OSStart(); /* Start multitasking */
}

Listing - Listing 3.22 Incorrect way to start the ticker.

Potentially, the tick interrupt could be serviced before µC/OS-II starts the first task. At this

point, µC/OS-II is in an unknown state and your application will crash.

The µC/OS-II clock tick is serviced by calling from a tick ISR. OSTimeTick() OSTimeTick()

keeps track of all the task timers and timeouts. The tick ISR follows all the rules described in

the previous section. The pseudocode for the tick ISR is shown in Listing 3.23. This code must

be written in assembly language because you cannot access CPU registers directly from C.

Because the tick ISR is always needed, it is generally provided with a port.

void OSTickISR(void)
{
 Save processor registers;
 Call OSIntEnter() or increment OSIntNesting;
 if (OSIntNesting == 1u) {
 OSTCBCur->OSTCBStkPtr = SP;
 }
 Call OSTimeTick(); (1)
 Clear interrupting device;
 Re-enable interrupts (optional);
 Call OSIntExit();
 Restore processor registers;
 Execute a return from interrupt instruction;
}

Listing - Listing 3.23 Pseudocode for tick ISR.

The code for is shown in Listing 3.24.OSTimeTick()

µC/OS-II User's Manual

143Copyright 2015 Micrium Inc.

void OSTimeTick (void)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_TCB *ptcb;

 OSTimeTickHook(); (1)
#if OS_TIME_GET_SET_EN > 0
 OS_ENTER_CRITICAL();
 OSTime++; (2)
 OS_EXIT_CRITICAL();
#endif
 if (OSRunning == TRUE) {
 ptcb = OSTCBList; (3)
 while (ptcb->OSTCBPrio != OS_IDLE_PRIO) { (4)
 OS_ENTER_CRITICAL();
 if (ptcb->OSTCBDly != 0u) {
 ptcb->OSTCBDly--;
 if (ptcb->OSTCBDly == 0u) {
 if ((ptcb->OSTCBStat & OS_STAT_PEND_ANY) != OS_STAT_RDY) {
 ptcb->OSTCBStat &= (INT8U)~(INT8U)OS_STAT_PEND_ANY;
 ptcb->OSTCBStatPend = OS_STAT_PEND_TO;
 } else {
 ptcb->OSTCBStatPend = OS_STAT_PEND_OK;
 }
 if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) { (5)
 OSRdyGrp |= ptcb->OSTCBBitY; (6)
 OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
 }
 }
 }

 ptcb = ptcb->OSTCBNext;
 OS_EXIT_CRITICAL();
 }
 }
}

Listing - Listing 3.24 Service a tick,

 starts by calling the user-definable function , which can(1) OSTimeTick() OSTimeTickHook()

be used to extend the functionality of . I decided to call OSTimeTick() OSTimeTickHook()

first to give your application a chance to do something as soon as the tick is serviced

because you may have some time-critical work to do. Most of the work done by

 basically consists of decrementing the field for each (ifOSTimeTick() OSTCBDly OS_TCB

it’s nonzero).

 also accumulates the number of clock ticks since power-up in an unsigned(2) OSTimeTick()

32-bit variable called . Note that I disable interrupts before incrementing OSTime OSTime

because on some processors, a 32-bit increment will most likely be done using multiple

CPU instructions.

µC/OS-II User's Manual

144Copyright 2015 Micrium Inc.

 & (4) follows the chain of , starting at , until it reaches(3) OSTimeTick() OS_TCB OSTCBList

the idle task.

 When the field of a task’s is decremented to 0, the task is made ready to(5) OSTCBDly OS_TCB

run.

 The task is not readied, however, if it was explicitly suspended by .(6) OSTaskSuspend()

The execution time of is directly proportional to the number of tasksOSTimeTick()

created in an application, however execution time is still very deterministic.

If you don’t like to make ISRs any longer than they must be, can be called at theOSTimeTick()

task level as shown in Listing 3.25. To do this, create a task that has a higher priority than all

your other application tasks. The tick ISR needs to signal this high-priority task by using either

a semaphore or a message mailbox.

void TickTask (void *pdata)
{
 pdata = pdata;
 for (;;) {
 OSMboxPend(...); /* Wait for signal from Tick ISR */
 OSTimeTick();
 OS_Sched();
 }
}

Listing - Listing 3.25 Service a tick,

You obviously need to create a mailbox (contents initialized to NULL) that will be used to

signal the task that a tick interrupt has occurred (Listing 3.26).

µC/OS-II User's Manual

145Copyright 2015 Micrium Inc.

void OSTickISR(void)
{
 Save processor registers;
 Call OSIntEnter() or increment OSIntNesting;
 if (OSIntNesting == 1u) {
 OSTCBCur->OSTCBStkPtr = SP;
 }

 Post a ‘dummy’ message (e.g. (void *)1) to the tick mailbox;

 Call OSIntExit();
 Restore processor registers;
 Execute a return from interrupt instruction;
}

Listing - Listing 3.26 Service a tick,

µC/OS-II Initialization

A requirement of µC/OS-II is that you call before you call any of µC/OS-II’s otherOSInit()

services. initializes all µC/OS-II variables and data structures (see).OSInit() OS_CORE.C

OSInit() creates the idle task , which is always ready to run. The priority of OSTaskIdle()

 is always set to OS_LOWEST_PRIO. If and OSTaskIdle() OS_TASK_STAT_EN

 (see) are both set to 1, also creates the statistic task OS_TASK_CREATE_EXT_EN OS_CFG.H OSInit()

 and makes it ready to run. The priority of is always set to OS_TaskStat() OS_TaskStat()

.OS_LOWEST_PRIO-1

Figure 3.11 shows the relationship between some µC/OS-II variables and data structures after

calling . The illustration assumes that the following #define constants are set asOSInit()

follows in :OS_CFG.H

OS_TASK_STAT_EN is set to 1,

OS_FLAG_EN is set to 1,

OS_LOWEST_PRIO is set to 63, and

OS_MAX_TASKS is set to 62.

µC/OS-II User's Manual

146Copyright 2015 Micrium Inc.

Figure - Figure 3.11 Variables and Data structures after calling OSInit()

 You will notice that the task control blocks (OS_TCBs) of and (1) OS_TaskIdle()

 are chained together in a doubly linked list.OS_TaskStat()

 points to the beginning of this chain. When a task is created, it is always(2) OSTCBList

placed at the beginning of the list. In other words, always points to the OSTCBList OS_TCB

µC/OS-II User's Manual

147Copyright 2015 Micrium Inc.

 of last task created.

 Both ends of the doubly linked list point to NULL (i.e., 0).(3)

 Because both tasks are ready to run, their corresponding bits in are set to 1.(4) OSRdyTbl[]

Also, because the bits of both tasks are on the same row in , only one bit in OSRdyTbl[]

 is set to 1.OSRdyGrp

µC/OS-II also initializes five pools of free data structures as shown in Figure 3.12. Each of

these pools is a singly linked list and allows µC/OS-II to obtain and return an element from and

to a pool quickly.

Figure - Figure 3.12 Free Pools

After has been called, the pool contains entries. The OSInit() OS_TCB OS_MAX_TASKS OS_EVENT

pool contains entries, the pool contains entries, the OS_MAX_EVENTS OS_Q OS_MAX_QS OS_FLAG_GRP

pool contains entries and finally, the pool contains OS_MAX_FLAGS OS_MEM OS_MAX_MEM_PART

entries. Each of the free pools are NULL pointer terminated to indicate the end. The pool is of

course empty if any of the list pointers point to NULL. The size of these pools are defined by

you in .OS_CFG.H

µC/OS-II User's Manual

148Copyright 2015 Micrium Inc.

Starting µC/OS-II

You start multitasking by calling . However, before you start µC/OS-II, you mustOSStart()

create at least one of your application tasks as shown in Listing 3.27.

void main (void)
{
 OSInit(); /* Initialize uC/OS-II */
 .
 .
 Create at least 1 task using either OSTaskCreate() or OSTaskCreateExt();
 .
 .
 OSStart(); /* Start multitasking! OSStart() will not return */
}

Listing - Listing 3.27 Initializing and starting µC/OS-II.

The code for is shown in Listing 3.28.OSStart()

void OSStart (void)
{
 INT8U y;
 INT8U x;

 if (OSRunning == OS_FALSE) {
 OS_SchedNew();
 OSPrioCur = OSPrioHighRdy;
 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy]; (1)
 OSTCBCur = OSTCBHighRdy;
 OSStartHighRdy(); (2)
 }
}

Listing - Listing 3.28 Starting multitasking.

 When called, finds the (from the ready list) of the highest priority task(1) OSStart() OS_TCB

that you have created.

 Then, calls which is found in for the(2) OSStart() OSStartHighRdy() OS_CPU_A.ASM

processor being used (see Chapter 13, Porting µC/OS-II). Basically, OSStartHighRdy()

restores the CPU registers by popping them off the task’s stack then executes a return

µC/OS-II User's Manual

149Copyright 2015 Micrium Inc.

from interrupt instruction, which forces the CPU to execute your task’s code. Note that

 will never return to .OSStartHighRdy() OSStart()

Figure 3.13 shows the contents of the variables and data structures after multitasking has

started. Here, I assume that the task you created has a priority of 6. Notice that OSTaskCtr

indicates that three tasks have been created: is set to TRUE, indicating thatOSRunning

multitasking has started, and contain the priority of your applicationOSPrioCur OSPrioHighRdy

task, and and both point to the of your task.OSTCBCur OSTCBHighRdy OS_TCB

Figure - Figure 3.13 Variables and data structures after calling OSStart()

Obtaining the Current µC/OS-II Version

You can obtain the current version of µC/OS-II from your application by calling OSVersion()

(Listing 3.29). returns the version number multiplied by 10000. In other words,OSVersion()

version 2.52 is returned as 25200.

µC/OS-II User's Manual

150Copyright 2015 Micrium Inc.

INT16U OSVersion (void)
{
 return (OS_VERSION);
}

Listing - Listing 3.29 Getting the current µC/OS-II version.

To find out about the latest version of µC/OS-II and how to obtain an upgrade, you should

either contact the publisher or check the official µC/OS-II Web site at

http://www.micrium.com.

µC/OS-II User's Manual

151Copyright 2015 Micrium Inc.

Task Management
In the previous section, I specified that a task is either an infinite loop function or a function

that deletes itself when it is done executing. Note that the task code is not actually deleted —

µC/OS-II simply doesn’t know about the task anymore, so that code will not run. A task looks

just like any other C function, containing a return type and an argument, but it must never

return. The return type of a task must always be declared void. The functions described in this

chapter are found in the file . To review, a task must have one of the two structures:OS_TASK.C

void YourTask (void *pdata)
{
 for (;;) {
 /* USER CODE */
 Call one of uC/OS-II's services:
 OSFlagPend();
 OSMboxPend();
 OSMutexPend();
 OSQPend();
 OSSemPend();
 OSTaskSuspend(OS_PRIO_SELF);
 OSTimeDly();
 OSTimeDlyHMSM();
 /* USER CODE */
 }
}
or,
void YourTask (void *pdata)
{
 /* USER CODE */
 OSTaskDel(OS_PRIO_SELF);
}

This chapter describes the services that allow your application to create a task, delete a task,

change a task’s priority, suspend and resume a task, and allow your application to obtain

information about a task.

µC/OS-II can manage up to 64 tasks, although µC/OS-II reserves the four highest priority tasks

and the four lowest priority tasks for its own use. However, at this time, only two priority

levels are actually used by µC/OS-II: and (see). ThisOSTaskCreate OS_LOWEST_PRIO-1 OS_CFG.H

leaves you with up to 56 application tasks. The lower the value of the priority, the higher the

priority of the task. In the current version of µC/OS-II, the task priority number also serves as

the task identifier.

µC/OS-II User's Manual

152Copyright 2015 Micrium Inc.

Creating a Task, OSTaskCreate()

In order for µC/OS-II to manage your task, you must create it. You create a task by passing its

address and other arguments to one of two functions: or . OSTaskCreate() OSTaskCreateExt()

 is backward compatible with µC/OS, and is an extendedOSTaskCreate() OSTaskCreateExt()

version of , providing additional features. A task can be created using eitherOSTaskCreate()

function. A task can be created prior to the start of multitasking or by another task. You must

create at least one task before you start multitasking [i.e., before you call]. A taskOSStart()

cannot be created by an ISR.

The code for is shown in Listing 4.1. As can be seen, requiresOSTaskCreate() OSTaskCreate()

four arguments. task is a pointer to the task code, pdata is a pointer to an argument that is

passed to your task when it starts executing, ptos is a pointer to the top of the stack that is

assigned to the task (see section 4.02, Task Stacks), and prio is the desired task priority.

µC/OS-II User's Manual

153Copyright 2015 Micrium Inc.

INT8U OSTaskCreate (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U prio)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 void *psp;
 INT8U err;

#if OS_ARG_CHK_EN > 0u
 if (prio > OS_LOWEST_PRIO) { (1)
 return (OS_ERR_PRIO_INVALID);
 }
#endif
 OS_ENTER_CRITICAL();
 if (OSIntNesting > 0u) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_CREATE_ISR);
 }

 if (OSTCBPrioTbl[prio] == (OS_TCB *)0) { (2)
 OSTCBPrioTbl[prio] = (OS_TCB *)OS_TCB_RESERVED; (3)
 OS_EXIT_CRITICAL(); (4)
 psp = (void *)OSTaskStkInit(task, pdata, ptos, 0); (5)
 err = OS_TCBInit(prio, psp, (void *)0, 0, 0, (void *)0, 0); (6)
 if (err == OS_ERR_NONE) { (7)
 if (OSRunning == OS_TRUE) { (8)
 OS_Sched(); (9)
 }
 } else {
 OS_ENTER_CRITICAL();
 OSTCBPrioTbl[prio] = (OS_TCB *)0; (10)
 OS_EXIT_CRITICAL();
 }
 return (err);
 }
 OS_EXIT_CRITICAL();
 return (OS_ERR_PRIO_EXIST);
}

Listing - Listing 4.1

 If the configuration constant (see file) is set to 1, (1) OS_ARG_CHK_EN OS_CFG.H

 checks that the task priority is valid. The priority of a task must be aOSTaskCreate()

number between 0 and , inclusive. Please note that, isOS_LOWEST_PRIO OS_LOWEST_PRIO

reserved by µC/OS-II’s idle task. Don’t worry, your application will not be able to call

 and create a task at priority because it would haveOSTaskCreate() OS_LOWEST_PRIO

already been ‘reserved’ for the idle task by . In this case, wouldOSInit() OSTaskCreate()

return OS_PRIO_EXIST.

 Next, makes sure that a task has not already been created at the desired(2) OSTaskCreate()

priority. With µC/OS-II, all tasks must have a unique priority.

 If the desired priority is free, µC/OS-II reserves the priority by placing a non-NULL(3)

µC/OS-II User's Manual

154Copyright 2015 Micrium Inc.

pointer in .OSTCBPrioTbl[]

 This allows to re-enable interrupts while it sets up the rest of the data(4) OSTaskCreate()

structures for the task because no other concurrent calls to can now useOSTaskCreate()

this priority.

 then calls , which is responsible for setting up the task(5) OSTaskCreate() OSTaskStkInit()

stack. This function is processor specific and is found in . Refer to ChapterOS_CPU_C.C

13, Porting µC/OS-II, for details on how to implement . If you alreadyOSTaskStkInit()

have a port of µC/OS-II for the processor you are intending to use, you don’t need to be

concerned about implementation details. returns the new top-of-stackOSTaskStkInit()

(psp), which will be saved in the task’s . You should note that the fourth argumentOS_TCB

(opt) to is set to 0. This is because, unlike , OSTaskStkInit() OSTaskCreateExt()

 does not support options, so there are no options to pass to OSTaskCreate()

. µC/OS-II supports processors that have stacks that grow either fromOSTaskStkInit()

high to low memory or from low to high memory. When you call , youOSTaskCreate()

must know how the stack grows (see in of the processor youOS_STACK_GROWTH OS_CPU.H

are using) because you must pass the task’s top-of-stack to , which canOSTaskCreate()

be either the lowest or the highest memory location of the stack.

 Once has completed setting up the stack, calls (6) OSTaskStkInit() OSTaskCreate()

 to obtain and initialize an from the pool of free . The codeOS_TCBInit() OS_TCB OS_TCBs

for was described in Section 3.?? and is found in instead of OS_TCBInit() OS_CORE.C

.OS_TASK.C

 If the stack frame and the task's TCB are properly initialized ...(7)

 ... if multitasking has already started then ...(8)

 The scheduler is called to determine whether the newly created task has a higher priority(9)

than the task that called OSTaskCreate(). Creating a higher priority task results in a

context switch to the new task. If the task was created before multitasking has started

[i.e., you did not call yet], the scheduler is not called.OSStart()

 If failed, the priority level is relinquished by setting the entry in (10) OS_TCBInit()

 to 0.OSTCBPrioTbl[prio]

µC/OS-II User's Manual

155Copyright 2015 Micrium Inc.

Creating a Task, OSTaskCreateExt()

Creating a task using offers more flexibility, but at the expense ofOSTaskCreateExt()

additional overhead. The code for is shown in Listing 4.2.OSTaskCreateExt()

As can be seen, requires nine arguments! The first four arguments (task,OSTaskCreateExt()

pdata, ptos, and prio) are exactly the same as in , and they are located in theOSTaskCreate()

same order. I did this to make it easier to migrate your code to use .OSTaskCreateExt()

id establishes a unique identifier for the task being created. This argument has been added for future
expansion and is otherwise unused by µC/OS-II. This identifier will allow me to extend µC/OS-II beyond
its limit of 64 tasks. For now, simply set the task’s ID to the same value as the task’s priority.

pbos is a pointer to the task’s bottom-of-stack and this argument is used to perform stack checking.

stk_size specifies the size of the stack in number of elements. This means that if a stack entry is four bytes wide,
then a stk_size of 1000 means that the stack will have 4,000 bytes. Again, this argument is used for
stack checking.

pext is a pointer to a user-supplied data area that can be used to extend the of the task. ForOS_TCB
example, you can add a name to a task (see Example 3 in Chapter 1), storage for the contents of
floating-point registers (see Example 4 in Chapter 1) during a context switch, a port address to trigger an
oscilloscope during a context switch, and more.

opt specifies options to , specifying whether stack checking is allowed, whether theOSTaskCreateExt()
stack will be cleared, whether floating-point operations are performed by the task, etc. uCOS_II.H
contains a list of available options (, , and OS_TASK_OPT_STK_CHK OS_TASK_OPT_STK_CLR

). Each option consists of a bit. The option is selected when the bit is setOS_TASK_OPT_SAVE_FP
(simply OR the above constants).OS_TASK_OPT_???

µC/OS-II User's Manual

156Copyright 2015 Micrium Inc.

INT8U OSTaskCreateExt (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio,
 INT16U id,
 OS_STK *pbos,
 INT32U stk_size,
 void *pext,
 INT16U opt)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_STK *psp;
 INT8U err;

#if OS_ARG_CHK_EN > 0
 if (prio > OS_LOWEST_PRIO) { (1)
 return (OS_ERR_PRIO_INVALID);
 }
#endif
 OS_ENTER_CRITICAL();
 if (OSIntNesting > 0u) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_CREATE_ISR);
 }

 if (OSTCBPrioTbl[prio] == (OS_TCB *)0) { (2)
 OSTCBPrioTbl[prio] = (OS_TCB *)OS_TCB_RESERVED; (3)

 OS_EXIT_CRITICAL(); (4)

 psp = (OS_STK *)OSTaskStkInit(task, pdata, ptos, opt); (5)
 err = OS_TCBInit(prio, psp, pbos, id, stk_size, pext, opt); (6)
 if (err == OS_ERR_NONE) { (7)
 if (OSRunning == TRUE) { (8)
 OS_Sched(); (9)
 }
 } else {
 OS_ENTER_CRITICAL();
 OSTCBPrioTbl[prio] = (OS_TCB *)0; (10)
 OS_EXIT_CRITICAL();
 }
 return (err);
 }
 OS_EXIT_CRITICAL();
 return (OS_ERR_PRIO_EXIST);
}

Listing - Listing 4.2

 starts by checking that the task priority is valid. The priority of a task(1) OSTaskCreateExt()

must be a number between 0 and , inclusive. Please note again that, OS_LOWEST_PRIO

 is reserved by µC/OS-II’s idle task. Your application will not be able toOS_LOWEST_PRIO

µC/OS-II User's Manual

157Copyright 2015 Micrium Inc.

call and create a task at priority because it wouldOSTaskCreateExt() OS_LOWEST_PRIO

have already been ‘reserved’ for the idle task by . In this case, OSInit()

 would return .OSTaskCreateExt() OS_PRIO_EXIST

 Next, makes sure that a task has not already been created at the(2) OSTaskCreateExt()

desired priority. With µC/OS-II, all tasks must have a unique priority.

 If the desired priority is free, then µC/OS-II reserves the priority by placing a non-NULL(3)

pointer in .OSTCBPrioTbl[]

 This allows to re-enable interrupts while it sets up the rest of the data(4) OSTaskCreateExt()

structures for the task.

 then calls , which is responsible for setting up the(5) OSTaskCreateExt() OSTaskStkInit()

task stack. This function is processor specific and is found in . Refer toOS_CPU_C.C

Chapter 13, Porting µC/OS-II, for details on how to implement . If youOSTaskStkInit()

already have a port of µC/OS-II for the processor you are intending to use, then you

don’t need to be concerned about implementation details. returns theOSTaskStkInit()

new top-of-stack (psp) which will be saved in the task’s . µC/OS-II supportsOS_TCB

processors that have stacks that grow either from high to low memory or from low to

high memory (see section 4.02, Task Stacks). When you call , youOSTaskCreateExt()

must know how the stack grows (see of the processor you are using) becauseOS_CPU.H

you must pass the task’s top-of-stack, which can either be the lowest memory location of

the stack (when is 0) or the highest memory location of the stack (when OS_STK_GROWTH

 is 1), to .OS_STK_GROWTH OSTaskCreateExt()

 Once has completed setting up the stack, calls (6) OSTaskStkInit() OSTaskCreateExt()

 to obtain and initialize an from the pool of free . The codeOS_TCBInit() OS_TCB OS_TCBs

for is described in section section 3.03, Task Control Blocks.OS_TCBInit()

 If failed, the priority level is relinquished by setting the entry in (10) OS_TCBInit()

 to 0.OSTCBPrioTbl[prio]

 & (8) & (9) Finally, if is called once multitasking has started (i.e., (7) OSTaskCreateExt()

 is set to TRUE), the scheduler is called to determine whether the created taskOSRunning

has a higher priority than its creator. Creating a higher priority task results in a context

switch to the new task. If the task was created before multitasking started [i.e., you did

not call yet], the scheduler is not called.OSStart()

µC/OS-II User's Manual

158Copyright 2015 Micrium Inc.

Task Stacks

Each task must have its own stack space. A stack must be declared as being of type andOS_STK

must consist of contiguous memory locations. You can allocate stack space either statically (at

compile time) or dynamically (at run time). A static stack declaration is shown in Listings 4.3

and 4.4. Either declaration is made outside a function

static OS_STK MyTaskStack[stack_size];

Listing - Listing 4.3 Static stack.

or

OS_STK MyTaskStack[stack_size];

Listing - Listing 4.4 Static stack.

You can allocate stack space dynamically by using the C compiler’s malloc() function as

shown in Listing 4.5. However, you must be careful with fragmentation. Specifically, if you

create and delete tasks, your memory allocator may not be able to return a stack for your

task(s) because the heap eventually becomes fragmented.

OS_STK *pstk;

pstk = (OS_STK *)malloc(stack_size);
if (pstk != (OS_STK *)0) { /* Make sure malloc() has enough space */
 Create the task;
}

Listing - Listing 4.5 Using malloc() to allocate stack space for a task.

µC/OS-II User's Manual

159Copyright 2015 Micrium Inc.

Figure - Figure 4.1 Fragmentation

 Figure 4.1 illustrates a heap containing 3Kb of available memory that can be allocated(1)

with malloc(). For the sake of discussion, you create three tasks (tasks A, B, and C), each

requiring 1Kb.

 Assume that the first 1Kb is given to task A, the second to task B, and the third to task C.(2)

 Your application then deletes task A and task C and relinquishes the memory to the heap(3)

using free(). Your heap now has 2Kb of memory free, but it’s not contiguous. This

means that you cannot create another task (i.e., task D) that requires 2 Kb because your

heap is fragmented. If, however, you never delete a task, the use of malloc() is perfectly

acceptable.

Because µC/OS-II supports processors with stacks that grow either from high to low memory

or from low to high memory, you must know how the stack grows when you call either

 or because you need to pass the task’s top-of-stack to theseOSTaskCreate() OSTaskCreateExt()

functions. When is set to 0 in , you need to pass the lowest memoryOS_STK_GROWTH OS_CPU.H

location of the stack to the task create function as shown in Listing 4.6.

OS_STK TaskStk[TASK_STK_SIZE];

OSTaskCreate(task, pdata, &TaskStk[0], prio);

Listing - Listing 4.6 Stack grows from low to high memory.

µC/OS-II User's Manual

160Copyright 2015 Micrium Inc.

When is set to 1 in , you need to pass the highest memory location ofOS_STK_GROWTH OS_CPU.H

the stack to the task create function as shown in Listing 4.7.

OS_STK TaskStk[TASK_STK_SIZE];

OSTaskCreate(task, pdata, &TaskStk[TASK_STK_SIZE-1], prio);

Listing - Listing 4.7 Stack grows from high to low memory.

This requirement affects code portability. If you need to port your code from a processor

architecture that supports a downward-growing stack to one that supports an upward-growing

stack, you may need to make your code handle both cases. Specifically, Listings 4.6 and 4.7

are rewritten as shown in Listing 4.8.

OS_STK TaskStk[TASK_STK_SIZE];

#if OS_STK_GROWTH == 0
 OSTaskCreate(task, pdata, &TaskStk[0], prio);
#else
 OSTaskCreate(task, pdata, &TaskStk[TASK_STK_SIZE-1], prio);
#endif

Listing - Listing 4.8 Supporting stacks that grow in either direction.

The size of the stack needed by your task is application specific. When sizing the stack,

however, you must account for nesting of all the functions called by your task, the number of

local variables that will be allocated by all functions called by your task, and the stack

requirements for all nested interrupt service routines. In addition, your stack must be able to

store all CPU registers.

Stack Checking, OSTaskStkChk()

Sometimes it is necessary to determine how much stack space a task actually uses. This allows

you to reduce the amount of RAM needed by your application code by not overallocating stack

space. µC/OS-II provides , which provides you with this valuable information.OSTaskStkChk()

In order to use the µC/OS-II stack-checking facilities, you must do the following.

Set to 1 in .OS_TASK_CREATE_EXT OS_CFG.H

µC/OS-II User's Manual

161Copyright 2015 Micrium Inc.

Create a task using and give the task much more space than you thinkOSTaskCreateExt()

it really needs. You can call for any task, from any task.OSTaskStkChk()

Set the opt argument in to OSTaskCreateExt() OS_TASK_OPT_STK_CLR +

. Note that if your startup code clears all RAM and you never deleteOS_TASK_OPT_STK_CLR

tasks once they are created, you don’t need to set the option. ThisOS_TASK_OPT_STK_CLR

reduces the execution time of .OSTaskCreateExt()

Call from a task by specifying the priority of the task you want to check.OSTaskStkChk()

You can inquire about any task stack not just the running task.

Figure - Figure 4.2 Stack checking

 In Figure 4.2, I assume that the stack grows from high memory to low memory (i.e., (1)

 is set to 1) but the following discussion applies equally well to a stackOS_STK_GROWTH

µC/OS-II User's Manual

162Copyright 2015 Micrium Inc.

growing in the opposite direction. µC/OS-II determines stack growth by looking at the

contents of the stack itself. Stack checking is performed on demand as opposed to

continuously.

 To perform stack checking, µC/OS-II requires that the stack be filled with zeros when(2)

the task is created.

 & (4) Also, µC/OS-II needs to know the location of the bottom-of-stack (BOS) and the(3)

size of the stack you assigned to the task. These two values are stored in the task’s

 when the task is created, but only if created with .OS_TCB OSTaskCreateExt()

 computes the amount of free stack space by “walking” from the bottom(5) OSTaskStkChk()

of the stack and counting the number of zero-value entries on the stack until a nonzero

value is found. Note that stack entries are checked using the data type of the stack (see

 in). In other words, if a stack entry is 32 bits wide, the comparison for aOS_STK OS_CPU.H

zero value is done using 32 bits.

 & (8) The amount of stack space used is obtained by subtracting the number of(6)

zero-value entries from the stack size you specified in . OSTaskCreateExt()

 actually places the number of bytes free and the number of bytes used inOSTaskStkChk()

a data structure of type (see).OS_STK_DATA uCOS_II.H

 Note that at any given time, the stack pointer for the task being checked may be pointing(7)

somewhere between the initial top-of-stack (TOS) and the deepest stack growth.

 Also, every time you call , you may get a different value for the amount(5) OSTaskStkChk()

of free space on the stack until your task has reached its deepest growth.

You need to run the application long enough and under your worst case conditions to get

proper numbers. Once provides you with the worst case stack requirement,OSTaskStkChk()

you can go back and set the final size of your stack. You should accommodate system

expansion, so make sure you allocate between 10 and 100 percent more stack than what

 reports. What you should get from stack checking is a ballpark figure; you areOSTaskStkChk()

not looking for an exact stack usage.

The code for is shown in Listing 4.9. The data structure (see OSTaskStkChk() OS_STK_DATA

) is used to hold information about the task stack. I decided to use a data structure foruCOS_II.H

µC/OS-II User's Manual

163Copyright 2015 Micrium Inc.

two reasons. First, I consider to be a query-type function, and I wanted to haveOSTaskStkChk()

all query functions work the same way — return data about the query in a data structure.

Second, passing data in a data structure is efficient and allows me to add additional fields in

the future without changing the API (Application Programming Interface) of .OSTaskStkChk()

For now, only contains two fields: and . As you can see, you invokeOS_STK_DATA OSFree OSUsed

 by specifying the priority of the task you want to perform stack checking on.OSTaskStkChk()

µC/OS-II User's Manual

164Copyright 2015 Micrium Inc.

INT8U OSTaskStkChk (INT8U prio, OS_STK_DATA *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_TCB *ptcb;
 OS_STK *pchk;
 INT32U free;
 INT32U size;

#if OS_ARG_CHK_EN > 0u
 if (prio > OS_LOWEST_PRIO) { (1)
 if (prio != OS_PRIO_SELF) {
 return (OS_ERR_PRIO_INVALID);
 }
 }
 if (p_stk_data == (OS_STK_DATA *)0) {
 return (OS_ERR_PDATA_NULL);
 }
#endif
 pdata->OSFree = 0u;
 pdata->OSUsed = 0u;
 OS_ENTER_CRITICAL();
 if (prio == OS_PRIO_SELF) { (2)
 prio = OSTCBCur->OSTCBPrio;
 }
 ptcb = OSTCBPrioTbl[prio];
 if (ptcb == (OS_TCB *)0) { (3)
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_EXIST);
 }
 if (ptcb == OS_TCB_RESERVED) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_EXIST);
 }

 if ((ptcb->OSTCBOpt & OS_TASK_OPT_STK_CHK) == 0u) { (4)
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_OPT);
 }
 free = 0u; (5)
 size = ptcb->OSTCBStkSize;
 pchk = ptcb->OSTCBStkBottom;
 OS_EXIT_CRITICAL();
#if OS_STK_GROWTH == 1u
 while (*pchk++ == (OS_STK)0) {
 free++;
 }
#else
 while (*pchk-- == (OS_STK)0) {
 free++;
 }
#endif
 pdata->OSFree = free * sizeof(OS_STK); (6)
 pdata->OSUsed = (size - free) * sizeof(OS_STK);
 return (OS_ERR_NONE);
}

Listing - Listing 4.9 Stack-checking function.

µC/OS-II User's Manual

165Copyright 2015 Micrium Inc.

 If is set to 1 in , verifies that the priority is(1) OS_ARG_CHK_EN OS_CFG.H OSTaskStkChk()

within valid range.

 If you specify , it is assumed that you want to know the stack information(2) OS_PRIO_SELF

about the current task.

 Obviously, the task must exist. Simply checking for the presence of a non-NULL pointer(3)

in ensures this.OSTCBPrioTbl[]

 To perform stack checking, you must have created the task using and(4) OSTaskCreateExt()

you must have passed the option . If you would called OS_TASK_OPT_STK_CHK

 from a task that was created by (instead of OSTaskStkChk() OSTaskCreate()

) then the opt argument (passed to) would have been 0OSTaskCreateExt() OS_TCBInit()

and the test would fail.

 If all the proper conditions are met, computes the free stack space as(5) OSTaskStkChk()

described above by walking from the bottom of stack until a nonzero stack entry is

encountered.

 Finally, the information that is stored in is computed. Note that the function(6) OS_STK_DATA

computes the actual number of bytes free and the number of bytes used on the stack as

opposed to the number of elements. Obviously, the actual stack size (in bytes) can be

obtained by adding these two values.

Deleting a Task, OSTaskDel()

Sometimes it is necessary to delete a task. Deleting a task means that the task will be returned

to the DORMANT state (see section 3.02, Task States) and does not mean that the code for the

task will be deleted. The task code is simply no longer scheduled by µC/OS-II. You delete a

task by calling (Listing 4.10).OSTaskDel()

µC/OS-II User's Manual

166Copyright 2015 Micrium Inc.

INT8U OSTaskDel (INT8U prio)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

#if OS_EVENT_EN > 0
 OS_EVENT *pevent;
#endif
#if (OS_FLAG_EN > 0u) && (OS_MAX_FLAGS > 0u)
 OS_FLAG_NODE *pnode;
#endif
 OS_TCB *ptcb;

 if (OSIntNesting > 0) { (1)
 return (OS_ERR_TASK_DEL_ISR);
 }
 if (prio == OS_TASK_IDLE_PRIO) { (2)

 return (OS_ERR_TASK_DEL_IDLE);
 }
#if OS_ARG_CHK_EN > 0
 if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) { (3)
 return (OS_ERR_PRIO_INVALID);
 }
#endif
 OS_ENTER_CRITICAL();
 if (prio == OS_PRIO_SELF) { (4)
 prio = OSTCBCur->OSTCBPrio;
 }
 ptcb = OSTCBPrioTbl[prio];
 if (ptcb != (OS_TCB *)0) { (5)
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_EXIST);
 }
 if (ptcb == OS_TCB_RESERVED) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_DEL);
 }

 OSRdyTbl[ptcb->OSTCBY] &= (OS_PRIO)~ptcb->OSTCBBitX; (6)
 if (OSRdyTbl[ptcb->OSTCBY] == 0u) {
 OSRdyGrp &= (OS_PRIO)~ptcb->OSTCBBitY;
 }

#if (OS_EVENT_EN)
 if (ptcb->OSTCBEventPtr != (OS_EVENT *)0) { (7)
 OS_EventTaskRemove(ptcb, ptcb->OSTCBEventPtr); /
 }
#if (OS_EVENT_MULTI_EN > 0u)
 if (ptcb->OSTCBEventMultiPtr != (OS_EVENT **)0) {
 OS_EventTaskRemoveMulti(ptcb, ptcb->OSTCBEventMultiPtr);
 }
#endif
#endif

#if (OS_FLAG_EN > 0u) && (OS_MAX_FLAGS > 0u)
 pnode = ptcb->OSTCBFlagNode; (8)
 if (pnode != (OS_FLAG_NODE *)0) {
 OS_FlagUnlink(pnode);
 }
#endif
 ptcb->OSTCBDly = 0u; (9)
 ptcb->OSTCBStat = OS_STAT_RDY; (10)
 ptcb->OSTCBStatPend = OS_STAT_PEND_OK;

µC/OS-II User's Manual

167Copyright 2015 Micrium Inc.

 if (OSLockNesting < 255u) { (11)
 OSLockNesting++;
 }
 OS_EXIT_CRITICAL(); (12)
 OS_Dummy(); (13)
 OS_ENTER_CRITICAL();
 if (OSLockNesting > 0u) { (14)
 OSLockNesting--;
 }
 OSTaskDelHook(ptcb); (15)

#if OS_TASK_CREATE_EXT_EN > 0u
#if defined(OS_TLS_TBL_SIZE) && (OS_TLS_TBL_SIZE > 0u)
 OS_TLS_TaskDel(ptcb);
#endif
#endif

 OSTaskCtr--; (16)
 OSTCBPrioTbl[prio] = (OS_TCB *)0; (17)
 if (ptcb->OSTCBPrev == (OS_TCB *)0) { (18)
 ptcb->OSTCBNext->OSTCBPrev = (OS_TCB *)0;
 OSTCBList = ptcb->OSTCBNext;
 } else {
 ptcb->OSTCBPrev->OSTCBNext = ptcb->OSTCBNext;
 ptcb->OSTCBNext->OSTCBPrev = ptcb->OSTCBPrev;
 }
 ptcb->OSTCBNext = OSTCBFreeList; (19)
 OSTCBFreeList = ptcb;
#if OS_TASK_NAME_EN > 0u
 ptcb->OSTCBTaskName = (INT8U *)(void *)"?";
#endif

 OS_EXIT_CRITICAL();
 if (OSRunning == OS_TRUE) {
 OS_Sched(); (20)

 }
 return (OS_ERR_NONE);
}

Listing - Listing 4.10 Task delete.

 starts off by making sure you are not attempting to delete a task from within(1) OSTaskDel()

an ISR because that’s not allowed.

 checks that you are not attempting to delete the idle task because this is also(2) OSTaskDel()

not allowed.

 You are allowed to delete the statistic task () and all higher priority(3) OS_LOWEST_PRIO-1

tasks (i.e. the task priority has a lower number).

 The caller can delete itself by specifying as the argument.(4) OS_PRIO_SELF

 verifies that the task to delete does in fact exist . This test obviously will(5) OSTaskDel()

µC/OS-II User's Manual

168Copyright 2015 Micrium Inc.

pass if you specified . I didn’t want to create a separate case for thisOS_PRIO_SELF

situation because it would have increased code size and thus execution time. If

 is specified, we simply obtain the priority of the current task which isOS_PRIO_SELF

stored in its OS_TCB.

Once all conditions are satisfied, the is removed from all possible µC/OS-II dataOS_TCB

structures. does this in two parts to reduce interrupt latency.OSTaskDel()

 First, if the task is in the ready list, it is removed.(6)

 If the task is in a list waiting for a mutex, mailbox, queue, or semaphore, it is removed(7)

from that list.

 If the task is in a list waiting for an event flag, it is removed from that list.(8)

 Next, forces the delay count to zero to make sure that the tick ISR will not(9) OSTaskDel()

ready this task once you re-enable interrupts.

 sets the task’s flag to . Note that is not(10) OSTaskDel() .OSTCBStat OS_STAT_RDY OSTaskDel()

trying to make the task ready, it is simply preventing another task or an ISR from

resuming this task [i.e., in case the other task or ISR calls]. ThisOSTaskResume()

situation could occur because will be re-enabling interrupts (see L4.10(12)),OSTaskDel()

so an ISR can make a higher priority task ready, which could resume the task you are

trying to delete. Instead of setting the task’s flag to , I simply.OSTCBStat OS_STAT_RDY

could have cleared the bit (which would have been clearer), but thisOS_STAT_SUSPEND

takes slightly more processing time.

 At this point, the task to delete cannot be made ready to run by another task or an ISR(11)

because it’s been removed from the ready list, it’s not waiting for an event to occur, it’s

not waiting for time to expire, and it cannot be resumed. For all intents and purposes, the

task is DORMANT. Because of this, must prevent the scheduler fromOSTaskDel()

switching to another task because if the current task is almost deleted, it could not be

rescheduled!

 At this point, re-enables interrupts in order to reduce interrupt latency. (12) OSTaskDel()

 could thus service an interrupt, but because it incremented ,OSTaskDel() OSLockNesting

µC/OS-II User's Manual

169Copyright 2015 Micrium Inc.

the ISR would return to the interrupted task. Note that is still not done withOSTaskDel()

the deletion process because it needs to unlink the from the TCB chain and returnOS_TCB

the to the free list.OS_TCB OS_TCB

 Note also that I call the dummy function immediately after calling (13) OS_Dummy()

. I do this because I want to make sure that the processor executes atOS_EXIT_CRITICAL()

least one instruction with interrupts enabled. On many processors, executing an interrupt

enable instruction forces the CPU to have interrupts disabled until the end of the next

instruction! The Intel 80x86 and Zilog Z-80 processors actually work like this. Enabling

and immediately disabling interrupts would behave just as if I didn’t enable interrupts.

This would of course increase interrupt latency. Calling thus ensures that IOS_Dummy()

execute a call and a return instruction before re-disabling interrupts. You could certainly

replace with a macro that executes a “no-operation” instruction and thusOS_Dummy()

slightly reduce the execution time of . I didn’t think it was worth the effortOSTaskDel()

of creating yet another macro that would require porting.

 can now continue with the deletion process of the task. After (14) OSTaskDel() OSTaskDel()

re-disables interrupts, re-enables scheduling by decrementing the lockOSTaskDel()

nesting counter.

 then calls the user-definable task delete hook . This allows(15) OSTaskDel() OSTaskDelHook()

user-defined extensions to be relinquished.OS_TCB

 Next, decrements the task counter to indicate that there is one less task(16) OSTaskDel()

being managed by µC/OS-II.

 removes the from the priority table by simply replacing the link to(17) OSTaskDel() OS_TCB

the of the task being deleted with a NULL pointer.OS_TCB

 then removes the of the task being deleted from the doubly linked(18) OSTaskDel() OS_TCB

list of that starts at . Note that there is no need to check for the caseOS_TCBs OSTCBList

where == 0 because cannot delete the idle task, whichptcb->OSTCBNext OSTaskDel()

always happens to be at the end of the chain.

 The is returned to the free list of to allow another task to be created.(19) OS_TCB OS_TCBs

 Last, but not least, the scheduler is called to see if a higher priority task has been made(20)

ready to run by an ISR that would have occurred when re-enabled interruptsOSTaskDel()

µC/OS-II User's Manual

170Copyright 2015 Micrium Inc.

at step [L4.11(12)].

Requesting to Delete a Task, OSTaskDelReq()

Sometimes, a task owns resources such as memory buffers or a semaphore. If another task

attempts to delete this task, the resources are not freed and thus are lost. This would lead to

memory leaks which is not acceptable for just about any embedded system. In this type of

situation, you somehow need to tell the task that owns these resources to delete itself when it’s

done with the resources. You can accomplish this with the function. Both theOSTaskDelReq()

requestor and the task to be deleted need to call . The requestor code is shownOSTaskDelReq()

in Listing 4.11.

void RequestorTask (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 /* Application code */
 if ('TaskToBeDeleted()' needs to be deleted) { (1)
 while (OSTaskDelReq(TASK_TO_DEL_PRIO) != OS_TASK_NOT_EXIST) { (2)
 OSTimeDly(1); (3)
 }
 }
 /* Application code */ (4)
 }
}

Listing - Listing 4.11 Requester code requesting a task to delete itself.

 The task that makes the request needs to determine what conditions would cause a(1)

request for the task to be deleted. In other words, your application determines what

conditions lead to this decision.

 If the task needs to be deleted, call by passing the priority of the task to(2) OSTaskDelReq()

be deleted. If the task to delete does not exist, returns OSTaskDelReq() OS_TASK_NOT_EXIST

. You would get this if the task to delete has already been deleted or has not been created

yet. If the return value is , the request has been accepted but the task has notOS_NO_ERR

been deleted yet. You may want to wait until the task to be deleted does in fact delete

itself.

µC/OS-II User's Manual

171Copyright 2015 Micrium Inc.

 You can do this by delaying the requestor for a certain amount of time, as I did in. I(3)

decided to delay for one tick, but you can certainly wait longer if needed.

 When the requested task eventually deletes itself, the return value in L4.11(2) is (4)

 and the loop exits.OS_TASK_NOT_EXIST

The pseudocode for the task that needs to delete itself is shown in Listing 4.12. This task

basically polls a flag that resides inside the task’s . The value of this flag is obtained byOS_TCB

calling .OSTaskDelReq(OS_PRIO_SELF)

void TaskToBeDeleted (void *pdata)
{
 INT8U err;

 pdata = pdata;
 for (;;) {
 /* Application code */
 if (OSTaskDelReq(OS_PRIO_SELF) == OS_TASK_DEL_REQ) { (1)
 Release any owned resources; (2)
 De-allocate any dynamic memory;
 OSTaskDel(OS_PRIO_SELF); (3)
 } else {
 /* Application code */
 }
 }
}

Listing - Listing 4.12 Task requesting to delete itself.

 When returns to its caller, it indicates that another task(1) OSTaskDelReq() OS_TASK_DEL_REQ

has requested that this task needs to be deleted.

 & (3) In this case, the task to be deleted releases any resources owned and calls (2)

 to delete itself. As previously mentioned, the code for the taskOSTaskDel(OS_PRIO_SELF)

is not actually deleted. Instead, µC/OS-II simply does not schedule the task for

execution. In other words, the task code will no longer run. You can, however, recreate

the task by calling either or .OSTaskCreate() OSTaskCreateExt()

The code for is shown in Listing 4.13. As usual, needs toOSTaskDelReq() OSTaskDelReq()

µC/OS-II User's Manual

172Copyright 2015 Micrium Inc.

check for boundary conditions.

INT8U OSTaskDelReq (INT8U prio)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN stat;
 INT8U err;
 OS_TCB *ptcb;

 if (prio == OS_IDLE_PRIO) { (1)
 return (OS_ERR_TASK_DEL_IDLE);
 }

#if OS_ARG_CHK_EN > 0
 if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) { (2)
 return (OS_ERR_PRIO_INVALID);
 }
#endif
 if (prio == OS_PRIO_SELF) { (3)
 OS_ENTER_CRITICAL();
 stat = OSTCBCur->OSTCBDelReq;
 OS_EXIT_CRITICAL();
 return (stat);
 }
 OS_ENTER_CRITICAL();
 ptcb = OSTCBPrioTbl[prio];

 if (ptcb == (OS_TCB *)0) { (4)
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_EXIST); (6)
 }
 if (ptcb == OS_TCB_RESERVED) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_DEL);
 }
 ptcb->OSTCBDelReq = OS_ERR_TASK_DEL_REQ; (5)
 OS_EXIT_CRITICAL();
 return (OS_ERR_NONE);
}

Listing - Listing 4.13

 First, notifies the caller in case he requests to delete the idle task.(1) OSTaskDelReq()

 Next, it must ensure that the caller is not trying to request to delete an invalid priority.(2)

 If the caller is the task to be deleted, the flag stored in the is returned.(3) OS_TCB

 & (5) If you specified a task with a priority other than and the task exists, (4) OS_PRIO_SELF

 sets the internal flag for that task.OSTaskDelReq()

µC/OS-II User's Manual

173Copyright 2015 Micrium Inc.

 If the task does not exist, returns to indicate that the(6) OSTaskDelReq() OS_TASK_NOT_EXIST

task must have deleted itself.

Changing a Task’s Priority, OSTaskChangePrio()

When you create a task, you assign the task a priority. At run time, you can change the priority

of any task by calling . In other words, µC/OS-II allows you to changeOSTaskChangePrio()

priorities dynamically. The code for is shown in Listing 4.14.OSTaskChangePrio()

µC/OS-II User's Manual

174Copyright 2015 Micrium Inc.

INT8U OSTaskChangePrio (INT8U oldprio, INT8U newprio)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

#if OS_EVENT_EN > 0
 OS_EVENT *pevent;
#endif

 OS_TCB *ptcb;
 INT8U x;
 INT8U y;
 INT8U bitx;
 INT8U bity;

#if OS_ARG_CHK_EN > 0u
 if (oldprio >= OS_LOWEST_PRIO) { (1)
 if (oldprio != OS_PRIO_SELF) {
 return (OS_ERR_PRIO_INVALID);
 }
 }
 if (newprio >= OS_LOWEST_PRIO) {
 return (OS_ERR_PRIO_INVALID);
 }
#endif

 OS_ENTER_CRITICAL();
 if (OSTCBPrioTbl[newprio] != (OS_TCB *)0) { (2)
 OS_EXIT_CRITICAL();
 return (OS_ERR_PRIO_EXIST);
 }
 if (oldprio == OS_PRIO_SELF) {
 oldprio = OSTCBCur->OSTCBPrio;
 }

 ptcb = OSTCBPrioTbl[oldprio]; (3)
 if (ptcb == (OS_TCB *)0) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_PRIO);
 }
 if (ptcb == OS_TCB_RESERVED) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_EXIST);
 }
#if OS_LOWEST_PRIO <= 63u
 y_new = (INT8U)(newprio >> 3u); (4)
 x_new = (INT8U)(newprio & 0x07u);
#else
 y_new = (INT8U)((INT8U)(newprio >> 4u) & 0x0Fu);
 x_new = (INT8U)(newprio & 0x0Fu);
#endif
 bity_new = (OS_PRIO)(1uL << y_new);
 bitx_new = (OS_PRIO)(1uL << x_new);
 OSTCBPrioTbl[oldprio] = (OS_TCB *)0;
 OSTCBPrioTbl[newprio] = ptcb;
 y_old = ptcb->OSTCBY;
 bity_old = ptcb->OSTCBBitY;
 bitx_old = ptcb->OSTCBBitX;
 if ((OSRdyTbl[y_old] & bitx_old) != 0u) { (5)
 OSRdyTbl[y_old] &= (OS_PRIO)~bitx_old;
 if (OSRdyTbl[y_old] == 0u) {
 OSRdyGrp &= (OS_PRIO)~bity_old;
 }
 OSRdyGrp |= bity_new;

µC/OS-II User's Manual

175Copyright 2015 Micrium Inc.

 OSRdyTbl[y_new] |= bitx_new;
 }
#if (OS_EVENT_EN)
 pevent = ptcb->OSTCBEventPtr; (6)
 if (pevent != (OS_EVENT *)0) {
 pevent->OSEventTbl[y_old] &= (OS_PRIO)~bitx_old;
 if (pevent->OSEventTbl[y_old] == 0u) {
 pevent->OSEventGrp &= (OS_PRIO)~bity_old;
 }
 pevent->OSEventGrp |= bity_new;
 pevent->OSEventTbl[y_new] |= bitx_new;
 }
#if (OS_EVENT_MULTI_EN > 0u)
 if (ptcb->OSTCBEventMultiPtr != (OS_EVENT **)0) {
 pevents = ptcb->OSTCBEventMultiPtr;
 pevent = *pevents;
 while (pevent != (OS_EVENT *)0) {
 pevent->OSEventTbl[y_old] &= (OS_PRIO)~bitx_old;
 if (pevent->OSEventTbl[y_old] == 0u) {
 pevent->OSEventGrp &= (OS_PRIO)~bity_old;
 }
 pevent->OSEventGrp |= bity_new;
 pevent->OSEventTbl[y_new] |= bitx_new;
 pevents++;
 pevent = *pevents;
 }
 }
#endif
#endif
 ptcb->OSTCBPrio = newprio; (7)

 ptcb->OSTCBY = y_new;
 ptcb->OSTCBX = x_new;
 ptcb->OSTCBBitY = bity_new;
 ptcb->OSTCBBitX = bitx_new;
 OS_EXIT_CRITICAL();
 if (OSRunning == OS_TRUE) {
 OS_Sched();
 }
 return (OS_ERR_NONE);
}

Listing - Listing 4.14

 You cannot change the priority of the idle task. You can change either the priority of the(1)

calling task or another task. To change the priority of the calling task, either specify the

old priority of that task or specify , and will determineOS_PRIO_SELF OSTaskChangePrio()

what the priority of the calling task is for you. You must also specify the new (i.e.,

desired) priority.

 Because µC/OS-II cannot have multiple tasks running at the same priority, (2)

 needs to check that the new desired priority is available.OSTaskChangePrio()

 Here we are making sure that the priority we are changing does indeed exist.(3)

µC/OS-II User's Manual

176Copyright 2015 Micrium Inc.

 precomputes some values that are stored in the task’s . These(4) OSTaskChangePrio() OS_TCB

values are used to put or remove the task in or from the ready list (see section 3.04,

Ready List).

 If the task that we are changing for is ready to run then we need to remove the task from(5)

the ready list at the current priority and insert it in the ready list at the new priority.

 If the task is not ready, it could be waiting on a semaphore, mailbox, or queue. (6)

 knows that the task is waiting for one of these events if the OSTaskChangePrio()

 is non-NULL. If the task is waiting for an event, OSTCBEventPtr OSTaskChangePrio()

must remove the task from the wait list (at the old priority) of the event control block

(see Chapter 6, Event Control Blocks) and insert the task back into the wait list, but this

time at the new priority. The task could be waiting for time to expire (see Chapter 5,

Time Management) or the task could be suspended [see section 4.07, Suspending a Task,

].OSTaskSuspend()

 Pre-computed are then saved in the task's TCB.(7)

After exits the critical section, the scheduler is called in case theOSTaskChangePrio()

new priority is higher than the old priority or the priority of the calling task.

Suspending a Task, OSTaskSuspend()

Sometimes it is useful to explicitly suspend the execution of a task. This is accomplished with

the function call. A suspended task can only be resumed by calling the OSTaskSuspend()

 function call. Task suspension is additive. This means that if the task beingOSTaskResume()

suspended is also waiting for time to expire, the suspension needs to be removed and the time

needs to expire in order for the task to be ready to run. A task can suspend either itself or

another task.

The code for is shown in Listing 4.15.OSTaskSuspend()

µC/OS-II User's Manual

177Copyright 2015 Micrium Inc.

INT8U OSTaskSuspend (INT8U prio)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN self;
 OS_TCB *ptcb;

#if OS_ARG_CHK_EN > 0
 if (prio == OS_IDLE_PRIO) { (1)
 return (OS_ERR_TASK_SUSPEND_IDLE);
 }
 if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF) { (2)
 return (OS_ERR_PRIO_INVALID);
 }
#endif
 OS_ENTER_CRITICAL();
 if (prio == OS_PRIO_SELF) { (3)
 prio = OSTCBCur->OSTCBPrio;
 self = OS_TRUE;
 } else if (prio == OSTCBCur->OSTCBPrio) { (4)
 self = OS_TRUE;
 } else {
 self = OS_FALSE;
 }
 ptcb = OSTCBPrioTbl[prio];
 if (ptcb == (OS_TCB *)0) { (5)
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_SUSPEND_PRIO);
 }

 OSRdyTbl[y] &= (OS_PRIO)~ptcb->OSTCBBitX; (6)
 if (OSRdyTbl[y] == 0u) {
 OSRdyGrp &= (OS_PRIO)~ptcb->OSTCBBitY;
 }
 ptcb->OSTCBStat |= OS_STAT_SUSPEND; (7)
 OS_EXIT_CRITICAL();
 if (self == OS_TRUE) {
 OS_Sched(); (8)
 }
 return (OS_ERR_NONE);
}

Listing - Listing 4.15

 ensures that your application is not attempting to suspend the idle task.(1) OSTaskSuspend()

 Next, you must specify a valid priority. Remember that the highest valid priority number(2)

(i.e., lowest priority) is . Note that you can suspend the statistic task. YouOS_LOWEST_PRIO

may have noticed that the first test [L4.15(1)] is replicated in [L4.15(2)]. I did this to be

backward compatible with µC/OS. The first test could be removed to save a little bit of

processing time, but this is really insignificant so I decided to leave it.

 Next, checks to see if you specified to suspend the calling task by(3) OSTaskSuspend()

µC/OS-II User's Manual

178Copyright 2015 Micrium Inc.

specifying . In this case, the current task’s priority is retrieved from its OS_PRIO_SELF

.OS_TCB

 You could also decided to suspend the calling task by specifying its priority. In both of(4)

these cases, the scheduler needs to be called. This is why I created the local variable self,

which will be examined at the appropriate time. If you are not suspending the calling

task, then does not need to run the scheduler because the calling task isOSTaskSuspend()

suspending a lower priority task.

 then checks to see that the task to suspend exists.(5) OSTaskSuspend()

 If so, it is removed from the ready list. Note that the task to suspend may not be in the(6)

ready list because it could be waiting for an event or for time to expire. In this case, the

corresponding bit for the task to suspend in would already be cleared (i.e., 0).OSRdyTbl[]

Clearing it again is faster than checking to see if it’s clear and then clearing it if it’s not.

 Now sets the flag in the task’s to indicate that(7) OSTaskSuspend() OS_STAT_SUSPEND OS_TCB

the task is now suspended.

 Finally, calls the scheduler only if the task being suspended is the(8) OSTaskSuspend()

calling task.

Resuming a Task, OSTaskResume()

As mentioned in the previous section, a suspended task can only be resumed by calling

. The code for is shown in Listing 4.16.OSTaskResume() OSTaskResume()

µC/OS-II User's Manual

179Copyright 2015 Micrium Inc.

INT8U OSTaskResume (INT8U prio)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_TCB *ptcb;

#if OS_ARG_CHK_EN > 0
 if (prio >= OS_LOWEST_PRIO) { (1)
 return (OS_ERR_PRIO_INVALID);
 }
#endif
 OS_ENTER_CRITICAL();
 ptcb = OSTCBPrioTbl[prio];
 if (ptcb == (OS_TCB *)0) { (2)
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_RESUME_PRIO);
 }

 if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) != OS_STAT_RDY) { (3)
 ptcb->OSTCBStat &= (INT8U)~(INT8U)OS_STAT_SUSPEND;
 if ((ptcb->OSTCBStat & OS_STAT_PEND_ANY) == OS_STAT_RDY) { (4)
 if (ptcb->OSTCBDly == 0u) { (5)
 OSRdyGrp |= ptcb->OSTCBBitY; (6)
 OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
 OS_EXIT_CRITICAL();
 if (OSRunning == OS_TRUE) {
 OS_Sched(); (7)
 }
 } else {
 OS_EXIT_CRITICAL();
 } else {
 OS_EXIT_CRITICAL();
 }
 return (OS_ERR_NONE);
 }
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_SUSPENDED);
}

Listing - Listing 4.17

 Because cannot suspend the idle task, it must verify that your(1) OSTaskSuspend()

application is not attempting to resume this task. Note that this test also ensures that you

are not trying to resume (is #defined to 0xFF, which isOS_PRIO_SELF OS_PRIO_SELF

always greater than), which wouldn’t make sense – you can’t resume OS_LOWEST_PRIO

 because cannot possibly be suspended.self self

 & (3) The task to resume must exist because you will be manipulating its , and it(2) OS_TCB

must also have been suspended.

 removes the suspension by clearing the bit in the (4) OSTaskResume() OS_STAT_SUSPEND

 field..OSTCBStat

µC/OS-II User's Manual

180Copyright 2015 Micrium Inc.

 For the task to be ready to run, the field must be 0 because there are no flags(5) .OSTCBDly

in to indicate that a task is waiting for time to expire.OSTCBStat

 The task is made ready to run only when both conditions are satisfied.(6)

 Finally, the scheduler is called to see if the resumed task has a higher priority than the(7)

calling task.

Getting Information about a Task, OSTaskQuery()

Your application can obtain information about itself or other application tasks by calling

. In fact, obtains a copy of the contents of the desired task’s OSTaskQuery() OSTaskQuery()

. The fields available to you in the depend on the configuration of yourOS_TCB OS_TCB

application (see). Indeed, because µC/OS-II is scalable, it only includes the featuresOS_CFG.H

that your application requires.

To call , your application must allocate storage for an , as shown inOSTaskQuery() OS_TCB

Listing 4.17. This is in a totally different data space from the allocated byOS_TCB OS_TCBs

µC/OS-II. After calling , this contains a snapshot of the for theOSTaskQuery() OS_TCB OS_TCB

desired task. You need to be careful with the links to other (i.e., and OS_TCBs .OSTCBNext

); you don’t want to change what these links are pointing to! In general, only use.OSTCBPrev

this function to see what a task is doing — a great tool for debugging.

void MyTask (void *pdata)
{
 OS_TCB MyTaskData;

 pdata = pdata;
 for (;;) {
 /* User code */
 err = OSTaskQuery(10, &MyTaskData);
 /* Examine error code .. */
 /* User code */
 }
}

Listing - Listing 4.17 Obtaining information about a task.

µC/OS-II User's Manual

181Copyright 2015 Micrium Inc.

The code for is shown in Listing 4.18.OSTaskQuery()

INT8U OSTaskQuery (INT8U prio, OS_TCB *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_TCB *ptcb;

#if OS_ARG_CHK_EN > 0u
 if (prio > OS_LOWEST_PRIO) { (1)
 if (prio != OS_PRIO_SELF) {
 return (OS_ERR_PRIO_INVALID);
 }
 }
 if (p_task_data == (OS_TCB *)0) {
 return (OS_ERR_PDATA_NULL);
 }
#endif

 OS_ENTER_CRITICAL();
 if (prio == OS_PRIO_SELF) { (2)
 prio = OSTCBCur->OSTCBPrio;
 }
 ptcb = OSTCBPrioTbl[prio];
 if (ptcb == (OS_TCB *)0) { (3)
 OS_EXIT_CRITICAL();
 return (OS_ERR_PRIO);
 }
 if (ptcb == OS_TCB_RESERVED) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_EXIST);
 }

 OS_MemCopy((INT8U *)p_task_data, (INT8U *)ptcb, sizeof(OS_TCB)); (4)

 OS_EXIT_CRITICAL();
 return (OS_ERR_NONE);
}

Listing - Listing 4.18

 Note that I allow you to examine ALL the tasks, including the idle task. You need to be(1)

especially careful not to change what and are pointing to..OSTCBNext .OSTCBPrev

 & (3) As usual, checks to see if you want information about the current(2) OSTaskQuery()

task and that the task has been created.

 All fields are copied using the assignment shown instead of field by field.(4)

µC/OS-II User's Manual

182Copyright 2015 Micrium Inc.

µC/OS-II User's Manual

183Copyright 2015 Micrium Inc.

Time Management
The section established that µC/OS-II requires (as do most kernels) that youClock Tick

provide a periodic interrupt to keep track of time delays and timeouts. This periodic time

source is called a clock tick and should occur between 10 and 1,000 times per second, or Hertz.

The actual frequency of the clock tick depends on the desired tick resolution of your

application. However, the higher the frequency of the ticker, the higher the overhead.

The section discussed the tick ISR (Interrupt Service Routine) asInterrupts Under µC/OS-II

well as the function that it needs to call to notify µC/OS-II about the tick interrupt —

.OSTimeTick()

Time Services

This chapter describes five services that deal with time issues:

OSTimeDly()

OSTimeDlyHMSM()

OSTimeDlyResume()

OSTimeGet()

OSTimeSet()

The functions described in this chapter are found in the file .OS_TIME.C

Some of the time management services must be enabled by seting configuration constants in

. Specifically, table 5.1 shows which services are compiled based on the value ofOS_CFG.H

configuration constants found in .OS_CFG.H

µC/OS-II User's Manual

184Copyright 2015 Micrium Inc.

µC/OS-II Time Management Service Enabled when set to 1 in OS_CFG.H

OSTimeDly()

OSTimeDlyHMSM() OS_TIME_DLY_HMSM_EN

OSTimeDlyResume() OS_TIME_DLY_RESUME_EN

OSTimeGet() OS_TIME_GET_SET_EN

OSTimeSet() OS_TIME_GET_SET_EN

Table - Table 5.1 Time Management configuration constants in OS_CFG.H

Delaying a Task, OSTimeDly()

µC/OS-II provides a service that allows the calling task to delay itself for a user-specified

number of clock ticks. This function is called . Calling this function causes aOSTimeDly()

context switch and forces µC/OS-II to execute the next highest priority task that is ready to run.

The task calling is made ready to run as soon as the time specified expires or ifOSTimeDly()

another task cancels the delay by calling . Note that this task will run onlyOSTimeDlyResume()

when it’s the highest priority task.

Listing 5.1 shows the code for . Your application calls this function by supplyingOSTimeDly()

the number of ticks to delay — a value between 1 and 65535. A value of 0 specifies no delay.

µC/OS-II User's Manual

185Copyright 2015 Micrium Inc.

void OSTimeDly (INT32U ticks)
{
 INT8U y;
#if OS_CRITICAL_METHOD == 3u
 OS_CPU_SR cpu_sr = 0u;
#endif

 if (OSIntNesting > 0u) {
 return;
 }
 if (OSLockNesting > 0u) {
 return;
 }

 if (ticks > 0) { (1)
 OS_ENTER_CRITICAL();
 y = OSTCBCur->OSTCBY; (2)
 OSRdyTbl[y] &= (OS_PRIO)~OSTCBCur->OSTCBBitX;
 if (OSRdyTbl[y] == 0u) {
 OSRdyGrp &= (OS_PRIO)~OSTCBCur->OSTCBBitY;
 }

 OSTCBCur->OSTCBDly = ticks; (3)
 OS_EXIT_CRITICAL();
 OSSched(); (4)
 }
}

Listing - Listing 5.1 OSTimeDly()

 If you specify a value of 0, you are indicating that you don’t want to delay the task, and(1)

the function returns immediately to the caller.

 A nonzero value causes to remove the current task from the ready list.(2) OSTimeDly()

 Next, the number of ticks are stored in the of the current task, where it is(3) OS_TCB

decremented on every clock tick by . You should note that the calling taskOSTimeTick()

is not placed in any wait list. Simply having a non-zero value in is sufficient.OSTCBDly

for to know that the task has been delayed.OSTimeTick()

 Finally, since the task is no longer ready, the scheduler is called so that the next highest(4)

priority task that is ready to run gets executed.

It is important to realize that the resolution of a delay is between zero and one tick. In other

words, if you try to delay for only one tick, you could end up with an intermediate delay

between 0 and 1 tick. This is assuming, however, that your processor is not heavily loaded.

Figure 5.1 illustrates what happens.

µC/OS-II User's Manual

186Copyright 2015 Micrium Inc.

Figure - Figure 5.1 Delay resolution

 A tick interrupt occurs every 10ms.(1)

 Assuming that you are not servicing any other interrupts and that you have interrupts(2)

enabled, the tick ISR will be invoked.

 You may have a few high-priority tasks (HPTs) waiting for time to expire, so they will(3)

execute next.

 The low-priority task (LPT) shown in Figure 5.1 then gets a chance to execute and, upon(4)

completion, calls at the moment shown. µC/OS-II puts the task to sleepOSTimeDly(1)

until the next tick.

 & (6) When the next tick arrives, the tick ISR executes, but this time there are no HPTs(5)

to execute, and µC/OS-II executes the task that delayed itself for one tick. As you can

see, the task actually delayed for less than one tick! On heavily loaded systems, the task

may call a few tens of microseconds before the tick occurs and thus theOSTimeDly(1)

delay results in almost no delay because the task is immediately rescheduled. If your

application must delay for at least one tick, you must call , specifying aOSTimeDly(2)

delay of two ticks!

µC/OS-II User's Manual

187Copyright 2015 Micrium Inc.

Delaying a Task, OSTimeDlyHMSM()

OSTimeDly() is a very useful function, but your application needs to know time in terms of

ticks. You can use the global #define constant (see) to convert timeOS_TICKS_PER_SEC OS_CFG.H

to ticks by declaring some #defines as follows:

#define OS_TIME_100mS (INT16U)((INT32U)OS_TICKS_PER_SEC * 100L / 1000L)
#define OS_TIME_500mS (INT16U)((INT32U)OS_TICKS_PER_SEC * 500L / 1000L)
#define OS_TIME_2S (INT16U)(OS_TICKS_PER_SEC * 2)

However, this is somewhat awkward. I added the function so that you canOSTimeDlyHMSM()

specify time in hours (H), minutes (M), seconds (S), and milliseconds (m), which is more

natural. Like , calling this function causes a context switch and forces µC/OS-II toOSTimeDly()

execute the next highest priority task that is ready to run. The task calling isOSTimeDlyHMSM()

made ready to run as soon as the time specified expires or if another task cancels the delay by

calling [see section 5.02, Resuming a Delayed Task,].OSTimeDlyResume() OSTimeDlyResume()

Again, this task runs only when it again becomes the highest priority task. Listing 5.2 shows

the code for . As you can see, your application calls this function by supplyingOSTimeDlyHMSM()

the delay in hours, minutes, seconds, and milliseconds. In practice, you should avoid delaying

a task for long periods of time because it’s always a good idea to get some feedback activity

from a task (increment a counter, blink an LED, etc.). However, if you do need long delays,

µC/OS-II can delay a task for 256 hours (close to 11 days).

µC/OS-II User's Manual

188Copyright 2015 Micrium Inc.

INT8U OSTimeDlyHMSM (INT8U hours, INT8U minutes, INT8U seconds, INT16U milli)
{
 INT32U ticks;

 if (OSIntNesting > 0u) {
 return (OS_ERR_TIME_DLY_ISR);
 }
 if (OSLockNesting > 0u) {
 return (OS_ERR_SCHED_LOCKED);
 }
#if OS_ARG_CHK_EN > 0u
 if (hours == 0u) { (1)
 if (minutes == 0u) {
 if (seconds == 0u) {
 if (ms == 0u) {
 return (OS_ERR_TIME_ZERO_DLY);
 }
 }
 }
 }
 if (minutes > 59u) { (2)
 return (OS_ERR_TIME_INVALID_MINUTES);
 }
 if (seconds > 59u) {
 return (OS_ERR_TIME_INVALID_SECONDS);
 }
 if (ms > 999u) {
 return (OS_ERR_TIME_INVALID_MS);
 }
#endif
 ticks = (INT32U)hours * 3600L * OS_TICKS_PER_SEC (3)
 + (INT32U)minutes * 60L * OS_TICKS_PER_SEC
 + (INT32U)seconds * OS_TICKS_PER_SEC
 + OS_TICKS_PER_SEC * ((INT32U)milli
 + 500L / OS_TICKS_PER_SEC) / 1000L; (4)
 OSTimeDly(ticks);
 return (OS_ERR_NONE);
}

Listing - Listing 5.2

 As with , exits if you specify no delay.(1) OSTimeDly() OSTimeDlyHMSM()

 then checks that you have specified valid values for its arguments.(2) OSTimeDlyHMSM()

 Because µC/OS-II only knows about ticks, the total number of ticks is computed from(3)

the specified time.

 This portion of the equation determines the number of ticks given the specified(4)

milliseconds with rounding to the nearest tick. The value 500/OS_TICKS_PER_SECOND

µC/OS-II User's Manual

189Copyright 2015 Micrium Inc.

basically corresponds to 0.5 ticks converted to milliseconds. For example, if the tick rate

() is set to 100Hz (10ms), a delay of 4ms would result in no delay! AOS_TICKS_PER_SEC

delay of 5ms would result in a delay of 10ms, and so on.

Resuming a Delayed Task, OSTimeDlyResume()

Instead of waiting for time to expire, a delayed task can be made ready to run by another task

that cancels the delay. This is done by calling and specifying the priority ofOSTimeDlyResume()

the task to resume. In fact, also can resume a task that is waiting for anOSTimeDlyResume()

event (see Chapters 7 through 11), although this is not recommended. In this case, the task

pending on the event thinks it timed out waiting for the event.

The code for is shown in Listing 5.3.OSTimeDlyResume()

µC/OS-II User's Manual

190Copyright 2015 Micrium Inc.

INT8U OSTimeDlyResume (INT8U prio)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_TCB *ptcb;

 if (prio >= OS_LOWEST_PRIO) { (1)
 return (OS_ERR_PRIO_INVALID);
 }
 OS_ENTER_CRITICAL();
 ptcb = (OS_TCB *)OSTCBPrioTbl[prio];
 if (ptcb == (OS_TCB *)0) { (2)
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_EXIST);
 }
 if (ptcb == OS_TCB_RESERVED) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TASK_NOT_EXIST);
 }
 if (ptcb->OSTCBDly == 0u) {
 OS_EXIT_CRITICAL();
 return (OS_ERR_TIME_NOT_DLY);
 }
 ptcb->OSTCBDly = 0u; (4)
 if ((ptcb->OSTCBStat & OS_STAT_PEND_ANY) != OS_STAT_RDY) {
 ptcb->OSTCBStat &= ~OS_STAT_PEND_ANY;
 ptcb->OSTCBStatPend = OS_STAT_PEND_TO;
 } else {
 ptcb->OSTCBStatPend = OS_STAT_PEND_OK;
 }
 if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) { (5)
 OSRdyGrp |= ptcb->OSTCBBitY; (6)
 OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
 OS_EXIT_CRITICAL();
 OS_Sched(); (7)
 } else {
 OS_EXIT_CRITICAL();
 }
 return (OS_ERR_NONE);
}

Listing - Listing 5.3 Resuming a delayed task.

 begins by making sure the task has a valid priority.(1) OSTimeDlyResume()

 Next, verifies that the task to resume does in fact exist.(2) OSTimeDlyResume()

 If the task exists, checks to see if the task is waiting for time to(3) OSTimeDlyResume()

expire. Whenever the field contains a nonzero value, the task isOS_TCB .OSTCBDly

waiting for time to expire because the task called either , ,OSTimeDly() OSTimeDlyHMSM()

or any of the PEND functions described in subsequent chapters.

µC/OS-II User's Manual

191Copyright 2015 Micrium Inc.

 The delay is then canceled by forcing to 0.(4) .OSTCBDly

 A delayed task may also have been suspended; thus, the task is only made ready to run if(5)

the task was not suspended.

 The task is placed in the ready list when the time expired.(6)

 At this point, calls the scheduler to see if the resumed task has a(7) OSTimeDlyResume()

higher priority than the current task. This would result in a context switch.

Note that you could also have a task delay itself by waiting on a semaphore, mutex, event flag,

mailbox, or queue with a timeout (see Chapters 7 through 11). You would resume such a task

by simply posting to the semaphore, mutex, event flag, mailbox, or queue, respectively. The

only problem with this scenario is that it requires you to allocate an event control block (see

section 6.00), so your application would consume a little bit more RAM.

System Time, OSTimeGet() and OSTimeSet()

Whenever a clock tick occurs, µC/OS-II increments a 32-bit counter. This counter starts at zero

when you initiate multitasking by calling and rolls over after 4,294,967,295 ticks. AtOSStart()

a tick rate of 100Hz, this 32-bit counter rolls over every 497 days. You can obtain the current

value of this counter by calling . You can also change the value of the counter byOSTimeGet()

calling . The code for both functions is shown in Listing 5.4. Note that interruptsOSTimeSet()

are disabled when accessing . This is because incrementing and copying a 32-bit valueOSTime

on most 8-bit processors requires multiple instructions that must be treated indivisibly.

µC/OS-II User's Manual

192Copyright 2015 Micrium Inc.

INT32U OSTimeGet (void)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT32U ticks;

 OS_ENTER_CRITICAL();
 ticks = OSTime;
 OS_EXIT_CRITICAL();
 return (ticks);
}

void OSTimeSet (INT32U ticks)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

 OS_ENTER_CRITICAL();
 OSTime = ticks;
 OS_EXIT_CRITICAL();
}

Listing - Listing 5.4 Obtaining and setting the system time.

µC/OS-II User's Manual

193Copyright 2015 Micrium Inc.

Timer Management

Timer API

µC/OS-II provides timer services to the application programmer and code to handle timers is

found in . Timer services are enabled when setting to 1 in .os_tmr.c OS_TMR_EN os_cfg.h

Timers are down counters that perform an when the counter reaches zero. The useraction

provides the action through a function (or simply). A callback is acallback callback

user-declared function that will be called when the timer expires. The callback can be used to

turn a light on or off, start a motor, or perform other actions. However, it is important to never

make blocking calls within a callback function (i.e., call , , OSTimeDly() OSTimeDlyHMSM()

, or anything that causes the timer task to block or be deleted).OS???Pend()

Timers are useful in protocol stacks (re-transmission timers, for example), and can also be used

to poll I/O devices at predefined intervals.

An application can have any number of timers (limited only by the amount of RAM available).

Timer services (i.e. functions) in µC/OS-II start with the prefix, and the servicesOSTmr???()

available to the application programmer are described in the uC/OS-II API Reference section.

The resolution of all the timers managed by µC/OS-II is determined by the configuration

constant: , which is expressed in Hertz (Hz). So, if the timer taskOS_TMR_CFG_TICKS_PER_SEC

(described later) rate is set to 10, all timers have a resolution of 1/10th of a second (ticks in the

diagrams to follow). In fact, this is the typical recommended value for the timer task. Timers

are to be used with “coarse” granularity.

µC/OS-II provides a number of services to manage timers as summarized in the table below.

µC/OS-II User's Manual

194Copyright 2015 Micrium Inc.

Function Name Operation

OSTmrCreate() Create and specify the operating mode of the timer.

OSTmrDel() Delete a timer.

OSTmrRemainGet() Obtain the remaining time left before the timer expires.

OSTmrStart() Start (or restart) a timer.

OSTmrStateGet() Obtain the current state of a timer.

OSTmrStop() Stop the countdown process of a timer.

Table - Timer API summary

A timer needs to be created before it can be used. You create a timer by calling

 OSTmrCreate() and specify a number of arguments to this function based on how the timer is

to operate. Once the timer operation is specified, its operating mode cannot be changed unless

 the timer is deleted and recreated. The function prototype for OSTmrCreate() is shown below

as a quick reference:

OS_TMR OSTmrCreate (INT32U dly, /* Initial delay */
 INT32U period, /* Repeat period */
 INT8U opt, /* Options */
 OS_TMR_CALLBACK callback, /* Fnct to call at 0 */
 void *callback_arg, /* Arg. to callback */
 CPU_CHAR *pname, /* Name of timer, ASCII */
 INT8 *perr)

Once created, a timer can be started (or restarted) and stopped as often as is necessary. Timers

can be created to operate in one of three modes: One-shot, Periodic (no initial delay), and

Periodic (with initial delay).

One-Shot Timers

As its name implies, a one-shot timer will countdown from its initial value, call the callback

function when it reaches zero, and stop. The figure below shows a timing diagram of this

operation. The countdown is initiated by calling . At the completion of the timeOSTmrStart()

delay, the callback function is called, assuming a callback function was provided when the

timer was created. Once completed, the timer does not do anything unless restarted by calling

, at which point the process starts over.OSTmrStart()

You terminate the countdown process of a timer (before it reaches zero) by calling

. In this case, you can specify that the callback function be called or not.OSTmrStop()

µC/OS-II User's Manual

195Copyright 2015 Micrium Inc.

Figure - One Shot Timers (dly > 0, period == 0)

As shown in the figure below, a one-shot timer can be re-triggered by calling OSTmrStart()

 before the timer reaches zero. This feature can be used to implement watchdogs and similar

safeguards.

Figure - Retriggering a One Shot Timer

Periodic (no initial delay)

As indicated in he figure below, timers can be configured for periodic mode. When thet

countdown expires, the callback function is called, the timer is automatically reloaded, and the

process is repeated. If specifying a delay of zero (i.e.,) when the timer is created and,dly == 0

when started, the timer immediately uses the “ ” as the reload value. You can call period

 at any point in the countdown to restart the process.OSTmrStart()

µC/OS-II User's Manual

196Copyright 2015 Micrium Inc.

Figure - Figure - Periodic Timers (dly == 0, period > 0)

Periodic (with initial delay)

As shown in the figure below, timers can be configured for periodic mode with an initial delay

that is different than its period. The first countdown count comes from the “ ” argumentdly

passed in the call, and the reload value is the “ ”. You can call OSTmrCreate() period

 to restart the process including the initial delay.OSTmrStart()

Figure - Periodic Timers (dly > 0, period > 0)

Timer Management Internals

Timer States

The figure below shows the state diagram of a timer.

µC/OS-II User's Manual

197Copyright 2015 Micrium Inc.

Tasks can call to find out the state of a timer. Also, at any time during theOSTmrStateGet()

countdown process, the application code can call to find out how much timeOSTmrRemainGet()

remains before the timer reaches zero (0). The value returned is expressed in “timer ticks.” If

timers are decremented at a rate of 10 Hz then a count of 50 corresponds to 5 seconds. If the

timer is in the stop state, the time remaining will correspond to either the initial delay (one shot

or periodic with initial delay), or the period if the timer is configured for periodic without

initial delay.

Figure - Timer State Diagram

 The “Unused” state is a timer that has not been created or has been “deleted.” In other words,(1)

µC/OS-IIdoes not know about this timer.

 When creating a timer or calling , the timer is placed in the “stopped” state.(2) OSTmrStop()

 A timer is placed in running state when calling . The timer stays in that state(3) OSTmrStart()

unless it’s stopped, deleted, or completes its one shot.

µC/OS-II User's Manual

198Copyright 2015 Micrium Inc.

 The “Completed” state is the state a one-shot timer is in when its delay expires.(4)

OS_TMR

A timer is a kernel object as defined by the data type (see uc) as shown in theOS_TMR os_ii.h

listing below:

The services provided by µC/OS-II to manage timers are implemented in the file .os_tmr.c

Timer services are enabled at compile time by setting the configuration constant to OS_TMR_EN 1

 in .os_cfg.h

typedef struct os_tmr { (1)
 INT8U OSTmrType; (2)
 OS_TMR_CALLBACK_PTR OSTmrCallback; (3)
 void *OSTmrCallback; (4)
 OS_TMR *OSTmrNextPtr; (5)
 OS_TMR *OSTmrPrevPtr;
 OS_TICK OSTmrMatch; (6)
 OS_TICK OSTmrDly; (7)
 OS_TICK OSTmrPeriod; (8)
 CPU_CHAR *OSTmrNamePtr; (9)
 OS_OPT OSTmrOpt; (10)
 OS_STATE OSTmrState; (11)
} OS_TMR;

Listing - OS_TMR data type

 In µC/OS-II, all structures are given a data type. In fact, all data types start with “ ”(1) OS_

and are all uppercase. When a timer is declared, you simply use as the data typeOS_TMR

of the variable used to declare the timer.

 The structure starts with a “ ” field, which allows it to be recognized by µC/OS-II as(2) Type

a timer. Other kernel objects will also have a “ ” as the first member of the structure.Type

If a function is passed a kernel object, µC/OS-II is able to confirm that it is passed the

proper data type. For example, if passing a message queue () to a timer service (forOS_Q

example) then µC/OS-II ill be able to recognize that an invalid object wasOSTmrStart()

passed, and return an error code accordingly.

µC/OS-II User's Manual

199Copyright 2015 Micrium Inc.

 The (3) .OSTmrCallback member is a pointer to a function that is called when the timer

 expires. If a timer is created and passed a NULL pointer, a callback would not be called

when the timer expires.

 If there is a non- then the application code could have also specified(4) NULL .OSTmrCallback

that the callback be called with an argument when the timer expires. This is the argument

that would be passed in this call.

 and are pointers used to link a timer in a doubly linked(5) .OSTmrNextPtr .OSTmrPrevPtr

list. These are described later.

 The field contains a value that is compared to a running count. When the(6) .OSTmrMatch

running count matches this value the timer is considered to have expired.

 The field contains the one-shot time when the timer is configured (i.e.,(7) .OSTmrDly

created) as a one-shot timer and the initial delay when the timer is created as a periodic

timer. The value is expressed in multiples of of a second1/OS_TMR_CFG_TICKS_PER_SEC

(see).os_cfg.h

 The field is the timer period when the timer is created to operate in(8) .OSTmrPeriod

periodic mode. The value is expressed in multiples of of a1/OS_TMR_CFG_TICKS_PER_SEC

second (see).os_cfg.h

 Each kernel object can be given a name for easier recognition by debuggers or µC/Probe.(9)

This member is simply a pointer to an ASCII string which is assumed to be NUL

terminated.

 The field contains options that are passed to .(10) .OSTmrOpt OSTmrCreate()

 The field represents the current state of the timer (see the figure in (11) .OSTmrState Timer

).States

Even if the internals of the OS_TMR data type are understood, the application code should never

access any of the fields in this data structure directly. Instead, you should always use the

Application Programming Interfaces (APIs) provided with µC/OS-II.

µC/OS-II User's Manual

200Copyright 2015 Micrium Inc.

Timer Task

OSTmr_Task() is a task created by µC/OS-II (assumes setting to 1 in) andOS_TMR_EN os_cfg.h

its priority is configurable by the user through µC/OS-II’s configuration file (see app_cfg.h

). is typically set to a low priority.OS_TASK_TMR_PRIO OS_TmrTask()

OSTmr_Task() is a periodic task and uses the same interrupt source used to generate clock ticks.

However, timers are generally updated at a slower rate (i.e., typically 10 Hz or so) and thus,

the timer tick rate is divided down in software. If the tick rate is 1000 Hz and the desired timer

rate is 10 Hz then the timer task will be signaled every 100th tick interrupt as shown in the

figure below.

Figure - Tick ISR and Timer Task relationship

The figure below shows timing diagram associated with the timer management task.

µC/OS-II User's Manual

201Copyright 2015 Micrium Inc.

Figure - Timing Diagram

 The tick ISR occurs and assumes interrupts are enabled and executes.(1)

 The tick ISR signals the tick task that it is time for it to update timers.(2)

 The tick ISR terminates, however there might be higher priority tasks that need to execute(3)

(assuming the timer task has a lower priority). Therefore, µC/OS-IIruns the higher priority

task(s).

 When all higher priority tasks have executed, µC/OS-II switches to the timer task and(4)

determines that there are three timers that expired.

 The callback for the first timer is executed.(5)

 The callback for the second expired timer is executed.(6)

 The callback for the third expired timer is executed.(7)

There are a few interesting things to notice:

Execution of the callback functions is performed within the context of the timer task. This

means that the application code will need to make sure there is sufficient stack space for

µC/OS-II User's Manual

202Copyright 2015 Micrium Inc.

the timer task to handle these callbacks.

The callback functions are executed one after the other based on the order they are found

in the timer list.

The execution time of the timer task greatly depends on how many timers expire and how

long each of the callback functions takes to execute. Since the callbacks are provided by

the application code they have a large influence on the execution time of the timer task.

The timer callback functions must never wait on events because this would delay the timer

task for excessive amounts of time, if not forever.

Callbacks should execute as quickly as possible.

Timers are inserted in a list by calling OSTmrStart() and, a timer must be created before it can

be used.

µC/OS-II User's Manual

203Copyright 2015 Micrium Inc.

OS_TMR MyTmr1;
OS_TMR MyTmr2;

void MyTmrCallbackFnct1 (void *p_arg)
{
 /* Do something when timer #1 expires */
}

void MyTmrCallbackFnct2 (void *p_arg)
{
 /* Do something when timer #2 expires */
}

void MyTask (void *p_arg)
{
 INT8U err;

 while (DEF_ON) {
 :
 MyTmr1 = OSTmrCreate((INT32U)1,
 (INT32U)0,
 (INT8U)OS_TMR_OPT_ONE_SHOT,
 (OS_TMR_CALLBACK)MyTmrCallbackFnct1,
 (void *)0,
 (INT8U *)“My Timer #1”,
 (INT8U *)&err);
 /* Check ’err” */
 OSTmrStart ((OS_TMR *)&MyTmr1,
 (INT8U *)&err);
 /* Check “err” */
 // Continues in the next code listing!

Listing - Creating and Starting a timer

The code below shows creating and starting another timer. This is performed “before” the

timer task is signaled.

µC/OS-II User's Manual

204Copyright 2015 Micrium Inc.

// Continuation of code from previous code listing.
 :
 :
 MyTmr2 = OSTmrCreate((INT32U)1,
 (INT32U)0,
 (INT8U)OS_TMR_OPT_ONE_SHOT,
 (OS_TMR_CALLBACK)MyTmrCallbackFnct2,
 (void *)0,
 (INT8U *)“My Timer #2”,
 (INT8U *)&err);
 /* Check ’err” */
 OSTmrStart ((OS_TMR *)&MyTmr2,
 (INT8U *)&err);
 /* Check ’err” */
 }
}

Listing - Creating and Starting a timer - continued

When the timer task executes (see OSTmr_Task() in os_tmr.c), it starts by incrementing

OSTmrTime and goes through the list of timers and checks to see which timer matches the

OSTmrTime value. Upon match, the timer manager executes the callback function associated

with the timer and, if the timer is set to periodic, determines what the next match value is based

on the .OSTmrPeriod (assuming periodic mode). If the timer is configured as a one-shot timer

then the timer is removed from the list upon expiration.

Timer management occurs at the task level. The list is protected by locking the scheduler.

Locking the scheduler impacts task responsiveness of other, higher priority tasks in your

application.

µC/OS-II User's Manual

205Copyright 2015 Micrium Inc.

Event Control Blocks

Use of Event Control Blocks

Figure 6.1 shows how tasks and Interrupt Service Routines (ISRs) can interact with each other.

A task or an ISR signals a task through a kernel object called an Event Control Block (ECB).

The signal is considered to be an event, which explains my choice of this name.

Figure - Figure 6.1 Use of event control blocks

(A1) An ISR or a task can signal an ECB.

µC/OS-II User's Manual

206Copyright 2015 Micrium Inc.

(A2) Only a task can wait for another task or an ISR to signal the object. An ISR is not

allowed to wait on an ECB.

(A3) An optional timeout can be specified by the waiting task in case the object is not

signaled within a specified time period.

(B) Multiple tasks can wait for a task or an ISR to signal an ECB. When the ECB is

signaled, only the highest priority task waiting on the ECB will be “signaled” and made

ready to run. An ECB can be either a semaphore, a message mailbox, or a message

queue, as discussed later.

(C4) When an ECB is used as a semaphore, tasks can both wait on and signal the ECB.

An ECB is used as a building block to implement services such as Semaphores (chapter 7),

Mutual Exclusion Semaphores (chapter 8), Message Mailboxes (chapter 10) and Message

Queues (chapter 11).

µC/OS-II maintains the state of an ECB in a data structure called (see uCOS_II.H).OS_EVENT

The state of an event consists of the event itself (a counter for a semaphore, a bit for a mutex, a

pointer for a message mailbox, or an array of pointers for a queue) and a list of tasks waiting

for the event to occur. Each semaphore, mutual exclusion semaphore, message mailbox, and

message queue is assigned an ECB. The data structure for an ECB is shown in Listing 6.1 and

also graphically in Figure 6.2.

typedef struct {
 INT8U OSEventType; /* Event type */
 void *OSEventPtr; /* Ptr to message or queue structure */
 INT16U OSEventCnt; /* Count (when event is a semaphore) */
 OS_PRIO OSEventGrp; /* Group for wait list */
 OS_PRIO OSEventTbl[OS_EVENT_TBL_SIZE]; /* Wait list for event to occur */
#if OS_EVENT_NAME_EN > 0u
 INT8U *OSEventName;
#endif
} OS_EVENT;

Listing - Listing 6.1 Event control block data structure.

µC/OS-II User's Manual

207Copyright 2015 Micrium Inc.

Figure - Figure 6.2, Event Control Block (ECB)

.OSEventType

contains the type associated with the ECB and can have the following values:

, , , or . This fieldOS_EVENT_TYPE_SEM OS_EVENT_TYPE_MUTEX OS_EVENT_TYPE_MBOX OS_EVENT_TYPE_Q

is used to make sure you are accessing the proper object when you perform operations on these

objects through µC/OS-II’s service calls. is the first field (and first byte) of the.OSEventType

data structure. This allows run-time checking to determine whether the pointer points to an

ECB or an event flag (see Chapter 9).

.OSEventPtr

is only used when the ECB is assigned to a message mailbox or a message queue. It points to

the message when used for a mailbox or to a data structure when used for a queue (see Chapter

10, Message Mailboxes, and Chapter 11, Message Queues).

.OSEventCnt

is used to hold the semaphore count when the ECB is used for a semaphore (see Chapter 7,

Semaphores) or the mutex and PIP when the ECB is used for a mutex (see Chapter 8, Mutual

Exclusion Semaphores).

µC/OS-II User's Manual

208Copyright 2015 Micrium Inc.

.OSEventTbl[] and .OSEventGrp

are similar to and , respectively, except that they contain a list of tasksOSRdyTbl[] OSRdyGrp

waiting on the event instead of a list of tasks ready to run (see section 3.??, Ready List).

Each task that needs to wait for the event to occur is placed in the wait list consisting of the

two variables, and . Note that I used a dot (.) in front of the variable.OSEventGrp .OSEventTbl[]

name to indicate that the variable is part of a data structure. Task priorities are grouped (eight

tasks per group) in . Each bit in is used to indicate when any task in a.OSEventGrp .OSEventGrp

group is waiting for the event to occur. When a task is waiting, its corresponding bit is set in

the wait table, . The size (in bytes) of depends on .OSEventTbl[] .OSEventTbl[] OS_LOWEST_PRIO

 (see). This allows µC/OS-II to reduce the amount of RAM (i.e., data space) whenuCOS_II.H

your application requires just a few task priorities.

The task that is resumed when the event occurs is the highest priority task waiting for the event

and corresponds to the lowest priority number that has a bit set in . TheOSEventTbl[]

relationship between and is shown in Figure 6.3 and is given by.OSEventGrp .OSEventTbl[]

the following rules.

Bit 0 in is 1 when any bit in is 1..OSEventGrp .OSEventTbl[0]

Bit 1 in is 1 when any bit in is 1..OSEventGrp .OSEventTbl[1]

Bit 2 in is 1 when any bit in is 1..OSEventGrp .OSEventTbl[2]

Bit 3 in is 1 when any bit in is 1..OSEventGrp .OSEventTbl[3]

Bit 4 in is 1 when any bit in is 1..OSEventGrp .OSEventTbl[4]

Bit 5 in is 1 when any bit in is 1..OSEventGrp .OSEventTbl[5]

Bit 6 in is 1 when any bit in is 1..OSEventGrp .OSEventTbl[6]

Bit 7 in is 1 when any bit in is 1..OSEventGrp .OSEventTbl[7]

Etc.

µC/OS-II User's Manual

209Copyright 2015 Micrium Inc.

Figure - Figure 6.3 Wait list for task waiting for an event to occur

Placing a Task in the ECB Wait List

The following code places a task in the wait list:

pevent->OSEventTbl[OSTCBCur->OSTCBY] |= OSTCBCur->OSTCBBitX;
pevent->OSEventGrp |= OSTCBCur->OSTCBBitY;

Listing - Listing 6.2 Making a task wait for an event.

You should realize from Listing 6.2 that the time required to insert a task in the wait list is

constant and does not depend on how many tasks are in your system. Also, from Figure 6.3,

the lower 3 bits of the task’s priority are used to determine the bit position in ,.OSEventTbl[]

and the next three most significant bits are used to determine the index into .OSEventTbl[]

Note that (see) is a table in ROM, used to equate an index from 0 to 7 toOSMapTbl[] OS_CORE.C

a bit mask as shown in the Table 6.1.

µC/OS-II User's Manual

210Copyright 2015 Micrium Inc.

Index Bit Mask (Binary)

0 00000001

1 00000010

2 00000100

3 00001000

4 00010000

5 00100000

6 01000000

7 10000000

Table - Table 6.1 Content of OSMapTbl[]

Removing a Task from an ECB Wait List

A task is removed from the wait list by reversing the process (Listing 6.3).

INT8U y;

y = ptcb->OSTCBY;
pevent->OSEventTbl[y] &= (OS_PRIO)~ptcb->OSTCBBitX;
if (pevent->OSEventTbl[y] == 0u) {
 pevent->OSEventGrp &= (OS_PRIO)~ptcb->OSTCBBitY;
}

Listing - Listing 6.3 Removing a task from a wait list.

This code clears the bit corresponding to the task in and clears the bit in .OSEventTbl[]

 only if all tasks in a group are not waiting..OSEventGrp

Finding the Highest Priority Task Waiting on an ECB

The code to find the highest priority task waiting for an event to occur is shown in Listing 6.4.

Table lookups are again used for performance reasons because we don’t want to scan the

 one bit at a time to locate the highest priority task waiting on the event..OSEventTbl[]

µC/OS-II User's Manual

211Copyright 2015 Micrium Inc.

#if OS_LOWEST_PRIO <= 63u
 y = OSUnMapTbl[pevent->OSEventGrp]; /* Find HPT waiting for message
*/
 x = OSUnMapTbl[pevent->OSEventTbl[y]];
 prio = (INT8U)((y << 3u) + x); /* Find priority of task getting the msg
*/
#else
 if ((pevent->OSEventGrp & 0xFFu) != 0u) { /* Find HPT waiting for message
*/
 y = OSUnMapTbl[pevent->OSEventGrp & 0xFFu];
 } else {
 y = OSUnMapTbl[(OS_PRIO)(pevent->OSEventGrp >> 8u) & 0xFFu] + 8u;
 }
 ptbl = &pevent->OSEventTbl[y];
 if ((*ptbl & 0xFFu) != 0u) {
 x = OSUnMapTbl[*ptbl & 0xFFu];
 } else {
 x = OSUnMapTbl[(OS_PRIO)(*ptbl >> 8u) & 0xFFu] + 8u;
 }
 prio = (INT8U)((y << 4u) + x); /* Find priority of task getting the msg
*/
#endif

Listing - Listing 6.4 Finding the highest priority task waiting for the event.

 Using as an index into (see Listing 6.5) you can quickly(1) .OSEventGrp OSUnMapTbl[]

locate which entry in holds the highest priority task waiting for the ECB. .OSEventTbl[]

 returns the bit position of the highest priority bit set — a number betweenOSUnMapTbl[]

0 and 7 (or 0 and 15). This number corresponds to the Y position in (see.OSEventTbl[]

Figure 6.3).

 Once we know which ‘row’ (see Figure 6.3) contains the highest priority task waiting for(2)

the ECB, we can ‘zoom-in’ on the actual bit by performing another lookup in

 but this time, with the entry in just found. Again, we get aOSUnMapTbl[] .OSEventTbl[]

number between 0 and 7 (or 0 to 15). This number corresponds to the X position in

 (see Figure 6.3)..OSEventTbl[]

 By combining the two previous operations, we can determine the priority number of the(3)

highest priority task waiting on the ECB. This is a number between 0 and 63 or 255,

depending on whether we support up to 64 tasks or 256 tasks.

µC/OS-II User's Manual

212Copyright 2015 Micrium Inc.

INT8U const OSUnMapTbl[] = {
 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x00 to 0x0F */
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x10 to 0x1F */
 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x20 to 0x2F */
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x30 to 0x3F */
 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x40 to 0x4F */
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x50 to 0x5F */
 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x60 to 0x6F */
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x70 to 0x7F */
 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x80 to 0x8F */
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x90 to 0x9F */
 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xA0 to 0xAF */
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xB0 to 0xBF */
 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xC0 to 0xCF */
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xD0 to 0xDF */
 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xE0 to 0xEF */
 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 /* 0xF0 to 0xFF */
};

Listing - Listing 6.5

Let’s look at an example as shown in Figure 6.4., if contains 11001000 (binary) or.OSEventGrp

0xC8, yields a value of 3, which corresponds to bit 3 in OSUnMapTbl[.OSEventGrp] .OSEventGrp

and also happens to be the index in which contains the first non-zero entry..OSEventTbl[]

Note that bit positions are assumed to start on the right with bit 0 being the rightmost bit.

Similarly, if contains 00010000 (binary) or 0x10, .OSEventTbl[3]

 results in a value of 4 (bit 4). The priority of the task waitingOSUnMapTbl[.OSEventTbl[3]]

(prio) is thus 28 (3 x 8 + 4) which corresponds to the number in of Figure 6.3..OSEventTbl[]

µC/OS-II User's Manual

213Copyright 2015 Micrium Inc.

Figure - Figure 6.4 Example of ECB wait list

List of Free ECBs

The number of ECBs to allocate depends on the number of semaphores, mutual exclusion

semaphores, mailboxes, and queues needed for your application. The number of ECBs is

established by the #define OS_MAX_EVENTS, which is found in . When is OS_CFG.H OSInit()

called (see section 3.??, µC/OS-II Initialization), all ECBs are linked in a singly linked list —

the list of free ECBs (Figure 6.5). When a semaphore, mutex, mailbox, or queue is created, an

ECB is removed from this list and initialized. ECBs can be returned to the list of free ECBs by

invoking the functions for semaphore, mutex, mailbox, or queue services.OS???Del()

µC/OS-II User's Manual

214Copyright 2015 Micrium Inc.

Figure - Figure 6.5 List of free ECBs

Four common operations can be performed on ECBs:

initialize an ECB,

make a task ready,

make a task wait for an event, and

make a task ready because a timeout occurred while waiting for an event.

To avoid duplicating code and thus to reduce code size, four functions have been created to

perform these operations: , , , and OS_EventWaitListInit() OS_EventTaskRdy() OS_EventWait()

, respectively.OS_EventTO()

Initializing an ECB, OS_EventWaitListInit()

Listing 6.6 shows the code for , which is a function called when aOS_EventWaitListInit()

semaphore, mutex, message mailbox, or message queue is created [see , OSSemCreate()

, , or]. All that is accomplished by OSMutexCreate() OSMboxCreate() OSQCreate()

 is to indicate that no task is waiting on the ECB. OS_EventWaitListInit()

 is passed a pointer to an event control block, which is assigned whenOS_EventWaitListInit()

the semaphore, mutex, message mailbox, or message queue is created. The code is

implemented inline to avoid the overhead of a for loop.

µC/OS-II User's Manual

215Copyright 2015 Micrium Inc.

void OS_EventWaitListInit (OS_EVENT *pevent)
{
 INT8U i;

 pevent->OSEventGrp = 0u;
 for (i = 0u; i < OS_EVENT_TBL_SIZE; i++) {
 pevent->OSEventTbl[i] = 0u;
 }
}

Listing - Listing 6.6 Initializing the wait list.

Making a Task Ready, OS_EventTaskRdy()

Listing 6.7 shows the code for . This function is called by the POSTOS_EventTaskRdy()

functions for a semaphore, a mutex, a message mailbox or a message queue when an ECB is

signaled and the highest priority task waiting on the ECB needs to be made ready to run. In

other words, removes the highest priority task (HPT) from the wait list ofOS_EventTaskRdy()

the ECB and makes this task ready to run.

µC/OS-II User's Manual

216Copyright 2015 Micrium Inc.

INT8U OS_EventTaskRdy (OS_EVENT *pevent, void *msg, INT8U msk)
{
 OS_TCB *ptcb;
 INT8U y;
 INT8U x;
 INT8U prio;
#if OS_LOWEST_PRIO > 63u
 OS_PRIO *ptbl;
#endif

#if OS_LOWEST_PRIO <= 63u
 y = OSUnMapTbl[pevent->OSEventGrp]; (1)
 x = OSUnMapTbl[pevent->OSEventTbl[y]];
 prio = (INT8U)((y << 3u) + x);
#else
 if ((pevent->OSEventGrp & 0xFFu) != 0u) {
 y = OSUnMapTbl[pevent->OSEventGrp & 0xFFu];
 } else {
 y = OSUnMapTbl[(OS_PRIO)(pevent->OSEventGrp >> 8u) & 0xFFu] + 8u;
 }
 ptbl = &pevent->OSEventTbl[y];
 if ((*ptbl & 0xFFu) != 0u) {
 x = OSUnMapTbl[*ptbl & 0xFFu];
 } else {
 x = OSUnMapTbl[(OS_PRIO)(*ptbl >> 8u) & 0xFFu] + 8u;
 }
 prio = (INT8U)((y << 4u) + x);
#endif

 ptcb = OSTCBPrioTbl[prio]; (2)
 ptcb->OSTCBDly = 0u; (3)

#if ((OS_Q_EN > 0u) && (OS_MAX_QS > 0u)) || (OS_MBOX_EN > 0u)
 ptcb->OSTCBMsg = pmsg; (4)
#else
 pmsg = pmsg;
#endif

 ptcb->OSTCBStat &= (INT8U)~msk; (5)
 ptcb->OSTCBStatPend = pend_stat;

 if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) { (6)
 OSRdyGrp |= ptcb->OSTCBBitY;
 OSRdyTbl[y] |= ptcb->OSTCBBitX;
 }
 OS_EventTaskRemove(ptcb, pevent);

#if (OS_EVENT_MULTI_EN > 0u)
 if (ptcb->OSTCBEventMultiPtr != (OS_EVENT **)0) {
 OS_EventTaskRemoveMulti(ptcb, ptcb->OSTCBEventMultiPtr);
 ptcb->OSTCBEventPtr = (OS_EVENT *)pevent;
 }
#endif

 return (prio); (7)

}

Listing - Listing 6.7 Making a task ready to run.

µC/OS-II User's Manual

217Copyright 2015 Micrium Inc.

 starts by determining the index into of the HPT, a(1) OS_EventTaskRdy() .OSEventTbl[]

number between 0 and /8 + 1.OS_LOWEST_PRIO

 The task control block (TCB) of the task being readied contains information that needs(2)

to be changed. Knowing the task’s priority, you can obtain a pointer to that TCB.

 Because the HPT is not waiting anymore, you need to make sure that will(3) OSTimeTick()

not attempt to decrement the value of that task. This is done by forcing .OSTCBDly

 to 0..OSTCBDly

 A message is sent to the HPT if is called by the POST functions for(4) OS_EventTaskRdy()

message mailboxes and message queues. This message is passed as an argument and

needs to be placed in the task’s TCB.

 When is called, the 'msk' argument contains the appropriate bit mask(5) OS_EventTaskRdy()

to clear the bit in , which corresponds to the type of event signaled (.OSTCBStat

, OS_STAT_SEM, OS_STAT_MUTEX OS_STAT_MBOX, or OS_STAT_Q.

 If indicates that the task is now ready to run, inserts this(6) .OSTCBStat OS_EventTaskRdy()

task in µC/OS-II’s ready list. Note that the task may not be ready to run because it could

have been explicitly suspended [see sections 4.??, Suspending a Task, ,OSTaskSuspend()

and 4.??, Resuming a Task,].OSTaskResume()

 returns the priority of the task readied.(7) OS_EventTaskRdy()

Note that is called with interrupts disabled.OS_EventTaskRdy()

Making a Task Wait for an Event, OS_EventTaskWait()

Listing 6.8 shows the code for . This function is called by the PENDOS_EventTaskWait()

functions of a semaphore, mutex, message mailbox and message queue when a task must wait

on an ECB. In other words, removes the current task from the ready listOS_EventTaskWait()

and places it in the wait list of the ECB.

µC/OS-II User's Manual

218Copyright 2015 Micrium Inc.

void OS_EventTaskWait (OS_EVENT *pevent)
{
 INT8U y;

 OSTCBCur->OSTCBEventPtr = pevent; (1)
 pevent->OSEventTbl[OSTCBCur->OSTCBY] |= OSTCBCur->OSTCBBitX; (2)
 pevent->OSEventGrp |= OSTCBCur->OSTCBBitY;
 y = OSTCBCur->OSTCBY;
 OSRdyTbl[y] &= (OS_PRIO)~OSTCBCur->OSTCBBitX; (3)
 if (OSRdyTbl[y] == 0u) {
 OSRdyGrp &= (OS_PRIO)~OSTCBCur->OSTCBBitY;
 }
}

Listing - Listing 6.8 Making a task wait on an ECB.

 The pointer to the ECB is placed in the task’s TCB, linking the task to the event control(1)

block.

 The task is placed in the wait list for the ECB.(2)

 The task is removed from the ready list.(3)

µC/OS-II User's Manual

219Copyright 2015 Micrium Inc.

Semaphore Management

Relationships Between Tasks, ISRs, and a Semaphore

µC/OS-II semaphores consist of two elements: a 16-bit unsigned integer used to hold the

semaphore count (0 to 65535) and a list of tasks waiting for the semaphore count to be greater

than 0. µC/OS-II provides eight services to access semaphores: , , OSSemAccept() OSSemCreate()

, , , and .OSSemDel() OSSemPend() OSSemPendAbort() OSSemPost() OSSemQuery()

To enable µC/OS-II semaphore services, you must set the configuration constants in .OS_CFG.H

Specifically, table 7.1 shows which services are compiled based on the value of configuration

constants found in . You should note that NONE of the semaphore services areOS_CFG.H

enabled when is set to 0. To enable the feature (i.e. service), simply set theOS_SEM_EN

configuration constant to 1. You will notice that , and OSSemCreate() OSSemPend() OSSemPost()

cannot be individually disabled like the other services. That’s because they are always needed

when you enable µC/OS-II semaphore management.

µC/OS-II Semaphore Service> Enabled when set to 1 in OS_CFG.H

OSSemAccept() OS_SEM_ACCEPT_EN

OSSemCreate()

OSSemDel() OS_SEM_DEL_EN

OSSemPend()

OSSemPendAbort() OS_SEM_PEND_ABORT_EN

OSSemPost()

OSSemQuery() OS_SEM_QUERY_EN

OSSemSet() OS_SEM_SET_EN

Table - Table 7.1 Semaphore configuration constants in OS_CFG.H.

Figure 7.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a

semaphore. Note that the symbology used to represent a semaphore is either a key or a flag.

You would us a key symbol in such flow diagrams if the semaphore is used to access shared

resources. The next to the key represents how many resources are available. N is 1 for aN

µC/OS-II User's Manual

220Copyright 2015 Micrium Inc.

binary semaphore. Use a flag symbol when a semaphore is used to signal the occurrence of an

event. N in this case represents the number of times the event can be signaled. The hourglass

represents a timeout that can be specified with the call.OSSemPend()

As you can see from Figure 7.1, a task or an ISR can call , or OSSemAccept() OSSemPost()

. However, only tasks are allowed to call or .OSSemQuery() OSSemDel() OSSemPend()

Figure - Figure 7.1 Relationships between tasks, ISRs, and a semaphore

Creating a Semaphore, OSSemCreate()

A semaphore needs to be created before it can be used. You create a semaphore by calling

 (see next section) and specifying the initial count of the semaphore. The initialOSSemCreate()

value of a semaphore can be between 0 and 65535. If you use the semaphore to signal the

occurrence of one or more events, you would typically initialize the semaphore to 0. If you use

the semaphore to access a single shared resource, you need to initialize the semaphore to 1

(i.e., use it as a binary semaphore). Finally, if the semaphore allows your application to obtain

any one of identical resources, initialize the semaphore to n and use it as a countingn

semaphore.

The code to create a semaphore is shown in Listing 7.1.

Figure 7.2 shows the content of the ECB just before returns.OSSemCreate()

µC/OS-II User's Manual

221Copyright 2015 Micrium Inc.

OS_EVENT *OSSemCreate (INT16U cnt)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr; (1)
#endif
 OS_EVENT *pevent;

 if (OSIntNesting > 0) { (2)
 return ((OS_EVENT *)0);
 }
 OS_ENTER_CRITICAL();
 pevent = OSEventFreeList; (3)
 if (OSEventFreeList != (OS_EVENT *)0) { (4)
 OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr; (5)
 }
 OS_EXIT_CRITICAL();
 if (pevent != (OS_EVENT *)0) { (6)
 pevent->OSEventType = OS_EVENT_TYPE_SEM; (7)
 pevent->OSEventCnt = cnt; (8)
 pevent->OSEventPtr = (void *)0; (9)
#if OS_EVENT_NAME_EN > 0u
 pevent->OSEventName = (INT8U *)(void *)"?";
#endif
 OS_EventWaitListInit(pevent); (10)
 }
 return (pevent); (11)
}

Listing - Listing 7.1 Creating a semaphore.

 A local variable called cpu_sr to support #3 is allocated.(1) OS_CRITICAL_METHOD

 starts by making sure you are not calling this function from an ISR(2) OSSemCreate()

because this is not allowed. All kernel objects need to be created from task level code or

before multitasking starts.

 then attempts to obtain an ECB (Event Control Block) from the free list(3) OSSemCreate()

of ECBs (see Figure 6.??).

 & (5) The linked list of free ECBs is adjusted to point to the next free ECB.(4)

 & (7) If there is an ECB available, the ECB type is set to . Other (6) OS_EVENT_TYPE_SEM

 function calls will check this structure member to make sure that the ECB isOSSem???()

of the proper type (i.e. a semaphore). This prevents you from calling on anOSSemPost()

ECB that was created for use as a message mailbox (see 10.??, Message Mailboxes).

 Next, the desired initial count for the semaphore is stored in the ECB.(8)

µC/OS-II User's Manual

222Copyright 2015 Micrium Inc.

 The field is then initialized to point to NULL because it doesn’t belong to(9) .OSEventPtr

the free ECB linked list anymore.

 The wait list is then initialized by calling [see 6.??, Initializing(10) OS_EventWaitListInit()

an ECB,]. Because the semaphore is being initialized, there areOS_EventWaitListInit()

no tasks waiting for it and thus, clears and OS_EventWaitListInit() .OSEventGrp

..OSEventTbl[]

 Finally, returns a pointer to the ECB. This pointer must be used in(11) OSSemCreate()

subsequent calls to manipulate semaphores [, , , OSSemAccept() OSSemDel() OSSemPend()

 and]. The pointer is basically used as the semaphore’s handle.OSSemPost() OSSemQuery()

If there are no more ECBs, returns a NULL pointer. You should make it aOSSemCreate()

habbit to check the return value of µC/OS-II return values to ensure that you are getting

the desired results. Passing NULL pointers to µC/OS-II will not make it fail because

µC/OS-II validates arguments (only if is set to 1, though).OS_ARG_CHK_EN

Figure - Figure 7.2 ECB just before OSSemCreate() returns

µC/OS-II User's Manual

223Copyright 2015 Micrium Inc.

Deleting a Semaphore, OSSemDel()

The code to delete a semaphore is shown in listing 7.2 and code will only be generated by the

compiler if is set to 1 in . This is a function you must use with cautionOS_SEM_DEL_EN OS_CFG.H

because multiple tasks could attempt to access a deleted semaphore. You should always use

this function with great care. Generally speaking, before you would delete a semaphore, you

would first delete all the tasks that access the semaphore.

µC/OS-II User's Manual

224Copyright 2015 Micrium Inc.

OS_EVENT *OSSemDel (OS_EVENT *pevent, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN tasks_waiting;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_DEL_ISR;
 return (pevent);
 }
#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (2)
 *err = OS_ERR_PEVENT_NULL;
 return (pevent);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_SEM) { (3)
 *err = OS_ERR_EVENT_TYPE;
 return (pevent);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) { (4)
 tasks_waiting = OS_TRUE;
 } else {
 tasks_waiting = OS_FALSE;
 }
 switch (opt) {
 case OS_DEL_NO_PEND:
 if (tasks_waiting == OS_FALSE) { (5)
#if OS_EVENT_NAME_EN > 0u
 pevent->OSEventName = (INT8U *)(void *)"?";
#endif
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; (6)
 pevent->OSEventPtr = OSEventFreeList; (7)
 pevent->OSEventCnt = 0u;
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 *err = OS_ERR_NONE;
 return ((OS_EVENT *)0); (8)
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_ERR_TASK_WAITING;
 return (pevent);
 }

 case OS_DEL_ALWAYS: (9)
 while (pevent->OSEventGrp != 0x00) { (10)
 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_SEM);
 }
#if OS_EVENT_NAME_EN > 0u
 pevent->OSEventName = (INT8U *)(void *)"?";
#endif
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; (11)
 pevent->OSEventPtr = OSEventFreeList; (12)
 pevent->OSEventCnt = 0u;
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 if (tasks_waiting == OS_TRUE) {
 OS_Sched(); (13)
 }
 *err = OS_ERR_NONE;
 return ((OS_EVENT *)0); (14)

 default:
 OS_EXIT_CRITICAL();

 *err = OS_ERR_INVALID_OPT;

µC/OS-II User's Manual

225Copyright 2015 Micrium Inc.

 *err = OS_ERR_INVALID_OPT;
 return (pevent);
 }
}

Listing - Listing 7.2 Deleting a Semaphore

 starts by making sure that this function is not called from an ISR because(1) OSSemDel()

that’s not allowed.

 & (3) validates pevent to ensure that it’s not a NULL pointer and that it(2) OSSemDel()

points to an ECB that was created as a semaphore.

 then determines whether there are any tasks waiting on the semaphore. The(4) OSSemDel()

flag tasks_waiting is set accordingly.

Based on the option (i.e. opt) specified in the call, will either delete theOSSemDel()

semaphore only if no tasks are pending on the semaphore () or,opt == OS_DEL_NO_PEND

delete the semaphore even if tasks are waiting ().opt == OS_DEL_ALWAYS

, (6) & (7) When opt is set to and there is no task waiting on the(5) OS_DEL_NO_PEND

semaphore, marks the ECB as unused and the ECB is returned to the free listOSSemDel()

of ECBs. This will allow another semaphore (or any other ECB based object) to be

created.

 You will note that returns a NULL pointer since, at this point, the semaphore(8) OSSemDel()

should no longer be accessed through the original pointer. returns an errorOSSemDel()

code if there were task waiting on the semaphore (i.e.,) because byOS_ERR_TASK_WAITING

specifying you indicated that you didn’t want to delete the semaphore ifOS_DEL_NO_PEND

there are tasks waiting on the semaphore.

 & (10) When opt is set to then all tasks waiting on the semaphore will be(9) OS_DEL_ALWAYS

readied. Each task will it has access to the semaphore. Of course, that’s athink

dangerous outcome since the whole point of having a semaphore is to protect against

multiple access to a resource.

 & (12) Once all pending tasks are readied, marks the ECB as unused and the(11) OSSemDel()

ECB is returned to the free list of ECBs.

µC/OS-II User's Manual

226Copyright 2015 Micrium Inc.

 The scheduler is called only if there were tasks waiting on the semaphore.(13)

 Again, you will note that returns a NULL pointer since, at this point, the(14) OSSemDel()

semaphore should no longer be accessed through the original pointer.

Waiting on a Semaphore (blocking), OSSemPend()

The code to wait on a semaphore is shown in Listing 7.3.

µC/OS-II User's Manual

227Copyright 2015 Micrium Inc.

void OSSemPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 *err = OS_ERR_PEVENT_NULL;
 return;
 }
#endif
 if (pevent->OSEventType != OS_EVENT_TYPE_SEM) {
 *err = OS_ERR_EVENT_TYPE;
 return;
 }
 if (OSIntNesting > 0) { (2)
 *err = OS_ERR_PEND_ISR;
 return;
 }
 if (OSLockNesting > 0) { (3)
 *err = OS_ERR_PEND_LOCKED;
 return;
 }
 OS_ENTER_CRITICAL();
 if (pevent->OSEventCnt > 0) { (4)
 pevent->OSEventCnt--; (5)
 OS_EXIT_CRITICAL();
 *err = OS_ERR_NONE; (6)
 return;
 }
 OSTCBCur->OSTCBStat |= OS_STAT_SEM; (7)
 OSTCBCur->OSTCBDly = timeout; (8)
 OS_EventTaskWait(pevent); (9)
 OS_EXIT_CRITICAL();
 OS_Sched(); (10)
 OS_ENTER_CRITICAL();
 switch (OSTCBCur->OSTCBStatPend) { (11)
 case OS_STAT_PEND_OK:
 *perr = OS_ERR_NONE;
 break;

 case OS_STAT_PEND_ABORT:
 *perr = OS_ERR_PEND_ABORT;
 break;

 case OS_STAT_PEND_TO:
 default:
 OS_EventTaskRemove(OSTCBCur, pevent); (12)
 *perr = OS_ERR_TIMEOUT;
 break;
 }
 OSTCBCur->OSTCBStat = OS_STAT_RDY; (13)
 OSTCBCur->OSTCBStatPend = OS_STAT_PEND_OK;
 OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0;
#if (OS_EVENT_MULTI_EN > 0u)
 OSTCBCur->OSTCBEventMultiPtr = (OS_EVENT **)0;
#endif
 OS_EXIT_CRITICAL();
}

Listing - Listing 7.3 Waiting for a semaphore.

µC/OS-II User's Manual

228Copyright 2015 Micrium Inc.

 If is set to 1, checks that pevent is not a NULL pointer and(1) OS_ARG_CHK_EN OSSemPend()

the ECB being pointed to by pevent has been created by .OSSemCreate()

 checks to see if the function was called by an ISR. It doesn’t make sense to(2) OSSemPend()

call from an ISR because an ISR cannot be made to wait. Instead, youOSSemPend()

should call (see section 7.05).OSSemAccept()

 You should not wait on a semaphore when the scheduler is locked.(3)

 & (5) If the semaphore is available (its count is nonzero), the count is decremented and(4)

the function returns to its caller with an error code indicating success. If your code calls

 , this is the outcome you are looking for because it indicates that your codeOSSemPend()

can proceed and access the resource (if is used to guard a shared resource).OSSemPend()

This also happens to be the fastest path through .OSSemPend()

 If the semaphore is not available (the count was zero), checks to see if the(6) OSSemPend()

function was called by an ISR. It doesn’t make sense to call from an ISROSSemPend()

because an ISR cannot be made to wait. Instead, you should call (seeOSSemAccept()

secrion 7.05). I decided to add this check just in case. However, if the semaphore is in

fact available, the call to would be successful even if called by an ISR!OSSemPend()

If the semaphore count is zero, the calling task needs to be put to sleep until another task

(or an ISR) signals the semaphore (see section 7.04). allows you to specifyOSSemPend()

a timeout value (in integral number of ticks) as one of its arguments (i.e., timeout). This

feature is useful to avoid waiting indefinitely for the semaphore. If the value passed is

nonzero, suspends the task until the semaphore is signaled or the specifiedOSSemPend()

timeout period expires. Note that a timeout value of 0 indicates that the task is willing to

wait forever for the semaphore to be signaled.

 To put the calling task to sleep, sets the status flag in the task’s TCB (Task(7) OSSemPend()

Control Block) to indicate that the task is suspended waiting for a semaphore.

 The timeout is also stored in the TCB so that it can be decremented by .(8) OSTimeTick()

You should recall (see section 3.??, Clock Tick) that decrements each ofOSTimeTick()

the created task’s field if it’s nonzero..OSTCBDly

 The actual work of putting the task to sleep is done by [see section(9) OS_EventTaskWait()

µC/OS-II User's Manual

229Copyright 2015 Micrium Inc.

6.??, Making a Task Wait for an Event,].OS_EventTaskWait()

 Because the calling task is no longer ready to run, the scheduler is called to run the next(10)

highest priority task that is ready to run. As far as your task is concerned, it made a call

to and it doesn’t know that it will be suspended until the semaphore isOSSemPend()

signaled.

 When the semaphore is signaled (or the timeout period expires) will resume(11) OSSemPend()

execution immediately after the call to . then checks to see if theOS_Sched() OSSemPend()

TCB status flag is still set to indicate that the task is waiting for the semaphore. If the

task is still waiting for the semaphore, it must not have been signaled by an OSSemPost()

call. Indeed, the task must have been readied by , indicating that theOSTimeTick()

timeout period has expired.

 In this case, the task is removed from the wait list for the semaphore by calling (12)

 , and an error code is returned to the task that called OS_EventTaskRemove() OSSemPend()

to indicate that a timeout occurred. If the status flag in the task’s TCB doesn’t have the

 bit set, then the semaphore must have been signaled by (seeOS_STAT_SEM OSSemPost()

section 7.04) and the task that called can now conclude that it has theOSSemPend()

semaphore.

 Finally, the link to the ECB is removed.(14)

Signaling a Semaphore, OSSemPost()

The code to signal a semaphore is shown in Listing 7.4.

µC/OS-II User's Manual

230Copyright 2015 Micrium Inc.

INT8U OSSemPost (OS_EVENT *pevent)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
#endif
 if (pevent->OSEventType != OS_EVENT_TYPE_SEM) { (2)
 return (OS_ERR_EVENT_TYPE);
 }
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0u) { (3)
 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_SEM, OS_STAT_PEND_OK); (4)
 OS_EXIT_CRITICAL();
 OS_Sched(); (5)
 return (OS_ERR_NONE);
 }
 if (pevent->OSEventCnt < 65535u) {
 pevent->OSEventCnt++; (6)
 OS_EXIT_CRITICAL();
 return (OS_ERR_NONE);
 }
 OS_EXIT_CRITICAL();
 return (OS_ERR_SEM_OVF); (7)
}

Listing - Listing 7.4 Signaling a semaphore.

 & (2) If is set to 1, checks that pevent is not a NULL pointer(1) OS_ARG_CHK_EN OSSemPost()

and the ECB being pointed to by pevent has been created by .OSSemCreate()

 then checks to see if any tasks are waiting on the semaphore. There are(3) OSSemPost()

tasks waiting when the field in the ECB contains a nonzero value..OSEventGrp

 & (5) The highest priority task waiting for the semaphore is removed from the wait list(4)

by [see section 6.??, Making a Task Ready,] andOS_EventTaskRdy() OS_EventTaskRdy()

made ready-to-run. is then called to see if the task made ready is now theOS_Sched()

highest priority task ready-to-run. If it is, a context switch results [only if isOSSemPost()

called from a task] and the readied task is executed. In other words, the task that called

 will NOT continue execution because made a more importantOSSemPost() OSSemPost()

task ready-to-run and µC/OS-II will thus resume execution of that task. If the readied

task is not the highest priority task, returns and the task that called OS_Sched()

 continues execution.OSSemPost()

µC/OS-II User's Manual

231Copyright 2015 Micrium Inc.

 & (7) If there are no tasks waiting on the semaphore, the semaphore count simply gets(6)

incremented. Note that a counting semaphore is implemented in µC/OS-II using a 16-bit

variable and ensures that the semaphore is not overflowed otherwise, anOSSemPost()

error is returned to the task that called .OSSemPost()

It’s important to note that a context switch does NOT occur if is called by an ISROSSemPost()

because context switching from an ISR can only occur when is called at theOSIntExit()

completion of the ISR from the last nested ISR (see section 3.??, Interrupts under µC/OS-II).

Getting a Semaphore without Waiting (non-blocking),
OSSemAccept()

It is possible to obtain a semaphore without putting a task to sleep if the semaphore is not

available. This is accomplished by calling as shown in Listing 7.5.OSSemAccept()

The code that called needs to examine the returned value. A returned value ofOSSemAccept()

zero indicates that the semaphore is not available; a nonzero value indicates that the semaphore

is available. Furthermore, a nonzero value indicates to the caller the number of resources that

are available. Keep in mind that, in this case, one of the resources has been allocated to the

calling task because the count has been decremented.

An ISR could use . However, it’s not recommended to have a semaphore sharedOSSemAccept()

between a task and an ISR. Semaphores are supposed to be task level objects. If a semaphore is

used as a signalling object between an ISR and a task then, the ISR should only POST to the

semaphore.

µC/OS-II User's Manual

232Copyright 2015 Micrium Inc.

INT16U OSSemAccept (OS_EVENT *pevent)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT16U cnt;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (0);
 }
#endif
 if (pevent->OSEventType != OS_EVENT_TYPE_SEM) { (2)
 return (0);
 }
 OS_ENTER_CRITICAL();
 cnt = pevent->OSEventCnt; (3)
 if (cnt > 0u) { (4)
 pevent->OSEventCnt--; (5)
 }
 OS_EXIT_CRITICAL();
 return (cnt); (6)
}

Listing - Listing 7.5 Getting a semaphore without waiting.

 & (2) If is set to 1 in , starts by checking that(1) OS_ARG_CHK_EN OS_CFG.H OSSemAccept()

pevent is not a NULL pointer and that the ECB being pointed to by pevent has been

created by .OSSemCreate()

 & (4) then gets the current semaphore count to determine whether the(3) OSSemAccept()

semaphore is available (i.e., a nonzero value).

 The count is decremented only if the semaphore was available.(5)

 Finally, the original count of the semaphore is returned to the caller.(6)

µC/OS-II User's Manual

233Copyright 2015 Micrium Inc.

Obtaining the Status of a Semaphore, OSSemQuery()

OSSemQuery() allows your application to take a “snapshot” of an ECB that is used as a

semaphore (Listing 7.6). receives two arguments: pevent contains a pointer toOSSemQuery()

the semaphore, which is returned by when the semaphore is created, and pdataOSSemCreate()

is a pointer to a data structure (, see) that holds information about theOS_SEM_DATA uCOS_II.H

semaphore. Your application will thus need to allocate a variable of type that willOS_SEM_DATA

be used to receive the information about the desired semaphore. I decided to use a new data

structure because the caller should only be concerned with semaphore-specific data as opposed

to the more generic data structure, which contain two additional fields (OS_EVENT .OSEventType

and). contains the current semaphore count () and the list of.OSEventPtr OS_SEM_DATA .OSCnt

tasks waiting on the semaphore (and)..OSEventTbl[] .OSEventGrp

INT8U OSSemQuery (OS_EVENT *pevent, OS_SEM_DATA *p_sem_data)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT8U *psrc;
 INT8U *pdest;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
 if (p_sem_data == (OS_SEM_DATA *)0) {
 return (OS_ERR_PDATA_NULL);
 }
#endif
 if (pevent->OSEventType != OS_EVENT_TYPE_SEM) { (2)
 return (OS_ERR_EVENT_TYPE);
 }
 OS_ENTER_CRITICAL();
 p_sem_data->OSEventGrp = pevent->OSEventGrp; (3)
 psrc = &pevent->OSEventTbl[0];
 pdest = &p_sem_data->OSEventTbl[0];
 for (i = 0u; i < OS_EVENT_TBL_SIZE; i++) { (4)
 *pdest++ = *psrc++;
 }
 p_sem_data->OSCnt = pevent->OSEventCnt;
 OS_EXIT_CRITICAL();
 return (OS_ERR_NONE);
}

Listing - Listing 7.6 Obtaining the status of a semaphore.

 & (2) As always, if is set to 1, checks that pevent is not a(1) OS_ARG_CHK_EN OSSemQuery()

NULL pointer and that it points to an ECB containing a semaphore.

µC/OS-II User's Manual

234Copyright 2015 Micrium Inc.

 then copies the wait list from the structure to the (3) OSSemQuery() OS_EVENT OS_SEM_DATA

structure.

 Finally, copies the current semaphore count from the structure to(4) OSSemQuery() OS_EVENT

the structure.OS_SEM_DATA

µC/OS-II User's Manual

235Copyright 2015 Micrium Inc.

Mutual Exclusion Semaphores

Mutex Utilization

Mutual Exclusion Semaphores or simply are used by tasks to gain exclusive access tomutexes

a resource. Mutexes are that have additional features beyond the normalbinary semaphores

semaphores mechanism provided by µC/OS-II.

A mutex is used by your application code to reduce the priority inversion problem as described

in . A priority inversion occurs when a low priority task owns aReal-Time Systems Concepts

resource needed by a high priority task. In order to reduce priority inversion, the kernel can

increase the priority of the low priority task to the priority of the higher priority task until the

low priority task is done with the resource.

In order to implement mutexes, a real-time kernel needs to provide the ability to support

multiple tasks at the same priority. Unfortunately, µC/OS-II doesn’t allow multiple tasks at the

same priority. However, there is a way around this problem. What if a priority just above the

high priority task was by the mutex to allow a low priority task to be raised inreserved

priority.

Let’s use an example to illustrate how µC/OS-II mutexes work. Listing 8.1 shows three tasks

that may need to access a common resource. To access the resource, each task must pend on

the mutex ResourceMutex. Task #1 has the highest priority (10), task #2 has a medium priority

(15) and task #3, the lowest (20). An unused priority just above the highest task priority (i.e.,

priority 9) will be reserved as the .Priority Ceiling Priority (PCP)

µC/OS-II User's Manual

236Copyright 2015 Micrium Inc.

OS_EVENT *ResourceMutex;
OS_STK TaskPrio10Stk[1000];
OS_STK TaskPrio15Stk[1000];
OS_STK TaskPrio20Stk[1000];

void main (void)
{
 INT8U err;

 OSInit(); (1)
 ---------- Application Initialization ----------
 OSMutexCreate(9, &err); (2)
 OSTaskCreate(TaskPrio10, (void *)0, &TaskPrio10Stk[999], 10); (3)
 OSTaskCreate(TaskPrio15, (void *)0, &TaskPrio15Stk[999], 15);
 OSTaskCreate(TaskPrio20, (void *)0, &TaskPrio20Stk[999], 20);
 ---------- Application Initialization ----------
 OSStart(); (4)
}

void TaskPrio10 (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 --------- Application Code ----------
 OSMutexPend(ResourceMutex, 0, &err);
 ------- Access common resource ------
 OSMutexPost(ResourceMutex);
 --------- Application Code ----------
 }
}

void TaskPrio15 (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 --------- Application Code ----------
 OSMutexPend(ResourceMutex, 0, &err);
 ------- Access common resource ------
 OSMutexPost(ResourceMutex);
 --------- Application Code ----------
 }
}

void TaskPrio20 (void *pdata)
{
 INT8U err;

 pdata = pdata;
 while (1) {
 --------- Application Code ----------
 OSMutexPend(ResourceMutex, 0, &err);
 ------- Access common resource ------
 OSMutexPost(ResourceMutex);

µC/OS-II User's Manual

237Copyright 2015 Micrium Inc.

 --------- Application Code ----------
 }
}

Listing - Listing 8.1, Mutex utilization example

 & (2) As shown in , µC/OS-II is initialized and a mutex is created by calling (1) main()

. You should note that is passed the PCP (i.e., 9).OSMutexCreate() OSMutexCreate()

 & (4) The three tasks are then created and µC/OS-II is started.(3)

Suppose that this application has been running for a while and that, at some point, task #3

accesses the common resource first and thus acquires the mutex. Task #3 runs for a while and

then gets preempted by task #1. Task #1 needs the resource and thus attempts to acquire the

mutex (by calling). In this case, notices that a higher priorityOSMutexPend() OSMutexPend()

task needs the resource and thus raises the priority of task #3 to 9 which forces a context

switch back to task #3. Task #3 will proceed and hopefully release the resource quickly. When

done with the resource, task #3 will call to release the mutex. OSMutexPost() OSMutexPost()

will notice that the mutex was by a lower priority task that got its priority raised andowned

thus, will return task #3 to it’s original priority. will notice that a higher priorityOSMutexPost()

task (i.e., task #1) needs access to the resource and will give the resource to task #1 and

perform a context switch to task #1.

µC/OS-II's mutexes consist of three elements: a flag indicating whether the mutex is available

(0 or 1), a priority to assign the task that owns the mutex in case a higher priority task attempts

to gain access to the mutex, and a list of tasks waiting for the mutex.

µC/OS-II provides six services to access mutexes: , , OSMutexCreate() OSMutexDel()

, , and .OSMutexPend() OSMutexPost() OSMutexAccept() OSMutexQuery()

To enable µC/OS-II mutex services, you must set the configuration constants in .OS_CFG.H

Specifically, table 8.1 shows which services are compiled based on the value of configuration

constants found in . You should note that NONE of the mailbox services are enabledOS_CFG.H

when is set to 0. To enable specific features (i.e., service) listed in Table 8.1,OS_MUTEX_EN

simply set the configuration constant to 1. You will notice that , OSMutexCreate()

µC/OS-II User's Manual

238Copyright 2015 Micrium Inc.

 and cannot be individually disabled like the other services.OSMutexPend() OSMutexPost()

That’s because they are always needed when you enable µC/OS-II mutual exclusion

semaphore management.

µC/OS-II Mutex Service Enabled when set to 1 in OS_CFG.H

OSMutexAccept() OS_MUTEX_ACCEPT_EN

OSMutexCreate()

OSMutexDel() OS_MUTEX_DEL_EN

OSMutexPend()

OSMutexPost()

OSMutexQuery() OS_MUTEX_QUERY_EN

Table - Table 8.1 Mutex configuration constants in OS_CFG.H

Figure 8.1 shows a flow diagram to illustrate the relationship between tasks and a mutex. A

mutex can only be accessed by tasks. Note that the symbology used to represent a mutex is a

‘key’. The ‘key’ symbology shows that the mutex is used to access shared resources.

Figure - Figure 8.1, Relationship between tasks and a mutex

Creating a Mutex, OSMutexCreate()

A mutex needs to be created before it can be used. Creating a mutex is accomplished by calling

. The initial value of a mutex is always set to 1 indicating that the resource isOSMutexCreate()

available. The code to create a mutex is shown in listing 8.2.

µC/OS-II User's Manual

239Copyright 2015 Micrium Inc.

OS_EVENT *OSMutexCreate (INT8U prio, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_EVENT *pevent;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_CREATE_ISR;
 return ((OS_EVENT *)0);
 }
#if OS_ARG_CHK_EN
 if (prio >= OS_LOWEST_PRIO) { (2)
 *err = OS_PRIO_INVALID;
 return ((OS_EVENT *)0);
 }
#endif
 OS_ENTER_CRITICAL();
 if (OSTCBPrioTbl[prio] != (OS_TCB *)0) { (3)
 *err = OS_PRIO_EXIST;
 OS_EXIT_CRITICAL();
 return ((OS_EVENT *)0);
 }
 OSTCBPrioTbl[prio] = (OS_TCB *)1; (4)
 pevent = OSEventFreeList; (5)
 if (pevent == (OS_EVENT *)0) {
 OSTCBPrioTbl[prio] = (OS_TCB *)0;
 OS_EXIT_CRITICAL();
 *err = OS_ERR_PEVENT_NULL;
 return (pevent);
 }
 OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr; (6)
 OS_EXIT_CRITICAL();
 pevent->OSEventType = OS_EVENT_TYPE_MUTEX; (7)
 pevent->OSEventCnt = (prio << 8) | OS_MUTEX_AVAILABLE; (8)
 pevent->OSEventPtr = (void *)0; (9)
 OSEventWaitListInit(pevent); (10)
 *err = OS_NO_ERR;
 return (pevent); (11)

 }
}

Listing - Listing 8.2, Creating a mutex.

 starts by making sure it’s not called from an ISR because that’s not(1) OSMutexCreate()

allowed.

 then verifies that the PIP is within valid ranged based on what you(2) OSMutexCreate()

determined the lowest priority is for your application as specified in .OS_CFG.H

 then checks to see that there isn’t already a task assigned to the PIP. A(3) OSMutexCreate()

NULL pointer in indicates for the Priority Inheritance Priority (PIP) isOSTCBPrioTbl[]

µC/OS-II User's Manual

240Copyright 2015 Micrium Inc.

available.

 If an entry is available, the priority by placing a non-NULL(4) OSMutexCreate() reserves

pointer in . This will prevent you from being able to use this priorityOSTCBPrioTbl[prio]

to create other tasks or other mutexes using this priority.

 then attempts to obtain an ECB (Event Control Block) from the free list(5) OSMutexCreate()

of ECBs.

 The linked list of free ECBs is adjusted to point to the next free ECB.(6)

 If there was an ECB available, the ECB type is set to . Other(7) OS_EVENT_TYPE_MUTEX

µC/OS-II services will check this field to make sure that the ECB is of the proper type.

This prevents you from calling on an ECB that was created for use as aOSMutexPost()

message mailbox, for example.

 then set the mutex value to ‘available’ and the PIP is stored.(8) OSMutexCreate()

It is worth noting that the field is used differently. Specifically, the upper 8.OSEventCnt

bits of are used to hold the PIP and the lower 8 bits are used to hold either.OSEventCnt

the value of the mutex when the resource is available (0xFF) or, the priority of the task

that ‘owns’ the mutex (a value between 0 and 62). This prevents having to add extra

fields in an structure and thus reduces the amount of RAM needed byOS_EVENT

µC/OS-II.

 Because the mutex is being initialized, there are no tasks waiting for it.(9)

 The wait list is then initialized by calling .(10) OSEventWaitListInit()

 Finally, returns a pointer to the ECB. This pointer MUST be used in(11) OSMutexCreate()

subsequent calls to manipulate mutexes (, , OSMutexPend() OSMutexPost()

, and). The pointer is basically used as theOSMutexAccept() OSMutexDel() OSMutexQuery()

mutex’s handle. If there were no more ECBs, would have returned aOSMutexCreate()

NULL pointer.

Figure 8.2 shows the ECB just before returning from .OSMutexCreate()

µC/OS-II User's Manual

241Copyright 2015 Micrium Inc.

Figure - Figure 8.2, ECB just before OSMutexCreate() returns

Deleting a Mutex, OSMutexDel()

The code to delete a mutex is shown in listing 8.3 and this service is available only if

 is set to 1 in . This is a dangerous function to use because multipleOS_MUTEX_DEL_EN OS_CFG.H

tasks could attempt to access a deleted mutex. You should always use this function with great

care. Generally speaking, before you would delete a mutex, you should first delete all the tasks

that can access the mutex.

µC/OS-II User's Manual

242Copyright 2015 Micrium Inc.

OS_EVENT *OSMutexDel (OS_EVENT *pevent, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN tasks_waiting;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_DEL_ISR;
 return (pevent);
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { (2)
 *err = OS_ERR_PEVENT_NULL;
 return (pevent);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { (3)
 OS_EXIT_CRITICAL();
 *err = OS_ERR_EVENT_TYPE;
 return (pevent);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) { (4)
 tasks_waiting = TRUE;
 } else {
 tasks_waiting = FALSE;
 }
 switch (opt) {
 case OS_DEL_NO_PEND:
 if (tasks_waiting == FALSE) { (5)
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; (6)
 pevent->OSEventPtr = OSEventFreeList; (7)
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return ((OS_EVENT *)0); (8)
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_ERR_TASK_WAITING;
 return (pevent);
 }

 case OS_DEL_ALWAYS: (9)
 while (pevent->OSEventGrp != 0x00) { (10)
 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX);
 }
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; (11)
 pevent->OSEventPtr = OSEventFreeList; (12)
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 if (tasks_waiting == TRUE) { (13)
 OS_Sched();
 }
 *err = OS_NO_ERR;
 return ((OS_EVENT *)0); (14)

 default:
 OS_EXIT_CRITICAL();
 *err = OS_ERR_INVALID_OPT;
 return (pevent);
 }
}

µC/OS-II User's Manual

243Copyright 2015 Micrium Inc.

Listing - Listing 8.3, Deleting a mutex.

 starts by making sure that this function is not called from an ISR because(1) OSMutexDel()

that’s not allowed.

(2)

 We then check the arguments passed to it– pevent cannot be a NULL pointer and pevent(3)

needs to point to a mutex.

 then determines whether there are any tasks waiting on the mutex. The flag(4) OSMutexDel()

tasks_waiting is set accordingly.

Based on the option (i.e., opt) specified in the call, will either delete theOSMutexDel()

mutex only if no tasks are pending on the mutex () or, delete theopt == OS_DEL_NO_PEND

mutex even if tasks are waiting ().opt == OS_DEL_ALWAYS

(5)

(6)

 When opt is set to and there is no task waiting on the mutex, (7) OS_DEL_NO_PEND

 marks the ECB as unused and the ECB is returned to the free list of ECBs.OSMutexDel()

This will allow another mutex (or any other ECB based object) to be created. You will

note that returns a NULL pointer L8.3(8) since, at this point, the mutexOSMutexDel()

should no longer be accessed through the original pointer.

(9)

 When opt is set to then all tasks waiting on the mutex will be readied.(10) OS_DEL_ALWAYS

Each task will it has access to the mutex. Of course, that’s a dangerous outcomethink

since the whole point of having a mutex is to protect against multiple access of a

resource. Again, you should delete all the tasks that can access the mutex before you

delete the mutex.

(11)

µC/OS-II User's Manual

244Copyright 2015 Micrium Inc.

 Once all pending tasks are readied, marks the ECB as unused and the ECB(12) OSMutexDel()

is returned to the free list of ECBs.

 The scheduler is called only if there were tasks waiting on the mutex.(13)

 You will note that returns a NULL pointer since, at this point, the mutex(14) OSMutexDel()

should no longer be accessed through the original pointer.

Waiting on a Mutex (blocking), OSMutexPend()

The code to wait on a mutex is shown in listing 8.4.

µC/OS-II User's Manual

245Copyright 2015 Micrium Inc.

void OSMutexPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT8U pip;
 INT8U mprio;
 BOOLEAN rdy;
 OS_TCB *ptcb;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_PEND_ISR;
 return;
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { (2)
 *err = OS_ERR_PEVENT_NULL;
 return;
 }
#endif
 OS_ENTER_CRITICAL();
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { (3)
 OS_EXIT_CRITICAL();
 *err = OS_ERR_EVENT_TYPE;
 return;
 }
#endif
 (4)
 if ((INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {
 pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8; (5)
 pevent->OSEventCnt |= OSTCBCur->OSTCBPrio; (6)
 pevent->OSEventPtr = (void *)OSTCBCur; (7)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return;
 }

 pip = (INT8U)(pevent->OSEventCnt >> 8); (8)
 mprio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8); (9)
 ptcb = (OS_TCB *)(pevent->OSEventPtr); (10)

 if (ptcb->OSTCBPrio != pip && mprio > OSTCBCur->OSTCBPrio) { (11)
 if ((OSRdyTbl[ptcb->OSTCBY] & ptcb->OSTCBBitX) != 0x00) { (12)
 (13)

 if ((OSRdyTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0x00) {
 OSRdyGrp &= ~ptcb->OSTCBBitY;
 }
 rdy = TRUE; (14)

 } else {
 rdy = FALSE; (15)
 }
 ptcb->OSTCBPrio = pip; (16)
 ptcb->OSTCBY = ptcb->OSTCBPrio >> 3;
 ptcb->OSTCBBitY = OSMapTbl[ptcb->OSTCBY];
 ptcb->OSTCBX = ptcb->OSTCBPrio & 0x07;
 ptcb->OSTCBBitX = OSMapTbl[ptcb->OSTCBX];
 if (rdy == TRUE) { (17)
 OSRdyGrp |= ptcb->OSTCBBitY;
 OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
 }
 OSTCBPrioTbl[pip] = (OS_TCB *)ptcb;
 }

 OSTCBCur->OSTCBStat |= OS_STAT_MUTEX; (18)

µC/OS-II User's Manual

246Copyright 2015 Micrium Inc.

 OSTCBCur->OSTCBStat |= OS_STAT_MUTEX; (18)
 OSTCBCur->OSTCBDly = timeout; (19)
 OS_EventTaskWait(pevent); (20)
 OS_EXIT_CRITICAL();
 OS_Sched(); (21)
 OS_ENTER_CRITICAL();
 if (OSTCBCur->OSTCBStat & OS_STAT_MUTEX) { (22)
 OS_EventTO(pevent); (23)

 OS_EXIT_CRITICAL();
 *err = OS_TIMEOUT; (24)
 return;
 }
 OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0; (25)

 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
}

Listing - Listing 8.4, Waiting for a mutex.

 Like all µC/OS-II pend calls, cannot be called from an ISR and thus, (1) OSMutexPend()

 checks for this condition first.OSMutexPend()

 & (3) Assuming that the configuration constant is set to 1, (2) OS_ARG_CHK_EN OSMutexPend()

makes sure that the ‘handle’ pevent is not a NULL pointer and that the ECB being

pointed to has been created by .OSMutexCreate()

 & (5)(4)

 The mutex is available if the lower 8 bits of are set to 0xFF (i.e., (6) .OSEventCnt

). If this is the case, will grant the mutex to theOS_MUTEX_AVAILABLE OSMutexPend()

calling task and, will set the lower 8 bits of to the calling’sOSMutexPend() .OSEventCnt

task priority.

 then sets to point to the TCB of the calling task and returns.(7) OSMutexPend() .OSEventPtr

At this point the caller can proceed with accessing the resource since the return error

code is set to . Obviously, if you want the mutex, this is the outcome you areOS_NO_ERR

looking for. This also happens to be the fastest (normal) path through .OSMutexPend()

If the mutex is owned by another task, the calling task needs to be put to sleep until the

other task relinquishes the mutex (see). allows you toOSMutexPost() OSMutexPend()

specify a timeout value as one of its arguments (i.e., timeout). This feature is useful to

avoid waiting indefinitely for the mutex. If the value passed is non-zero, then

µC/OS-II User's Manual

247Copyright 2015 Micrium Inc.

 will suspend the task until the mutex is signaled or the specified timeoutOSMutexPend()

period expires. Note that a timeout value of 0 indicates that the task is willing to wait

forever for the mutex to be signaled.

 & (9) & (10) Before the calling task is put to sleep, extracts the PIP of the(8) OSMutexPend()

mutex, the priority of the task that owns the mutex and a pointer to the TCB of the task

that owns the mutex.

 If the owner’s priority is (a higher number) than the task that calls (11) lower OSMutexPend()

then, the priority of the task that owns the mutex will be raised to the mutex’s priority

inheritance priority (PIP). This will allow the owner to relinquish the mutex sooner.

 then determines if the task that owns the mutex is ready-to-run.(12) OSMutexPend()

 & (14) If it is, that task will be made no longer ready-to-run at the the owner’s priority(13)

and the flag rdy will be set indicating that the mutex owner was ready-to-run.

 If the task was not ready-to-run, rdy is set accordingly. The reason the flag is set is to(15)

determine whether we need to make the task ready-to-run at the new, higher priority

(i.e., at the PIP).

 then computes TCB (Task Control Block) elements at the PIP. You(16) OSMutexPend()

should note that I could have saved this information in the data structure whenOS_EVENT

the mutex was created in order to save processing time. However, this would have meant

additional RAM for each instantiation.OS_EVENT

 From this information and the state of the rdy flag, we determine whether the mutex(17)

owner needs to be made ready-to-run at the PIP.

 To put the calling task to sleep, sets the status flag in the task’s TCB to(18) OSMutexPend()

indicate that the task is suspended waiting for a mutex.

 The timeout is also stored in the TCB so that it can be decremented by .(19) OSTimeTick()

You should recall that decrements each of the created tasks OSTimeTick() .OSTCBDly

fields if they are non-zero.

 The actual work of putting the task to sleep is done by .(20) OS_EventTaskWait()

µC/OS-II User's Manual

248Copyright 2015 Micrium Inc.

 Because the calling task is no longer ready-to-run, the scheduler is called to run the next(21)

highest priority task that is ready-to-run.

When the mutex is signaled (or the timeout period expires) and the task that called

 is again the highest priority task, returns.OSMutexPend() OS_Sched()

 then checks to see if the TCB’s status flag is still set to indicate that the(22) OSMutexPend()

task is waiting for the mutex. If the task is still waiting for the mutex then it must not

have been signaled by an call. Indeed, the task must have be readied by OSMutexPost()

 indicating that the timeout period has expired.OSTimeTick()

 & (24) In this case, the task is removed from the wait list for the mutex by calling (23)

 , and an error code is returned to the task that called toOS_EventTO() OSMutexPend()

indicate that a timeout occurred.

If the status flag in the task’s TCB doesn’t have the bit set then the mutexOS_STAT_MUTEX

must have been signaled and the task that called can now conclude that itOSMutexPend()

has the mutex.

 Finally, the link to the ECB is removed.(25)

Signaling a Mutex, OSMutexPost()

The code to signal a mutex is shown in listing 8.5.

µC/OS-II User's Manual

249Copyright 2015 Micrium Inc.

INT8U OSMutexPost (OS_EVENT *pevent)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT8U pip;
 INT8U prio;

 if (OSIntNesting > 0) { (1)
 return (OS_ERR_POST_ISR);
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { (2)
 return (OS_ERR_PEVENT_NULL);
 }
#endif
 OS_ENTER_CRITICAL();
 pip = (INT8U)(pevent->OSEventCnt >> 8);
 prio = (INT8U)(pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8);
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { (3)
 OS_EXIT_CRITICAL();
 return (OS_ERR_EVENT_TYPE);
 }
 if (OSTCBCur->OSTCBPrio != pip ||
 OSTCBCur->OSTCBPrio != prio) { (4)
 OS_EXIT_CRITICAL();
 return (OS_ERR_NOT_MUTEX_OWNER);
 }
#endif
 if (OSTCBCur->OSTCBPrio == pip) { (5)

 (6)
 if ((OSRdyTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0) {
 OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
 }
 OSTCBCur->OSTCBPrio = prio;
 OSTCBCur->OSTCBY = prio >> 3;
 OSTCBCur->OSTCBBitY = OSMapTbl[OSTCBCur->OSTCBY];
 OSTCBCur->OSTCBX = prio & 0x07;
 OSTCBCur->OSTCBBitX = OSMapTbl[OSTCBCur->OSTCBX];
 OSRdyGrp |= OSTCBCur->OSTCBBitY;
 OSRdyTbl[OSTCBCur->OSTCBY] |= OSTCBCur->OSTCBBitX;
 OSTCBPrioTbl[prio] = (OS_TCB *)OSTCBCur;
 }
 OSTCBPrioTbl[pip] = (OS_TCB *)1;
 if (pevent->OSEventGrp != 0x00) { (7)
 (8)
 prio = OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX);
 pevent->OSEventCnt &= 0xFF00; (9)
 pevent->OSEventCnt |= prio;
 pevent->OSEventPtr = OSTCBPrioTbl[prio];
 OS_EXIT_CRITICAL();
 OS_Sched(); (10)
 return (OS_NO_ERR);
 }
 pevent->OSEventCnt |= 0x00FF; (11)
 pevent->OSEventPtr = (void *)0;
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 8.5, Signaling a mutex.

µC/OS-II User's Manual

250Copyright 2015 Micrium Inc.

 Mutual exclusion semaphores must only be used by tasks and thus, a check is performed(1)

to make sure that is not called from an ISR.OSMutexPost()

 & (3) Assuming that the configuration constant is set to 1, (2) OS_ARG_CHK_EN OSMutexPost()

checks that the ‘handle’ pevent is not a NULL pointer and that the ECB being pointed to

has been created by .OSMutexCreate()

 makes sure that the task that is signaling the mutex actually owns the(4) OSMutexPost()

mutex. The owner’s priority must either be set to the pip (could haveOSMutexPend()

raised the owner’s priority) or the priority stored in the mutex itself.

 then checks to see if the priority of the mutex owner had to be raised to(5) OSMutexPost()

the PIP because a higher priority task attempted to access the mutex. In this case, the

priority of the owner is reduced back to its original value. The original task priority is

extracted from the lower 8 bits of ..OSEventCnt

 The calling task is removed from the ready list at the PIP and placed in the ready list at(6)

the task’s original priority. Note that the TCB fields are recomputed for the original task

priority.

 Next, we check to see if any tasks are waiting on the mutex. There are tasks waiting(7)

when the field in the ECB contains a non-zero value..OSEventGrp

 The highest priority task waiting for the mutex will be removed from the wait list by (8)

 (see section 6.02,)and thisOS_EventTaskRdy() Making a task ready, OS_EventTaskRdy()

task will be made ready-to-run.

 The priority of the new owner is saved in the mutex’s ECB.(9)

 is then called to see if the task made ready is now the highest priority task(10) OS_Sched()

ready-to-run. If it is, a context switch will result and the readied task will be executed. If

the readied task is not the highest priority task then will return and the taskOS_Sched()

that called will continue execution.OSMutexPost()

 If there were no tasks waiting on the mutex, the lower 8 bits of would be set(11) .OSEventCnt

to 0xFF indicating that the mutex is immediately available.

µC/OS-II User's Manual

251Copyright 2015 Micrium Inc.

Getting a Mutex without waiting (non-blocking),
OSMutexAccept()

It is possible to obtain a mutex without putting a task to sleep if the mutex is not available.

This is accomplished by calling and the code for this function is shown inOSMutexAccept()

listing 8.6.

INT8U OSMutexAccept (OS_EVENT *pevent, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_PEND_ISR;
 return (0);
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) {
 *err = OS_ERR_PEVENT_NULL;
 return (0);
 }
#endif
 OS_ENTER_CRITICAL();
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) {
 OS_EXIT_CRITICAL();
 *err = OS_ERR_EVENT_TYPE;
 return (0);
 }
#endif
 OS_ENTER_CRITICAL();
 (2)
 if ((pevent->OSEventCnt & OS_MUTEX_KEEP_LOWER_8) == OS_MUTEX_AVAILABLE) {
 pevent->OSEventCnt &= OS_MUTEX_KEEP_UPPER_8; (3)
 pevent->OSEventCnt |= OSTCBCur->OSTCBPrio;
 pevent->OSEventPtr = (void *)OSTCBCur; (4)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (1);
 }
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (0);
}

Listing - Listing 8.6, Getting a mutex without waiting.

 As with the other calls, if is set to 1 in , start by(1) OS_ARG_CHK_EN OS_CFG.H OSMutexAccept()

ensuring that it’s not called from and ISR and performs boundary checks.

µC/OS-II User's Manual

252Copyright 2015 Micrium Inc.

 then checks to see if the mutex is available (the lower 8 bits of (2) OSMutexAccept()

 would be set to 0xFF)..OSEventCnt

 & (4) If the mutex is available, would acquire the mutex by writing the(3) OSMutexAccept()

priority of the mutex owner in the lower 8 bits of and by linking the the.OSEventCnt

owner’s TCB.

The code that called will need to examine the returned value. A returnedOSMutexAccept()

value of 0 indicates that the mutex was not available while a return value of 1 indicates that the

mutex was available and the caller can access the resource.

Obtaining the status of a mutex, OSMutexQuery()

OSMutexQuery() allows your application to take a ‘snapshot’ of an ECB that is used as a mutex.

The code for this function is shown in listing 8.7.

µC/OS-II User's Manual

253Copyright 2015 Micrium Inc.

INT8U OSMutexQuery (OS_EVENT *pevent, OS_MUTEX_DATA *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT8U *psrc;
 INT8U *pdest;

 if (OSIntNesting > 0) { (1)
 return (OS_ERR_QUERY_ISR);
 }
#if OS_ARG_CHK_EN
 if (pevent == (OS_EVENT *)0) { (2)
 return (OS_ERR_PEVENT_NULL);
 }
#endif
 OS_ENTER_CRITICAL();
#if OS_ARG_CHK_EN
 if (pevent->OSEventType != OS_EVENT_TYPE_MUTEX) { (3)
 OS_EXIT_CRITICAL();
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 pdata->OSMutexPIP = (INT8U)(pevent->OSEventCnt >> 8); (4)

 pdata->OSOwnerPrio = (INT8U)(pevent->OSEventCnt & 0x00FF);
 if (pdata->OSOwnerPrio == 0xFF) {
 pdata->OSValue = 1; (5)

 } else {
 pdata->OSValue = 0; (6)

 }
 pdata->OSEventGrp = pevent->OSEventGrp; (7)
 psrc = &pevent->OSEventTbl[0];
 pdest = &pdata->OSEventTbl[0];
#if OS_EVENT_TBL_SIZE > 0
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 1
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 2
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 3
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 4
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 5
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 6
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 7
 *pdest = *psrc;

µC/OS-II User's Manual

254Copyright 2015 Micrium Inc.

#endif
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 8.7, Obtaining the status of a mutex.

 As with all mutex calls, determines whether the call is made from an(1) OSMutexQuery()

ISR.

 & (3) If the configuration constant is set to 1, checks that(2) OS_ARG_CHK_EN OSMutexQuery()

the ‘handle’ pevent is not a NULL pointer and that the ECB being pointed to has been

created by . then loads the structureOSMutexCreate() OSMutexQuery() OS_MUTEX_DATA

with the appropriate fields.

 First, we extract the Priority Inheritance Priority (PIP) from the upper 8 bits of the (4)

 field of the mutex..OSEventCnt

 Next, we obtain the mutex value from the lower 8 bits of the field of the(5) .OSEventCnt

mutex. If the mutex is available (i.e., lower 8 bits set to 0xFF) then the mutex value is

assumed to be 1.

 Otherwise, the mutex value is 0 (i.e., unavailable because it’s owned by a task).(6)

 Finally, the mutex wait list is copied into the appropriate fields in . For(7) OS_MUTEX_DATA

performance reasons, I decided to use inline code instead of using a for loop.

OSMutexQuery() is passed two arguments: pevent contains a pointer to the mutex which is

returned by when the mutex is created and, pdata which is a pointer to a dataOSMutexCreate()

structure (, see) that will hold information about the mutex. YourOS_MUTEX_DATA uCOS_II.H

application will thus need to allocate a variable of type that will be used toOS_MUTEX_DATA

receive the information about the desired mutex. I decided to use a new data structure because

the caller should only be concerned with mutex specific data as opposed to the more generic

 data structure. contains the mutex PIP (Priority Inheritance Priority) (OS_EVENT OS_MUTEX_DATA

), the priority of the task owning the mutex () and the value of the.OSMutexPIP .OSMutexPrio

µC/OS-II User's Manual

255Copyright 2015 Micrium Inc.

mutex () which is set to 1 when the mutex is available and 0 if it’s not. Note that.OSMutexValue

 contains 0xFF if no task owns the mutex. Finally, contains the list.OSMutexPrio OS_MUTEX_DATA

of tasks waiting on the mutex (and)..OSEventTbl[] .OSEventGrp

µC/OS-II User's Manual

256Copyright 2015 Micrium Inc.

Event Flag Management

Event Flag Configuration

µC/OS-II event flags consist of two elements: a series of bits (8, 16 or 32) used to hold the

current state of the events in the group, and a list of tasks waiting for a combination of these

bits to either be set (1) or cleared (0). µC/OS-II provides six services to access semaphores:

, , , , and OSFlagAccept() OSFlagCreate() OSFlagDel() OSFlagPend() OSFlagPost() OSFlagQuery()

.

To enable µC/OS-II event flags services, you must set the configuration constants in .OS_CFG.H

Specifically, table 9.1 shows which services are compiled based on the value of configuration

constants found in . You should note that NONE of the event flag services are enabledOS_CFG.H

when is set to 0. To enable the feature (i.e. service), simply set the configurationOS_FLAG_EN

constant to 1. You will notice that , and cannot beOSFlagCreate() OSFlagPend() OSFlagPost()

individually disabled like the other services because they are always needed when you enable

µC/OS-II event flag management.

µC/OS-II Event Flag Service Enabled when set to 1 in OS_CFG.H

OSFlagAccept() OS_FLAG_ACCEPT_EN

OSFlagCreate()

OSFlagDel() OS_FLAG_DEL_EN

OSFlagPend()

OSFlagPost()

OSFlagQuery() OS_FLAG_QUERY_EN

Table - Table 9.1 Event Flag configuration constants in OS_CFG.H

Figure 9.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a event

flags. Note that the symbology used to represent an event flag group is a series of 8 bits even

though the event flag group can contain 8, 16 or 32 bits (see in). TheOS_FLAGS OS_CFG.H

hourglass represents a timeout that can be specified with the call.OSFlagPend()

As you can see from Figure 9.1, a task or an ISR can call , or OSFlagAccept() OSFlagPost()

. However, only tasks are allowed to call , or OSFlagQuery() OSFlagCreate() OSFlagDel()

µC/OS-II User's Manual

257Copyright 2015 Micrium Inc.

.OSFlagPend()

Figure - Figure 9.1, µC/OS-II Event Flag services

Event Flag Internals

A µC/OS-II's event flag group consist of three elements as shown in the structureOS_FLAG_GRP

below.

typedef struct {
 INT8U OSFlagType; (1)
 void *OSFlagWaitList; (2)
 OS_FLAGS OSFlagFlags; (3)
} OS_FLAG_GRP;

Listing - Listing 9.1, Event Flag Group data structure.

 is a variable which is used to make sure that you are pointing to an event flag(1) OSFlagType

group. This field is the first field of the structure because it allows µC/OS-II services to

‘validate’ the type of structure being pointed to. For example, if you were to pass a

pointer to an event flag group to , µC/OS-II would return an error codeOSSemPend()

indicating that you are not passing the proper ‘object’ to the semaphore pend call. You

should note that an ECB (Event Control Block) also has its first byte containing the type

of OS object (i.e. semaphore, mutex, message mailbox or message queue).

 contains a list of tasks waiting for events.(2) OSFlagWaitList

 is a series of flags (i.e. bits) that holds the current status of events. The(3) OSFlagFlags

number of bits used is decided at compile time and can either be 8, 16 or 32 depending

on the data type you assign to in .OS_FLAGS OS_CFG.H

µC/OS-II User's Manual

258Copyright 2015 Micrium Inc.

You should note that the wait list for event flags is different than the other wait lists in

µC/OS-II. With event flags, the wait list is accomplished through a doubly linked list as shown

in figure 9.2. Three data structures are involved. (mentioned above), whichOS_FLAG_GRP OS_TCB

is the task control block and which is used to keep track of which bits the task isOS_FLAG_NODE

waiting for and what type of wait (AND or OR). As you can see, there are a lot of pointers

involved.

Figure - Figure 9.2, Relationship between Event Flag Group, Event Flag Nodes and TCBs

An is created when a task desires to wait on bits of an event flag group and theOS_FLAG_NODE

node is ‘destroyed’ when the event(s) occur. In other words, a node is created by OSFlagPend()

as we will see shortly. Before we discuss this, let’s look at the data structure.OS_FLAG_NODE

typedef struct {
 void *OSFlagNodeNext; (1)
 void *OSFlagNodePrev;
 void *OSFlagNodeTCB; (2)
 void *OSFlagNodeFlagGrp; (3)
 OS_FLAGS OSFlagNodeFlags; (4)
 INT8U OSFlagNodeWaitType; (5)
} OS_FLAG_NODE;

Listing - Listing 9.2, Event Flag Group node data structure.

 The and are used to maintain a doubly linked list of (1) OSFlagNodeNext OSFlagNodePrev

µC/OS-II User's Manual

259Copyright 2015 Micrium Inc.

. The doubly linked list allows us to easily insert and especially removeOS_FLAG_NODEs

nodes from the wait list.

 is used to point to the TCB of the task waiting on flags belonging to the(2) OSFlagNodeTCB

event flag group. In other words, this pointer allows us to know which tasks is waiting

for the specified flags.

 allows a link back to the event flag group. This pointer is used when(3) OSFlagNodeFlagGrp

removing the node from the doubly linked list and is needed by when theOSTaskDel()

pended task needs to be deleted.

 The contains the bit-pattern of the flags that the task is waiting for. For(4) OSFlagNodeFlags

example, your task might have performed an and specified that the taskOSFlagPend()

wants to wait for bits 0, 4, 6 and 7 (bit 0 is the rightmost bit). In this case,

 would contain 0xD1. Depending on the size of the data type , OSFlagNodeFlags OS_FLAGS

 is either 8, 16 or 32 bits. is specified in your applicationOSFlagNodeFlags OS_FLAGS

configuration file (i.e.,). Because µC/OS-II and the ports are provided in sourceOS_CFG.H

form, you can easily change the number of bits in an event flag group to satisfy your

requirements for a specific application or product. The reason you would limit the

number of bits to 8 is to reduce both RAM and ROM for your application. However, for

maximum portability of your applications, you should set to an INT32U dataOS_FLAGS

type.

 The last member of the data structure is which(5) OS_FLAG_NODE OSFlagNodeWaitType

determines whether the task is waiting for ALL (AND wait) the bits in the event flag

group that matches or, ANY (OR wait) of the bits in the event flagOSFlagNodeFlags

group that matches . can be set to:OSFlagNodeFlags OSFlagNodeWaitType

OS_FLAG_WAIT_CLR_ALL
OS_FLAG_WAIT_CLR_AND
OS_FLAG_WAIT_CLR_ANY
OS_FLAG_WAIT_CLR_OR
OS_FLAG_WAIT_SET_ALL
OS_FLAG_WAIT_SET_AND
OS_FLAG_WAIT_SET_ANY
OS_FLAG_WAIT_SET_OR

You should note that AND and ALL means the same thing and either one can be used. I prefer

to use because it’s more obvious but you are certainly welcomed to use OS_FLAG_WAIT_???_ALL

. Similarly, OR or ANY means the same thing and either one can beOS_FLAG_WAIT_???_AND

µC/OS-II User's Manual

260Copyright 2015 Micrium Inc.

used. Again, I prefer to use because it’s more obvious but again, youOS_FLAG_WAIT_???_ANY

can use . The other thing to notice is that you can wait for either bits to beOS_FLAG_WAIT_???_OR

SET or CLEARED.

Creating an Event Flag Group, OSFlagCreate()

The code to create an event flag group is shown in listing 9.3.

OS_FLAG_GRP *OSFlagCreate (OS_FLAGS flags, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAG_GRP *pgrp;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_CREATE_ISR;
 return ((OS_FLAG_GRP *)0);
 }
 OS_ENTER_CRITICAL();
 pgrp = OSFlagFreeList; (2)
 if (pgrp != (OS_FLAG_GRP *)0) { (3)
 (4)
 OSFlagFreeList = (OS_FLAG_GRP *)OSFlagFreeList->OSFlagWaitList;
 pgrp->OSFlagType = OS_EVENT_TYPE_FLAG; (5)
 pgrp->OSFlagFlags = flags; (6)
 pgrp->OSFlagWaitList = (void *)0; (7)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_GRP_DEPLETED;
 }
 return (pgrp); (8)
}

Listing - Listing 9.3, Creating an Event Flag Group.

 starts by making sure it’s not called from an ISR because that’s not(1) OSFlagCreate()

allowed.

 then attempts to get a free Event Flag Group (i.e., an) from(2) OSFlagCreate() OS_FLAG_GRP

the free list.

 An non-NULL pointer indicates that an event flag group is available.(3)

 Once a group is allocated, the free list pointer is adjusted. Note that the number of Event(4)

µC/OS-II User's Manual

261Copyright 2015 Micrium Inc.

Flag Groups that you can create is determined by the #define constant OS_MAX_FLAGS

which is defined in in your application.OS_CFG.H

 then fills in the fields in the event flag group. (5) OSFlagCreate() OS_EVENT_TYPE_FLAG

indicates that this control block is an event flag group. Because this is the first field in

the data structure, it’s at offset zero. In µC/OS-II, the first byte of an event flag group or

an event control block used for semaphores, mailboxes, queues and mutexes indicates

the type of kernel object. This allows us to check that we are pointing to the proper

object.

 then stores the initial value of the event flags into the event flag group.(6) OSFlagCreate()

Typically, you would initialize the flags to all 0s but, if you are checking for CLEARED

bits then, you could initialize the flags to all 1s.

 Because we are creating the group, there are no tasks waiting on the group and thus, the(7)

wait list pointer is initialized to NULL.

 The pointer to the created event flag group is returned. If there were no more groups(8)

available, would return a NULL pointer.OSFlagCreate()

Figure - Figure 9.3 Event Flag group just before OSFlagCreate() returns

Deleting an Event Flag Group, OSFlagDel()

The code to delete an event flag group is shown in listing 9.4.

This is a function you should use with caution because multiple tasks could attempt to access a

deleted event flag group. You should always use this function with great care. Generally

speaking, before you would delete an event flag group, you would first delete all the tasks that

access the event flag group.

µC/OS-II User's Manual

262Copyright 2015 Micrium Inc.

OS_FLAG_GRP *OSFlagDel (OS_FLAG_GRP *pgrp, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN tasks_waiting;
 OS_FLAG_NODE *pnode;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_DEL_ISR;
 return (pgrp);
 }
#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { (2)
 *err = OS_FLAG_INVALID_PGRP;
 return (pgrp);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { (3)
 *err = OS_ERR_EVENT_TYPE;
 return (pgrp);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pgrp->OSFlagWaitList != (void *)0) { (4)
 tasks_waiting = TRUE;
 } else {
 tasks_waiting = FALSE;
 }
 switch (opt) {
 case OS_DEL_NO_PEND: (5)
 if (tasks_waiting == FALSE) {
 pgrp->OSFlagType = OS_EVENT_TYPE_UNUSED;
 pgrp->OSFlagWaitList = (void *)OSFlagFreeList; (6)
 OSFlagFreeList = pgrp;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return ((OS_FLAG_GRP *)0); (7)
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_ERR_TASK_WAITING;
 return (pgrp);
 }

 case OS_DEL_ALWAYS: (8)
 pnode = pgrp->OSFlagWaitList;
 while (pnode != (OS_FLAG_NODE *)0) { (9)
 OS_FlagTaskRdy(pnode, (OS_FLAGS)0);
 pnode = pnode->OSFlagNodeNext;
 }
 pgrp->OSFlagType = OS_EVENT_TYPE_UNUSED;
 pgrp->OSFlagWaitList = (void *)OSFlagFreeList; (10)
 OSFlagFreeList = pgrp;
 OS_EXIT_CRITICAL();
 if (tasks_waiting == TRUE) { (11)
 OS_Sched();
 }
 *err = OS_NO_ERR;
 return ((OS_FLAG_GRP *)0); (12)

 default:
 OS_EXIT_CRITICAL();
 *err = OS_ERR_INVALID_OPT;
 return (pgrp);
 }
}

µC/OS-II User's Manual

263Copyright 2015 Micrium Inc.

Listing - Listing 9.4, Deleting an Event Flag Group.

 starts by making sure that this function is not called from an ISR because(1) OSFlagDel()

that’s not allowed.

 & (3) We then validate the arguments passed to . First, we make sure that(2) OSFlagDel()

pgrp is not a NULL pointer and pgrp points to point to an event flag group. Note that this

code is conditionally compiled and thus, if is set to 0 then this code isOS_ARG_CHK_EN

NOT compiled. This is done to allow you to reduce the amount of code space needed by

this module.

 then determines whether there are any tasks waiting on the event flag group(4) OSFlagDel()

and sets the local BOOLEAN variable tasks_waiting accordingly.

Based on the option (i.e. opt) passed in the call, will either delete the eventOSFlagDel()

flag group only if no tasks are pending on the event flag group ()opt == OS_DEL_NO_PEND

or, delete the event flag group even if tasks are waiting ().opt == OS_DEL_ALWAYS

 & (6) When opt is set to and there is no task waiting on the event flag(5) OS_DEL_NO_PEND

group, marks the group as unused and the event flag group is returned to theOSFlagDel()

free list of groups. This will allow another event flag group to be created by reusing this

event flag group.

 You will note that returns a NULL pointer since, at this point, the event flag(7) OSFlagDel()

group should no longer be accessed through the original pointer.

 & (9) When opt is set to then all tasks waiting on the event flag group(8) OS_DEL_ALWAYS

will be readied. Each task will the event(s) that the task was waiting for occurred.think

We will discuss when we look at the code for .OS_FlagTaskRdy() OSFlagPost()

 Once all pending tasks are readied, marks the event flag group as unused(10) OSFlagDel()

and the group is returned to the free list of groups.

 The scheduler is called only if there were tasks waiting on the event flag group.(11)

 You will note that returns a NULL pointer since, at this point, the event flag(12) OSFlagDel()

µC/OS-II User's Manual

264Copyright 2015 Micrium Inc.

group should no longer be accessed through the original pointer.

Waiting for event(s) of an Event Flag Group, OSFlagPend()

The code to wait for event(s) of an event flag group is shown in listing 9.5.

µC/OS-II User's Manual

265Copyright 2015 Micrium Inc.

OS_FLAGS OSFlagPend (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT16U timeout, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAG_NODE node;
 OS_FLAGS flags_cur;
 OS_FLAGS flags_rdy;
 BOOLEAN consume;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_PEND_ISR;
 return ((OS_FLAGS)0);
 }
#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { (2)
 *err = OS_FLAG_INVALID_PGRP;
 return ((OS_FLAGS)0);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { (3)
 *err = OS_ERR_EVENT_TYPE;
 return ((OS_FLAGS)0);
 }
#endif
 if (wait_type & OS_FLAG_CONSUME) { (4)
 wait_type &= ~OS_FLAG_CONSUME;
 consume = TRUE;
 } else {
 consume = FALSE;
 }
 OS_ENTER_CRITICAL();
 switch (wait_type) { (5)
 case OS_FLAG_WAIT_SET_ALL:
 flags_rdy = pgrp->OSFlagFlags & flags; (6)
 if (flags_rdy == flags) { (7)
 if (consume == TRUE) { (8)
 pgrp->OSFlagFlags &= ~flags_rdy; (9)
 }
 flags_cur = pgrp->OSFlagFlags; (10)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (flags_cur); (11)
 } else { (12)
 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout);
 OS_EXIT_CRITICAL();
 }
 break;

 case OS_FLAG_WAIT_SET_ANY:
 flags_rdy = pgrp->OSFlagFlags & flags; (13)
 if (flags_rdy != (OS_FLAGS)0) { (14)
 if (consume == TRUE) { (15)
 pgrp->OSFlagFlags &= ~flags_rdy; (16)
 }
 flags_cur = pgrp->OSFlagFlags; (17)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (flags_cur); (18)
 } else { (19)
 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout);
 OS_EXIT_CRITICAL();
 }
 break;

#if OS_FLAG_WAIT_CLR_EN > 0
 case OS_FLAG_WAIT_CLR_ALL:

µC/OS-II User's Manual

266Copyright 2015 Micrium Inc.

 flags_rdy = ~pgrp->OSFlagFlags & flags;
 if (flags_rdy == flags) {
 if (consume == TRUE) {
 pgrp->OSFlagFlags |= flags_rdy;
 }
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (flags_cur);
 } else {
 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout);
 OS_EXIT_CRITICAL();
 }
 break;

 case OS_FLAG_WAIT_CLR_ANY:
 flags_rdy = ~pgrp->OSFlagFlags & flags;
 if (flags_rdy != (OS_FLAGS)0) {
 if (consume == TRUE) {
 pgrp->OSFlagFlags |= flags_rdy;
 }
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (flags_cur);
 } else {
 OS_FlagBlock(pgrp, &node, flags, wait_type, timeout);
 OS_EXIT_CRITICAL();
 }
 break;
#endif

 default:
 OS_EXIT_CRITICAL();
 flags_cur = (OS_FLAGS)0;
 *err = OS_FLAG_ERR_WAIT_TYPE;
 return (flags_cur);
 }
 OS_Sched(); (20)
 OS_ENTER_CRITICAL();
 if (OSTCBCur->OSTCBStat & OS_STAT_FLAG) { (21)
 OS_FlagUnlink(&node); (22)
 OSTCBCur->OSTCBStat = OS_STAT_RDY;
 OS_EXIT_CRITICAL();
 flags_cur = (OS_FLAGS)0;
 *err = OS_TIMEOUT;
 } else {
 if (consume == TRUE) { (23)
 switch (wait_type) {
 case OS_FLAG_WAIT_SET_ALL:
 case OS_FLAG_WAIT_SET_ANY: (24)
 pgrp->OSFlagFlags &= ~OSTCBCur->OSTCBFlagsRdy;
 break;

 case OS_FLAG_WAIT_CLR_ALL:
 case OS_FLAG_WAIT_CLR_ANY:
 pgrp->OSFlagFlags |= OSTCBCur->OSTCBFlagsRdy;
 break;
 }
 }
 flags_cur = pgrp->OSFlagFlags; (25)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;

µC/OS-II User's Manual

267Copyright 2015 Micrium Inc.

1.

2.

3.

4.

 }
 return (flags_cur);
}

Listing - Listing 9.5, Waiting for event(s) of an event flag group.

 Like all µC/OS-II pend calls, cannot be called from an ISR and thus, (1) OSFlagPend()

 checks for this condition first.OSFlagPend()

 & (3) Assuming that the configuration constant is set to 1, (2) OS_ARG_CHK_EN OSFlagPend()

makes sure that the ‘handle’ pgrp is not a NULL pointer and that pgrp points to an event

flag group that should have been created by .OSFlagCreate()

OSFlagPend() allows you to specify whether you will SET or CLEAR flags once they

satisfy the condition you are waiting for. This is accomplished by ADDing (or ORing)

 to the wait_type argument during the call to . ForOS_FLAG_CONSUME OSFlagPend()

example, if you want to wait for BIT0 to be SET in the event flag group and if BIT0 is in

fact SET, it will be CLEARED by if you ADD to theOSFlagPend() OS_FLAG_CONSUME

type of wait desired as shown below:

OSFlagPend(OSFlagMyGrp,
 (OS_FLAGS)0x01,
 FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME,
 0,
 &err);

 Because the ‘consumption’ of the flag(s) is done later in the code, saves(4) OSFlagPend()

the ‘consume’ option in the BOOLEAN variable called consume.

 then executes code based on the wait type specified in the function called.(5) OSFlagPend()

There are four choices:

wait for ALL bits specified to be SET in the event flag group

wait for ANY bit specified to be SET in the event flag group

wait for ALL bits specified to be CLEARED in the event flag group

wait for ANY bit specified to be CLEARED in the event flag group

µC/OS-II User's Manual

268Copyright 2015 Micrium Inc.

The last two choices are identical to the first two choices except that OSFlagPend()

‘looks’ for the bits specified to be CLEARED (i.e. 0) instead for them being SET (i.e. 1).

For this reason, I will only discuss the first two choices. In fact, in order to conserve

ROM, you may not need to look for bits to be cleared and thus, you can ‘compile-out’ all

the corresponding code out by setting to 0 in .OS_FLAG_WAIT_CLR_EN OS_CFG.H

Wait for ALL of the specified bits to be SET:

 When wait_type is set to either or , (6) OS_FLAG_WAIT_SET_ALL OS_FLAG_WAIT_SET_AND

 will ‘extract’ the desired bits in the event flag group which are specified inOSFlagPend()

the flags argument.

 If all the bits extracted matches the bits that you specified in the flags argument then, the(7)

event flags that the task wants are all set and thus, the PEND call would return to the

caller.

 & (9) Before we return, we need to determine whether we need to ‘consume’ the flags(8)

and if so, we will CLEAR all the flags that satisfied the condition.

 & (11) The new value of the event flag group is obtained and returned to the caller.(10)

 If ALL the desired bits in the event flag group were not SET then the calling task will(12)

block (i.e. suspend) until ALL the bits are either SET or a timeout occurs. Instead of

repeating code for all four types of wait, I created a function () to handleOS_FlagBlock()

the details of blocking the calling task (described later).

Wait for ANY of the specified bits to be SET:

 When wait_type is set to either or , (13) OS_FLAG_WAIT_SET_ANY OS_FLAG_WAIT_SET_OR

 will ‘extract’ the desired bits in the event flag group which are specified inOSFlagPend()

the flags argument.

 If any of the bits extracted matches the bits that you specified in the flags argument then(14)

the PEND call will return to the caller.

 & (16) Before we return, we need to determine whether we need to ‘consume’ the flag(s)(15)

and if so, we need to CLEAR all the flag(s) that satisfied the condition.

µC/OS-II User's Manual

269Copyright 2015 Micrium Inc.

 & (18) The new value of the event flag group is obtained and returned to the caller.(17)

 If NONE of the desired bits in the event flag group were not SET then the calling task(19)

will block (i.e. suspend) until ANY of the bits is either SET or a timeout occurs.

As mentioned above, if the desired bits and conditions of a PEND call are not satisfied the

calling task is suspended until either the event or a timeout occurs. The task is suspended by

 (see Listing 9.6) which adds the calling task to the wait list of the event flagOS_FlagBlock()

group. The process is shown in Figure 9.4.

Figure - Figure 9.4, Adding the current task to the wait list of the Event Flag Group

µC/OS-II User's Manual

270Copyright 2015 Micrium Inc.

static void OS_FlagBlock (OS_FLAG_GRP *pgrp, OS_FLAG_NODE *pnode, OS_FLAGS flags, INT8U wait_type,
INT16U timeout)
{
 OS_FLAG_NODE *pnode_next;

 OSTCBCur->OSTCBStat |= OS_STAT_FLAG; (1)
 OSTCBCur->OSTCBDly = timeout;
#if OS_TASK_DEL_EN > 0
 OSTCBCur->OSTCBFlagNode = pnode; (2)
#endif
 pnode->OSFlagNodeFlags = flags; (3)
 pnode->OSFlagNodeWaitType = wait_type;
 pnode->OSFlagNodeTCB = (void *)OSTCBCur; (4)
 pnode->OSFlagNodeNext = pgrp->OSFlagWaitList; (5)
 pnode->OSFlagNodePrev = (void *)0; (6)
 pnode->OSFlagNodeFlagGrp = (void *)pgrp; (7)
 pnode_next = pgrp->OSFlagWaitList;
 if (pnode_next != (void *)0) {
 pnode_next->OSFlagNodePrev = pnode; (8)
 }
 pgrp->OSFlagWaitList = (void *)pnode; (9)
 (10)
 if ((OSRdyTbl[OSTCBCur->OSTCBY] &= ~OSTCBCur->OSTCBBitX) == 0) {
 OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
 }
}

Listing - Listing 9.6, Adding a task to the event flag group wait list.

The notes below apply both and simultaneously to Listing 9.6 and Figure 9.4. When

reading each numbered note, refer to both the listing and the figure.

 starts by setting the appropriate fields in the task control block. You(1) OS_FlagBlock()

should note that an is allocated on the stack of the calling task (see OS_FLAG_NODE

 , L9.5). This means that we don’t need to keep a separate ‘free list’ of OSFlagPend()

 since these data structures can simply be allocated on the stack of theOS_FLAG_NODE

calling task. That being said, the calling task must have sufficient stack space to allocate

this structure on its stack.

 We then link the to the TCB, but only if is set to 1. This(2) OS_FLAG_NODE OS_TASK_DEL_EN

link allows to remove the task being suspended from the wait list shouldOSTaskDel()

another task decide to delete this task.

 Next, saves the flags that the task is waiting for as well as the wait type(3) OS_FlagBlock()

in the structure.OS_FLAG_NODE

 We then link the TCB to the .(4) OS_FLAG_NODE

 The is then linked to the other in the wait list.(5) OS_FLAG_NODE OS_FLAG_NODEs

µC/OS-II User's Manual

271Copyright 2015 Micrium Inc.

 You should note that the is simply inserted at the beginning of the(6) OS_FLAG_NODE

doubly-linked list for simplicity sake.

 We then link the event flag group to the . This is again done to allow us to(7) OS_FLAG_NODE

delete the task that is being added to the wait list of the event flag group.

 then links the previous ‘first’ node in the wait list to the new (8) OS_FlagBlock()

 .OS_FLAG_NODE

 & (10) Finally, the pointer of the beginning of the wait list is updated to point to the new (9)

 and, the calling task is made NOT ready-to-run.OS_FLAG_NODE

You should note that interrupts are disabled during the process of blocking the calling

task.

 When returns, the scheduler is called because, of course, the calling task(20) OS_FlagBlock()

is no longer able to run since the event(s) it was looking for did not occur.

 When µC/OS-II resumes the calling task, checks HOW the task was(21) OSFlagPend()

readied. If the status field in the TCB still indicates that the task is still waiting for event

flags to be either set or cleared then, the task MUST have been readied because of a

timeout.

 In this case, the is removed from the wait list by calling (22) OS_FLAG_NODE OS_FlagUnlink()

and, an error code is returned to the caller indicating the outcome of the call. The code

for is shown in Listing 9.7 and should be quite obvious since we areOS_FlagUnlink()

simply removing a node from a doubly linked list. The code provided on the CD-ROM

contains comments so you can easily follow what’s going on.

 & (24) If the calling task is NOT resumed because of a timeout then, it MUST have been(23)

resumed because the event flags that it was waiting for have been either set or cleared. In

this case, we determine whether the calling task wanted to consume the event flags. If

this is the case, the appropriate flags are either set or cleared based on the wait type.

 Finally, obtains the current value of the event flags in the group in order to(25) OSFlagPend()

return this information to the caller.

µC/OS-II User's Manual

272Copyright 2015 Micrium Inc.

Setting or Clearing event(s) in an Event Flag Group,
OSFlagPost()

The code to either setting or clearing bits in an event flag group is done by calling

 and the code for this function is shown in listing 9.7.OSFlagPost()

µC/OS-II User's Manual

273Copyright 2015 Micrium Inc.

OS_FLAGS OSFlagPost (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAG_NODE *pnode;
 BOOLEAN sched;
 OS_FLAGS flags_cur;
 OS_FLAGS flags_rdy;

#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { (1)
 *err = OS_FLAG_INVALID_PGRP;
 return ((OS_FLAGS)0);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { (2)
 *err = OS_ERR_EVENT_TYPE;
 return ((OS_FLAGS)0);
 }
#endif
 OS_ENTER_CRITICAL();
 switch (opt) { (3)
 case OS_FLAG_CLR:
 pgrp->OSFlagFlags &= ~flags; (4)
 break;

 case OS_FLAG_SET:
 pgrp->OSFlagFlags |= flags; (5)
 break;

 default:
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_INVALID_OPT;
 return ((OS_FLAGS)0);
 }
 sched = FALSE; (6)
 pnode = pgrp->OSFlagWaitList;
 while (pnode != (OS_FLAG_NODE *)0) { (7)
 switch (pnode->OSFlagNodeWaitType) {
 case OS_FLAG_WAIT_SET_ALL: (8)
 flags_rdy = pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;
 if (flags_rdy == pnode->OSFlagNodeFlags) { (9)
 if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) { (10)
 sched = TRUE; (11)
 }
 }
 break;

 case OS_FLAG_WAIT_SET_ANY:
 flags_rdy = pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;
 if (flags_rdy != (OS_FLAGS)0) {
 if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {
 sched = TRUE;
 }
 }
 break;

#if OS_FLAG_WAIT_CLR_EN > 0
 case OS_FLAG_WAIT_CLR_ALL:
 flags_rdy = ~pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;
 if (flags_rdy == pnode->OSFlagNodeFlags) {
 if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {
 sched = TRUE;
 }
 }
 break;

µC/OS-II User's Manual

274Copyright 2015 Micrium Inc.

 case OS_FLAG_WAIT_CLR_ANY:
 flags_rdy = ~pgrp->OSFlagFlags & pnode->OSFlagNodeFlags;
 if (flags_rdy != (OS_FLAGS)0) {
 if (OS_FlagTaskRdy(pnode, flags_rdy) == TRUE) {
 sched = TRUE;
 }
 }
 break;
#endif
 }
 pnode = pnode->OSFlagNodeNext; (12)
 }
 OS_EXIT_CRITICAL();
 if (sched == TRUE) { (13)
 OS_Sched(); (14)
 }
 OS_ENTER_CRITICAL();
 flags_cur = pgrp->OSFlagFlags; (15)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (flags_cur); (16)
}

Listing - Listing 9.7, Setting or Clearing bits (i.e., events) in an Event Flag Group.

 & (2) Assuming that the configuration constant is set to 1, (1) OS_ARG_CHK_EN OSFlagPost()

makes sure that the ‘handle’ pgrp is not a NULL pointer and that pgrp points to an event

flag group that should have been created by .OSFlagCreate()

 & (4) & (5) Depending on the option you specified in the opt argument of ,(3) OSFlagPost()

the flags specified in the flags argument will either be SET ()when opt == OS_FLAG_SET

or CLEARED (). If opt is not one of the two choices, the callwhen opt == OS_FLAG_CLR

is aborted and an error code is returned to the caller.

 We next start by assuming that POSTing doesn’t make a higher priority task(6)

ready-to-run and thus, we set the BOOLEAN variable sched to FALSE. If this

assumption is not verified because we will make a higher-priority-task ready-to-run then

sched will simply be set to TRUE.

 We then go through the wait list to see if any task is waiting on one or more events.(7)

 & (16) If the wait list is empty, we simply get the current state of the event flag bits and(15)

return this information to the caller.

 If there is one or more tasks waiting on the event flag group, we go through the list of (8)

 to see if the new event flag bits now satisfies any of the waiting taskOS_FLAG_NODEs

µC/OS-II User's Manual

275Copyright 2015 Micrium Inc.

1.

2.

3.

4.

conditions. Each one of the tasks can be waiting for one of four conditions:

ALL of the bits specified in the PEND call to be set.

ANY of the bits specified in the PEND call to be set.

ALL of the bits specified in the PEND call to be cleared.

ANY of the bits specified in the PEND call to be cleared.

 & (10) Note that the last two condition can be ‘compiled-out’ by setting (9)

 to 0 (see). You would do this if you didn’t need theOS_FLAG_WAIT_CLR_EN OS_CFG.H

functionality of waiting for cleared bits and/or you need to reduce the amount of ROM in

your product. When a waiting task’s condition is satisfied, the waiting task is readied by

calling (see Listing 9.9). I will only discuss the first wait conditionOS_FlagTaskRdy()

because the other cases are similar enough.

 Because a task is made ready-to-run, the scheduler will have to be called. However, we(11)

will only do this after going through all waiting tasks because, there is no need to call the

scheduler every time a task is made ready-to-run.

 We proceed to the next node by following the linked list.(12)

You should note that interrupts are disabled while we are going through the wait list. The

implication is that can potentially disable interrupts for a long period ofOSFlagPost()

time, especially if multiple tasks are made ready-to-run. However, execution time is

bounded and still deterministic.

 & (14) When we have gone through the whole waiting list, we examine the sched flag to(13)

see if we need to run the scheduler and thus possibly perform a context switch to a

higher priority task that just received the event flag(s) it was waiting for.

 & (16) returns the current state of the event flag group.(15) OSFlagPost()

As previously mentioned, the code in listing 9.8 is executed to make a task ready-to-run.

µC/OS-II User's Manual

276Copyright 2015 Micrium Inc.

static BOOLEAN OS_FlagTaskRdy (OS_FLAG_NODE *pnode, OS_FLAGS flags_rdy)
{
 OS_TCB *ptcb;
 BOOLEAN sched;

 ptcb = (OS_TCB *)pnode->OSFlagNodeTCB;
 ptcb->OSTCBDly = 0;
 ptcb->OSTCBFlagsRdy = flags_rdy;
 ptcb->OSTCBStat &= ~OS_STAT_FLAG;
 if (ptcb->OSTCBStat == OS_STAT_RDY) { (1)
 OSRdyGrp |= ptcb->OSTCBBitY;
 OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
 sched = TRUE; (2)
 } else {
 sched = FALSE; (3)
 }
 OS_FlagUnlink(pnode); (4)
 return (sched);
}

Listing - Listing 9.8, Make a waiting Task Ready-to-Run.

 & (2) & (3) Note that even though this function ‘removes’ the waiting task from the(1)

event flag group wait list, the task could still be suspended and may not be ready-to-run.

This is why the BOOLEAN variable sched is used and returned to the caller.

 This is a standard procedure in µC/OS-II (see section 6.02, Making a Task Ready) except(4)

for the fact that the needs to be unlinked from the waiting list of the eventOS_FLAG_NODE

flag group as well as the task’s .OS_TCB

The unlinking of the is performed by the function as shown inOS_FLAG_NODE OS_FlagUnlink()

listing 9.9. Figure 9.5 shows the four possible locations of an which needs to beOS_FLAG_NODE

removed from the event flag wait list. This is a classical doubly linked list removal problem

except that there are also other pointers to adjust.

µC/OS-II User's Manual

277Copyright 2015 Micrium Inc.

void OS_FlagUnlink (OS_FLAG_NODE *pnode)
{
#if OS_TASK_DEL_EN > 0
 OS_TCB *ptcb;
#endif
 OS_FLAG_GRP *pgrp;
 OS_FLAG_NODE *pnode_prev;
 OS_FLAG_NODE *pnode_next;

 pnode_prev = pnode->OSFlagNodePrev; (1)
 pnode_next = pnode->OSFlagNodeNext; (2)
 if (pnode_prev == (OS_FLAG_NODE *)0) { (3)
 pgrp = pnode->OSFlagNodeFlagGrp; (4)
 pgrp->OSFlagWaitList = (void *)pnode_next; (5)
 if (pnode_next != (OS_FLAG_NODE *)0) { (6)
 pnode_next->OSFlagNodePrev = (OS_FLAG_NODE *)0; (7)
 }
 } else {
 pnode_prev->OSFlagNodeNext = pnode_next; (8)
 if (pnode_next != (OS_FLAG_NODE *)0) { (9)
 pnode_next->OSFlagNodePrev = pnode_prev; (10)
 }
 }
#if OS_TASK_DEL_EN > 0
 ptcb = (OS_TCB *)pnode->OSFlagNodeTCB; (11)
 ptcb->OSTCBFlagNode = (void *)0; (12)
#endif
}

Listing - Listing 9.9, Unlinking an

 & (2) starts off by setting up two local pointers: pnode_next and(1) OS_FlagUnlink()

pnode_prev which point to the next and previous in the wait list,OS_FLAG_NODE

respectively.

 & F9.5(A, B) The previous pointer is examined to see if we have the first two cases of(3)

figure 9.6 (an which is the first node in the wait list).OS_FLAG_NODE

 & (5) If the is the first node, the wait list pointer of the event flag group(4) OS_FLAG_NODE

will need to point to the node immediately after the to remove.OS_FLAG_NODE

 & (7)(6)

F9.5(B) If there is an to the right of the node to delete then, that node willOS_FLAG_NODE

now point to where the previous pointer of the node to delete is pointing to which is of

course a NULL pointer since the node to remove was the first one.

 & F9.5(C, D) Because the node to delete is not the first node in the wait list, the node to(8)

µC/OS-II User's Manual

278Copyright 2015 Micrium Inc.

the left of the node to delete must now point to the node to the right of the node to delete.

 & (10) If there is a node to the right of the node to delete, the previous pointer of that(9)

node must now point to the previous node of the node to delete.

 & (12) In all cases, the field must now point to NULL because the node(11) .OSTCBFlagNode

to be deleted will no longer exist once it’s deallocated from the task that created the node

in the first place.

Figure - Figure 9.5, Removing an OS_FLAG_NODE from the wait list

Figures 9.6 through 9.9 shows the before and after for each case mentioned. The number in

parenthesis corresponds to the number in parenthesis of listing 9.9. You will notice that

 updates at most three pointers. Because the node being removed exist on theOS_FlagUnlink()

stack of the task that is being readied (it was allocated by), that node willOSFlagPend()

automatically disappear! As far as the task that pended on the event flag is concerned, it

doesn’t even know about the .OS_FLAG_NODE

µC/OS-II User's Manual

279Copyright 2015 Micrium Inc.

Figure - Figure 9.6, Removing an OS_FLAG_NODE from the wait list, Case A

Figure - Figure 9.7, Removing an OS_FLAG_NODE from the wait list, Case B

µC/OS-II User's Manual

280Copyright 2015 Micrium Inc.

Figure - Figure 9.8, Removing an OS_FLAG_NODE from the wait list, Case C

Figure - Figure 9.9, Removing an OS_FLAG_NODE from the wait list, Case D

µC/OS-II User's Manual

281Copyright 2015 Micrium Inc.

1.

2.

Looking for event(s) of an Event Flag Group, OSFlagAccept()

The code to look for desired event(s) from an event flag group without waiting is shown in

listing 9.10. This function is quite similar to except that the caller will not beOSFlagPend()

suspended (i.e. blocked) should the event(s) not be present. The only two things that are

different are:

OSFlagAccept() can be called from an ISR unlike some of the other calls.

If the conditions are NOT met, the call does not block and simply returns an error code

that the caller should check.

µC/OS-II User's Manual

282Copyright 2015 Micrium Inc.

OS_FLAGS OSFlagAccept (OS_FLAG_GRP *pgrp, OS_FLAGS flags, INT8U wait_type, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAGS flags_cur;
 OS_FLAGS flags_rdy;
 BOOLEAN consume;
#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) {
 *err = OS_FLAG_INVALID_PGRP;
 return ((OS_FLAGS)0);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) {
 *err = OS_ERR_EVENT_TYPE;
 return ((OS_FLAGS)0);
 }
#endif
 if (wait_type & OS_FLAG_CONSUME) {
 wait_type &= ~OS_FLAG_CONSUME;
 consume = TRUE;
 } else {
 consume = FALSE;
 }
 OS_ENTER_CRITICAL();
 switch (wait_type) {
 case OS_FLAG_WAIT_SET_ALL:
 flags_rdy = pgrp->OSFlagFlags & flags;
 if (flags_rdy == flags) {
 if (consume == TRUE) {
 pgrp->OSFlagFlags &= ~flags_rdy;
 }
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 } else {
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_ERR_NOT_RDY;
 }
 break;
 case OS_FLAG_WAIT_SET_ANY:
 flags_rdy = pgrp->OSFlagFlags & flags;
 if (flags_rdy != (OS_FLAGS)0) {
 if (consume == TRUE) {
 pgrp->OSFlagFlags &= ~flags_rdy;
 }
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 } else {
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_ERR_NOT_RDY;
 }
 break;
#if OS_FLAG_WAIT_CLR_EN > 0
 case OS_FLAG_WAIT_CLR_ALL:
 flags_rdy = ~pgrp->OSFlagFlags & flags;
 if (flags_rdy == flags) {
 if (consume == TRUE) {
 pgrp->OSFlagFlags |= flags_rdy;
 }
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 } else {

µC/OS-II User's Manual

283Copyright 2015 Micrium Inc.

 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_ERR_NOT_RDY;
 }
 break;
 case OS_FLAG_WAIT_CLR_ANY:
 flags_rdy = ~pgrp->OSFlagFlags & flags;
 if (flags_rdy != (OS_FLAGS)0) {
 if (consume == TRUE) {
 pgrp->OSFlagFlags |= flags_rdy;
 }
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 } else {
 flags_cur = pgrp->OSFlagFlags;
 OS_EXIT_CRITICAL();
 *err = OS_FLAG_ERR_NOT_RDY;
 }
 break;
#endif
 default:
 OS_EXIT_CRITICAL();
 flags_cur = (OS_FLAGS)0;
 *err = OS_FLAG_ERR_WAIT_TYPE;
 break;
 }
 return (flags_cur);
}

Listing - Listing 9.10, Looking for Event Flags without waiting.

Querying an Event Flag Group, OSFlagQuery()

OSFlagQuery() allows your code to get the current value of the event flag group. The code for

this function is shown in listing 9.11.

µC/OS-II User's Manual

284Copyright 2015 Micrium Inc.

OS_FLAGS OSFlagQuery (OS_FLAG_GRP *pgrp, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_FLAGS flags;
#if OS_ARG_CHK_EN > 0
 if (pgrp == (OS_FLAG_GRP *)0) { (1)
 *err = OS_FLAG_INVALID_PGRP;
 return ((OS_FLAGS)0);
 }
 if (pgrp->OSFlagType != OS_EVENT_TYPE_FLAG) { (2)
 *err = OS_ERR_EVENT_TYPE;
 return ((OS_FLAGS)0);
 }
#endif
 OS_ENTER_CRITICAL();
 flags = pgrp->OSFlagFlags; (3)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (flags); (4)
}

Listing - Listing 9.11, Obtaining the current flags of an event flag group.

 & (2) As with all µC/OS-II calls, performs argument checking if this(1) OSFlagQuery()

feature is enabled when is set to 1 in .OS_ARG_CHK_EN OS_CFG.H

 & (4) If there are no errors, obtains the current state of the event flags and(3) OSFlagQuery()

returns this to the caller.

OSFlagQuery() is passed two arguments: pgrp contains a pointer to the event flag group which

was returned by when the event flag group is created and, err which is aOSFlagCreate()

pointer to an error code that will let the caller know whether the call was successful or not.

µC/OS-II User's Manual

285Copyright 2015 Micrium Inc.

Message Mailbox Management

Mailbox Configuration

A message mailbox (or simply a mailbox) is a µC/OS-II object that allows a task or an ISR to

send a pointer-sized variable to another task. The pointer is typically initialized to point to

some application specific data structure containing a “message.” µC/OS-II provides seven

services to access mailboxes: , , , , OSMboxCreate() OSMboxDel() OSMboxPend() OSMboxPost()

, , and .OSMboxPostOpt() OSMboxAccept() OSMboxQuery()

To enable µC/OS-II message mailbox services, you must set configuration constants in

. Specifically, table 10.1 shows which services are compiled based on the value of OS_CFG.H

configuration constants found in . You should note that NONE of the mailbox OS_CFG.H

services are enabled when is set to 0. To enable specific features (i.e. service) listedOS_MBOX_EN

in Table 10.1, simply set the configuration constant to 1. You will notice that OSMboxCreate()

and cannot be individually disabled like the other services. That’s because theyOSMboxPend()

are always needed when you enable µC/OS-II message mailbox management. You must enable

at least one of the post services: and .OSMboxPost() OSMboxPostOpt()

µC/OS-II Mailbox Service Enabled when set to 1 in OS_CFG.H

OSMboxAccept() OS_MBOX_ACCEPT_EN

OSMboxCreate()

OSMboxDel() OS_MBOX_DEL_EN

OSMboxPend()

OSMboxPost() OS_MBOX_POST_EN

OSMboxPostOpt() OS_MBOX_POST_OPT_EN

OSMboxQuery() OS_MBOX_QUERY_EN

Table - Table 10.1 Mailbox configuration constants in OS_CFG.H.

Figure 10.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a

message mailbox. Note that the symbology used to represent a mailbox is an I-beam. The

hourglass represents a timeout that can be specified with the call. The content ofOSMboxPend()

µC/OS-II User's Manual

286Copyright 2015 Micrium Inc.

the mailbox is a pointer to a message. What the pointer points to is application specific. A

mailbox can only contain one pointer (mailbox is full) or a pointer to NULL (mailbox is

empty).

As you can see from Figure 10.1, a task or an ISR can call or .OSMboxPost() OSMboxPostOpt()

However, only tasks are allowed to call , and . YourOSMboxDel() OSMboxPend() OSMboxQuery()

application can have just about any number of mailboxes. The limit is set by in OS_MAX_EVENTS

. OS_CFG.H

Figure - Figure 10.1 Relationships between tasks, ISRs, and a message mailbox.

Creating a Mailbox, OSMboxCreate()

A mailbox needs to be created before it can be used. Creating a mailbox is accomplished by

calling and specifying the initial value of the pointer. Typically, the initialOSMboxCreate()

value is a NULL pointer, but a mailbox can initially contain a message. If you use the mailbox

to signal the occurrence of an event (i.e., send a message), you typically initialize it to a NULL

pointer because the event (most likely) has not occurred. If you use the mailbox to access a

shared resource, you initialize the mailbox with a non-NULL pointer. In this case, you

basically use the mailbox as a binary semaphore.

The code to create a mailbox is shown in Listing 10.1.

µC/OS-II User's Manual

287Copyright 2015 Micrium Inc.

OS_EVENT *OSMboxCreate (void *msg)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr; (1)
#endif
 OS_EVENT *pevent;

 if (OSIntNesting > 0) { (2)
 return ((OS_EVENT *)0);
 }
 OS_ENTER_CRITICAL();
 pevent = OSEventFreeList; (3)
 if (OSEventFreeList != (OS_EVENT *)0) { (4)
 OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr; (5)
 }
 OS_EXIT_CRITICAL();
 if (pevent != (OS_EVENT *)0) { (6)
 pevent->OSEventType = OS_EVENT_TYPE_MBOX; (7)
 pevent->OSEventCnt = 0; (8)
 pevent->OSEventPtr = msg; (9)
 OS_EventWaitListInit(pevent); (10)
 }
 return (pevent); (11)
}

Listing - Listing 10.1 Creating a mailbox.

 A local variable called cpu_sr to support #3 is allocated.(1) OS_CRITICAL_METHOD

 starts by making sure you are not calling this function from an ISR(2) OSMboxCreate()

because this is not allowed. All kernel objects need to be created from task level code or

before multitasking starts.

 then attempts to obtain an ECB (Event Control Block) from the free list(3) OSMboxCreate()

of ECBs (see Figure 6.5).

(4)

 The linked list of free ECBs is adjusted to point to the next free ECB.(5)

(6)

 If there is an ECB available, the ECB type is set to . Other (7) OS_EVENT_TYPE_MBOX

 function calls will check this structure member to make sure that the ECB isOSMbox???()

of the proper type (i.e. a mailbox). This prevents you from calling on anOSMboxPost()

ECB that was created for use as a message queue.

µC/OS-II User's Manual

288Copyright 2015 Micrium Inc.

 The field is then initialized to zero since this field is not used by message(8) .OSEventCnt

mailboxes.

 The initial value of the message is stored in the ECB.(9)

 The wait list is then initialized by calling [see 6.??, Initializing(10) OS_EventWaitListInit()

an ECB,]. Because the mailbox is being initialized, there are noOS_EventWaitListInit()

tasks waiting for it and thus, clears the and OS_EventWaitListInit() .OSEventGrp

 fields of the ECB..OSEventTbl[]

 Finally, returns a pointer to the ECB. This pointer must be used in(11) OSMboxCreate()

subsequent calls to manipulate mailboxes [, , , OSMboxAccept() OSMboxDel() OSMboxPend()

, and]. The pointer is basically used as theOSMboxPost() OSMboxPostOpt() OSMboxQuery()

mailbox handle. If there are no more ECBs, returns a NULL pointer.OSMboxCreate()

You should make it a habbit to check return values to ensure that you are getting the

desired results. Passing NULL pointers to µC/OS-II will not make it fail because

µC/OS-II validates arguments (only if is set to 1, though). Figure 10.2OS_ARG_CHK_EN

shows the content of the ECB just before returns.OSMboxCreate()

Figure - Figure 10.2 ECB just before OSMboxCreate() returns.

µC/OS-II User's Manual

289Copyright 2015 Micrium Inc.

Deleting a Mailbox, OSMboxDel()

The code to delete a mailbox is shown in listing 10.2 and this code will only be generated by

the compiler if is set to 1 in . This is a function you must use withOS_MBOX_DEL_EN OS_CFG.H

caution because multiple tasks could attempt to access a deleted mailbox. You should always

use this function with great care. Generally speaking, before you would delete a mailbox, you

would first delete all the tasks that can access the mailbox.

µC/OS-II User's Manual

290Copyright 2015 Micrium Inc.

OS_EVENT *OSMboxDel (OS_EVENT *pevent, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN tasks_waiting;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_DEL_ISR;
 return (pevent);
 }
#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (2)
 *err = OS_ERR_PEVENT_NULL;
 return (pevent);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) { (3)
 *err = OS_ERR_EVENT_TYPE;
 return (pevent);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) { (4)
 tasks_waiting = TRUE;
 } else {
 tasks_waiting = FALSE;
 }
 switch (opt) {
 case OS_DEL_NO_PEND:
 if (tasks_waiting == FALSE) {
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; (5)
 pevent->OSEventPtr = OSEventFreeList; (6)
 OSEventFreeList = pevent; (7)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return ((OS_EVENT *)0); (8)
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_ERR_TASK_WAITING;
 return (pevent);
 }

 case OS_DEL_ALWAYS:
 while (pevent->OSEventGrp != 0x00) { (9)
 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MBOX); (10)
 }
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; (11)
 pevent->OSEventPtr = OSEventFreeList; (12)
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 if (tasks_waiting == TRUE) {
 OS_Sched(); (13)
 }
 *err = OS_NO_ERR;
 return ((OS_EVENT *)0); (14)

 default:
 OS_EXIT_CRITICAL();
 *err = OS_ERR_INVALID_OPT;
 return (pevent);
 }
}

Listing - Listing 10.2, Deleting a Mailbox

µC/OS-II User's Manual

291Copyright 2015 Micrium Inc.

 starts by making sure that this function is not called from an ISR because(1) OSMboxDel()

that’s not allowed.

(2)

 We then validate pevent to ensure that it’s not a NULL pointer and that it points to an(3)

ECB that was created as a mailbox.

 then determines whether there are any tasks waiting on the mailbox. The(4) OSMboxDel()

flag tasks_waiting is set accordingly.

Based on the option (i.e., opt) specified in the call, will either delete theOSMboxDel()

mailbox only if no tasks are pending on the mailbox () or, deleteopt == OS_DEL_NO_PEND

the mailbox even if tasks are waiting ().opt == OS_DEL_ALWAYS

(5)

(6)

 When opt is set to and there is no task waiting on the mailbox, (7) OS_DEL_NO_PEND

 marks the ECB as unused and the ECB is returned to the free list of ECBs.OSMboxDel()

This will allow another mailbox (or any other ECB based object) to be created.

 You will note that returns a NULL pointer since, at this point, the mailbox(8) OSMboxDel()

should no longer be accessed through the original pointer. You ought to call OSMboxDel()

as follows:

MbxPtr = OSMboxDel(MbxPtr, opt, &err);

This allows the pointer to the mailbox to be altered by the call. returns anOSMboxDel()

error code if there were task waiting on the mailbox (i.e.) becauseOS_ERR_TASK_WAITING

by specifying you indicated that you didn’t want to delete the mailbox ifOS_DEL_NO_PEND

there are tasks waiting on the mailbox.

(9)

µC/OS-II User's Manual

292Copyright 2015 Micrium Inc.

 When opt is set to then all tasks waiting on the mailbox will be readied.(10) OS_DEL_ALWAYS

Each task will it received a NULL message. Each task should examine the returnedthink

pointer to make sure it’s non-NULL. Also, you should note that interrupts are disabled

while each task is being readied. This, of course, increases interrupt latency of your

system.

(11)

 Once all pending tasks are readied, marks the ECB as unused and the ECB(12) OSMboxDel()

is returned to the free list of ECBs.

 The scheduler is called only if there were tasks waiting on the mailbox.(13)

 Again, you will note that returns a NULL pointer since, at this point, the(14) OSMboxDel()

mailbox should no longer be accessed through the original pointer.

Waiting for a Message at a Mailbox, OSMboxPend()

The code to wait for a message to arrive at a mailbox is shown in Listing 10.3.

µC/OS-II User's Manual

293Copyright 2015 Micrium Inc.

void *OSMboxPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 void *msg;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_PEND_ISR;
 return ((void *)0);
 }
#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (2)
 *err = OS_ERR_PEVENT_NULL;
 return ((void *)0);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) { (3)
 *err = OS_ERR_EVENT_TYPE;
 return ((void *)0);
 }
#endif
 OS_ENTER_CRITICAL();
 msg = pevent->OSEventPtr; (4)
 if (msg != (void *)0) {
 pevent->OSEventPtr = (void *)0; (5)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (msg); (6)
 }
 OSTCBCur->OSTCBStat |= OS_STAT_MBOX; (7)
 OSTCBCur->OSTCBDly = timeout; (8)
 OS_EventTaskWait(pevent); (9)
 OS_EXIT_CRITICAL();
 OS_Sched(); (10)
 OS_ENTER_CRITICAL();
 msg = OSTCBCur->OSTCBMsg;
 if (msg != (void *)0) { (11)
 OSTCBCur->OSTCBMsg = (void *)0;
 OSTCBCur->OSTCBStat = OS_STAT_RDY;
 OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (msg); (12)
 }
 OS_EventTO(pevent); (13)
 OS_EXIT_CRITICAL();
 *err = OS_TIMEOUT;
 return ((void *)0); (14)
}

Listing - Listing 10.3 Waiting for a message at a Mailbox (blocking),

 checks to see if the function was called by an ISR. It doesn’t make sense to(1) OSMboxPend()

call from an ISR because an ISR cannot be made to wait. Instead, youOSMboxPend()

should call (see section 10.05).OSMboxAccept()

(2)

µC/OS-II User's Manual

294Copyright 2015 Micrium Inc.

 If (see) is set to 1, checks that pevent is not a(3) OS_ARG_CHK_EN OS_CFG.H OSMboxPend()

NULL pointer and the ECB being pointed to by pevent has been created by

.OSMboxCreate()

(4)

(5)

 If a message has been deposited in the mailbox (non NULL pointer), the message is(6)

extracted from the mailbox and replaced with a NULL pointer and the function returns to

its caller with the message that was in the mailbox. An error code is also set indicating

success. If your code calls , this is the outcome you are looking for becauseOSMboxPend()

it indicates that another task or an ISR already deposited a message. This happens to be

the fastest path through .OSMboxPend()

If the mailbox was empty, the calling task needs to be put to sleep until another task (or

an ISR) sends a message through the mailbox (see section 10.04). allowsOSMboxPend()

you to specify a timeout value (in integral number of ticks) as one of its arguments (i.e.,

timeout). This feature is useful to avoid waiting indefinitely for a message to arrive at the

mailbox. If the timeout value is nonzero, suspends the task until theOSMboxPend()

mailbox receives a message or the specified timeout period expires. Note that a timeout

value of 0 indicates that the task is willing to wait forever for a message to arrive.

 To put the calling task to sleep, sets the status flag in the task’s TCB (Task(7) OSMboxPend()

Control Block) to indicate that the task is suspended waiting at a mailbox.

 The timeout is also stored in the TCB so that it can be decremented by .(8) OSTimeTick()

You should recall (see section 3.11, Clock Tick) that decrements each ofOSTimeTick()

the created task’s field if it’s nonzero..OSTCBDly

 The actual work of putting the task to sleep is done by [see section(9) OS_EventTaskWait()

6.06, Making a Task Wait for an Event,].OS_EventTaskWait()

 Because the calling task is no longer ready to run, the scheduler is called to run the next(10)

highest priority task that is ready to run. As far as your task is concerned, it made a call

µC/OS-II User's Manual

295Copyright 2015 Micrium Inc.

to and it doesn’t know that it will be suspended until a message arrives.OSMboxPend()

When the mailbox receives a message (or the timeout period expires) willOSMboxPend()

resume execution immediately after the call to .OS_Sched()

 When returns, checks to see if a message was placed in the(11) OS_Sched() OSMboxPend()

task’s TCB by .OSMboxPost()

 If so, the call is successful and the message is returned to the caller.(12)

 If a message is not received then must have returned because of a timeout.(13) OS_Sched()

The calling task is then removed from the mailbox wait list by calling .OS_EventTO()

 Note that the returned pointer is set to NULL because there is no message to return. The(14)

calling task should either examine the contents of the return pointer or the return code to

determine whether a valid message was received.

Sending a message to a mailbox, OSMboxPost()

The code to deposit a message in a mailbox is shown in Listing 10.4.

µC/OS-II User's Manual

296Copyright 2015 Micrium Inc.

INT8U OSMboxPost (OS_EVENT *pevent, void *msg)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
 if (msg == (void *)0) {
 return (OS_ERR_POST_NULL_PTR);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) {
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) { (2)
 OS_EventTaskRdy(pevent, msg, OS_STAT_MBOX); (3)
 OS_EXIT_CRITICAL();
 OS_Sched(); (4)
 return (OS_NO_ERR);
 }
 if (pevent->OSEventPtr != (void *)0) { (5)
 OS_EXIT_CRITICAL();
 return (OS_MBOX_FULL);
 }
 pevent->OSEventPtr = msg; (6)
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 10.4 Posting a message to a mailbox,

 If is set to 1 in , checks to see that pevent is not a(1) OS_ARG_CHK_EN OS_CFG.H OSMboxPost()

NULL pointer, that the message being posted is not a NULL pointer and finally, makes

sure that the ECB is a mailbox.

 then checks to see if any task is waiting for a message to arrive at the(2) OSMboxPost()

mailbox. There are tasks waiting when the field in the ECB contains a.OSEventGrp

nonzero value.

 The highest priority task waiting for the message is removed from the wait list by (3)

 [see section 6.05, Making a Task Ready,], andOS_EventTaskRdy() OS_EventTaskRdy()

this task is made ready to run.

 is then called to see if the task made ready is now the highest priority task(4) OS_Sched()

ready to run. If it is, a context switch results [only if is called from a task]OSMboxPost()

µC/OS-II User's Manual

297Copyright 2015 Micrium Inc.

and the readied task is executed. If the readied task is not the highest priority task,

 returns and the task that called continues execution.OS_Sched() OSMboxPost()

 At this point, there are no tasks waiting for a message at the specified mailbox. (5)

 then checks to see that there isn’t already a message in the mailbox.OSMboxPost()

Because the mailbox can only hold one message, an error code is returned if we get this

outcome.

 If there are no tasks waiting for a message to arrive at the mailbox, then the pointer to the(6)

message is saved in the mailbox. Storing the pointer in the mailbox allows the next task

to call to get the message immediately.OSMboxPend()

Note that a context switch does not occur if is called by an ISR because contextOSMboxPost()

switching from an ISR only occurs when is called at the completion of the ISROSIntExit()

and from the last nested ISR (see section 3.09, Interrupts under µC/OS-II).

Sending a message to a mailbox, OSMboxPostOpt()

You can also post a message to a mailbox using an alternate and more powerful function called

. The reason there are two post calls is for backwards compatibility withOSMboxPostOpt()

previous versions of µC/OS-II. is the newer function and can replace OSMboxPostOpt()

. In addition, allows posting a message to all tasks (i.e.OSMboxPost() OSMboxPostOpt()

broadcast) waiting on the mailbox. The code to deposit a message in a mailbox is shown in

Listing 10.5.

µC/OS-II User's Manual

298Copyright 2015 Micrium Inc.

INT8U OSMboxPostOpt (OS_EVENT *pevent, void *msg, INT8U opt)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
 if (msg == (void *)0) {
 return (OS_ERR_POST_NULL_PTR);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) {
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) { (2)
 if ((opt & OS_POST_OPT_BROADCAST) != 0x00) { (3)
 while (pevent->OSEventGrp != 0x00) { (4)
 OS_EventTaskRdy(pevent, msg, OS_STAT_MBOX); (5)
 }
 } else {
 OS_EventTaskRdy(pevent, msg, OS_STAT_MBOX); (6)
 }
 OS_EXIT_CRITICAL();
 OS_Sched(); (7)
 return (OS_NO_ERR);
 }
 if (pevent->OSEventPtr != (void *)0) { (8)
 OS_EXIT_CRITICAL();
 return (OS_MBOX_FULL);
 }
 pevent->OSEventPtr = msg; (9)
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 10.5 Posting a message to a Mailbox,

 If is set to 1 in , checks to see that pevent is(1) OS_ARG_CHK_EN OS_CFG.H OSMboxPostOpt()

not a NULL pointer, that the message being posted is not a NULL pointer and finally,

checks to make sure that the ECB is a mailbox.

 then checks to see if any task is waiting for a message to arrive at the(2) OSMboxPost()

mailbox. There are tasks waiting when the field in the ECB contains a.OSEventGrp

nonzero value.

(3)

(4)

µC/OS-II User's Manual

299Copyright 2015 Micrium Inc.

 If you set the bit in the opt argument then all tasks qaiting for a(5) OS_POST_OPT_BROADCAST

message will receive the message. All tasks waiting for the message are removed from

the wait list by [see section 6.05, Making a Task Ready, OS_EventTaskRdy()

]. You should notice that interrupt disable time is proportional to theOS_EventTaskRdy()

number of tasks waiting for a message from the mailbox.

 If a broadcast was not requested then, only the highest priority task waiting for a(6)

message will be made ready to run. The highest priority task waiting for the message is

removed from the wait list by .OS_EventTaskRdy()

 is then called to see if the task made ready is now the highest priority task(7) OS_Sched()

ready to run. If it is, a context switch results [only if is called from aOSMboxPostOpt()

task] and the readied task is executed. If the readied task is not the highest priority task,

 returns and the task that called continues execution.OS_Sched() OSMboxPostOpt()

 If nobody is waiting for a message, the message to post needs to be placed in the(8)

mailbox. In this case, makes sure that there isn’t already a message inOSMboxPostOpt()

the mailbox. Remember that a mailbox can only contain one message. An error code

would be returned if an attempt was made to add a message to an already full mailbox.

 then deposits the message in the mailbox.(9) OSMboxPostOpt()

Note that a context switch does not occur if is called by an ISR becauseOSMboxPostOpt()

context switching from an ISR only occurs when is called at the completion of theOSIntExit()

ISR and from the last nested ISR (see section 3.10, Interrupts under µC/OS-II).

Getting a message without waiting (non-blocking),
OSMboxAccept()

You can obtain a message from a mailbox without putting a task to sleep if the mailbox is

empty. This is accomplished by calling , shown in Listing 10.6.OSMboxAccept()

µC/OS-II User's Manual

300Copyright 2015 Micrium Inc.

void *OSMboxAccept (OS_EVENT *pevent)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 void *msg;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return ((void *)0);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) { (2)
 return ((void *)0);
 }
#endif
 OS_ENTER_CRITICAL();
 msg = pevent->OSEventPtr; (3)
 pevent->OSEventPtr = (void *)0; (4)
 OS_EXIT_CRITICAL();
 return (msg); (5)
}

Listing - Listing 10.6 Getting a message without waiting.

(1)

 If is set to 1 in , starts by checking that pevent is(2) OS_ARG_CHK_EN OS_CFG.H OSMboxAccept()

not a NULL pointer and that the ECB being pointed to by pevent has been created by

.OSMboxCreate()

 then gets the current contents of the mailbox in order to determine(3) OSMboxAccept()

whether a message is available (i.e., a non-NULL pointer).

 If a message is available, the mailbox is emptied. You should note that this operation is(4)

done even if the message already contains a NULL pointer. This is done for performance

considerations.

 Finally, the original contents of the mailbox is returned to the caller.(5)

The code that called must examine the returned value. If OSMboxAccept() OSMboxAccept()

returns a NULL pointer, then a message was not available. A non-NULL pointer indicates that

a message was deposited in the mailbox. An ISR should use instead of OSMboxAccept()

.OSMboxPend()

µC/OS-II User's Manual

301Copyright 2015 Micrium Inc.

You can use to flush (i.e., empty) the contents of a mailbox.OSMboxAccept()

Obtaining the status of a mailbox, OSMboxQuery()

OSMboxQuery() allows your application to take a snapshot of an ECB used for a message

mailbox. The code for this function is shown in Listing 10.7. is passed twoOSMboxQuery()

arguments: pevent contains a pointer to the message mailbox, which is returned by

 when the mailbox is created, and pdata is a pointer to a data structure (OSMboxCreate()

, see) that holds information about the message mailbox. YourOS_MBOX_DATA uCOS_II.H

application needs to allocate a variable of type that will be used to receive theOS_MBOX_DATA

information about the desired mailbox. I decided to use a new data structure because the caller

should only be concerned with mailbox-specific data, as opposed to the more generic OS_EVENT

data structure, which contains two additional fields (and). .OSEventCnt .OSEventType

 contains the current contents of the message () and the list of tasks waitingOS_MBOX_DATA .OSMsg

for a message to arrive (and)..OSEventTbl[] .OSEventGrp

µC/OS-II User's Manual

302Copyright 2015 Micrium Inc.

INT8U OSMboxQuery (OS_EVENT *pevent, OS_MBOX_DATA *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 INT8U *psrc;
 INT8U *pdest;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_MBOX) { (2)
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 OS_ENTER_CRITICAL();
 pdata->OSEventGrp = pevent->OSEventGrp; (3)
 psrc = &pevent->OSEventTbl[0];
 pdest = &pdata->OSEventTbl[0];

#if OS_EVENT_TBL_SIZE > 0
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 1
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 2
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 3
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 4
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 5
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 6
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 7
 *pdest = *psrc;
#endif
 pdata->OSMsg = pevent->OSEventPtr; (4)
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 10.7 Obtaining the status of a mailbox.

(1)

µC/OS-II User's Manual

303Copyright 2015 Micrium Inc.

 As always, if is set to 1, checks that pevent is not a NULL(2) OS_ARG_CHK_EN OSMboxQuery()

pointer and that it points to an ECB containing a mailbox.

 then copies the wait list. You should note that I decided to do the copy as(3) OSMboxQuery()

inline code instead of using a loop for performance reasons.

 Finally, the current message, from the structure is copied to the (4) OS_EVENT OS_MBOX_DATA

structure.

Using a Mailbox as a Binary Semaphore

A message mailbox can be used as a binary semaphore by initializing the mailbox with a

non-NULL pointer [(void *)1 works well]. A task requesting the “semaphore” calls

 and releases the “semaphore” by calling . Listing 10.8 shows howOSMboxPend() OSMboxPost()

this works. You can use this technique to conserve code space if your application only needs

binary semaphores and mailboxes. In this case, set to 1 and to 0 so thatOS_MBOX_EN OS_SEM_EN

you use only mailboxes instead of both mailboxes and semaphores.

OS_EVENT *MboxSem;

void Task1 (void *pdata)
{
 INT8U err;

 for (;;) {
 OSMboxPend(MboxSem, 0, &err); /* Obtain access to resource(s) */
 .
 . /* Task has semaphore, access resource(s) */
 .
 OSMboxPost(MboxSem, (void *)1); /* Release access to resource(s) */
 }
}

Listing - Listing 10.8 Using a mailbox as a binary semaphore.

µC/OS-II User's Manual

304Copyright 2015 Micrium Inc.

Using a Mailbox instead of OSTimeDly()

The timeout feature of a mailbox can be used to simulate a call to . As shown inOSTimeDly()

Listing 10.9, Task1() resumes execution after the time period expires if no message is received

within the specified TIMEOUT. This is basically identical to . However,OSTimeDly(TIMEOUT)

the task can be resumed by Task2() when Task(2) post a “dummy” message to the mailbox

before the timeout expires. This is the same as calling had Task1() called OSTimeDlyResume()

. Note that the returned message is ignored because you are not actually looking toOSTimeDly()

get a message from another task or an ISR.

OS_EVENT *MboxTimeDly;

void Task1 (void *pdata)
{
 INT8U err;

 for (;;) {
 OSMboxPend(MboxTimeDly, TIMEOUT, &err); /* Delay task */
 .
 . /* Code executed after time delay or dummy message is received */
 .
 }
}

void Task2 (void *pdata)
{
 INT8U err;

 for (;;) {
 OSMboxPost(MboxTimeDly, (void *)1); /* Cancel delay for Task1 */
 .
 .
 }
}

Listing - Listing 10.9 Using a mailbox as a time delay.

µC/OS-II User's Manual

305Copyright 2015 Micrium Inc.

Message Queue Management
A message queue (or simply a queue) is a µC/OS-II object that allows a task or an ISR to send

pointer-sized variables to another task. Each pointer typically is initialized to point to some

application-specific data structure containing a message. µC/OS-II provides nine services to

access message queues: , , , , , OSQCreate() OSQDel() OSQPend() OSQPost() OSQPostFront()

, , , and .OSQPostOpt() OSQAccept() OSQFlush() OSQQuery()

Message Queue Configuration

To enable µC/OS-II message queue services, you must set configuration constants in .OS_CFG.H

Specifically, table 11.1 shows which services are compiled based on the value of configuration

constants found in . You should note that NONE of the mailbox services are enabledOS_CFG.H

when is set to 0 or is set to 0. To enable a specific feature (i.e. service),OS_Q_EN OS_MAX_QS

simply set the corresponding configuration constant to 1. You will notice that and OSQCreate()

 cannot be individually disabled like the other services. That’s because they areOSQPend()

always needed when you enable µC/OS-II message mailbox management. You must enable at

least one of the post services: , and .OSQPost() OSQPostFront() OSQPostOpt()

µC/OS-II Queue Service Enabled when set to 1 in OS_CFG.H

OSQAccept() OS_Q_ACCEPT_EN

OSQCreate()

OSQDel() OS_Q_DEL_EN

OSQFlush() OS_Q_FLUSH_EN

OSQPend()

OSQPost() OS_Q_POST_EN

OSQPostFront() OS_Q_POST_FRONT_EN

OSQPostOpt() OS_Q_POST_OPT_EN

OSQQuery() OS_Q_QUERY_EN

Table - Table 11.1 Message queue configuration constants in OS_CFG.H.

Figure 11.1 shows a flow diagram to illustrate the relationship between tasks, ISRs, and a

message queue. Note that the symbology used to represent a queue looks like a mailbox with

multiple entries. In fact, you can think of a queue as an array of mailboxes, except that there is

µC/OS-II User's Manual

306Copyright 2015 Micrium Inc.

only one wait list associated with the queue. The hourglass represents a timeout that can be

specified with the call. Again, what the pointers point to is application specific. NOSQPend()

represents the number of entries the queue holds. The queue is full when your application calls

 [or or] N times before your application has called OSQPost() OSQPostFront() OSQPostOpt()

 or .OSQPend() OSQAccept()

As you can see from Figure 11.1, a task or an ISR can call , , OSQPost() OSQPostFront()

, , or . However, only tasks are allowed to call , OSQPostOpt() OSQFlush() OSQAccept() OSQDel()

 and .OSQPend() OSQQuery()

Figure - Figure 11.1 Relationships between tasks, ISRs, and a message queue.

Figure 11.2 shows the different data structures needed to implement a message queue.

µC/OS-II User's Manual

307Copyright 2015 Micrium Inc.

Figure - Figure 11.2 Data structures used in a message queue.

 An ECB is required because you need a wait list, and using an ECB allows queue(1)

services to use some of the same code used by semaphores, mutexes and mailboxes.

 When a message queue is created, a queue control block (i.e., an , see) is(2) OS_Q OS_Q.C

allocated and linked to the ECB using the field in ..OSEventPtr OS_EVENT

 Before you create a queue, however, you need to allocate an array of pointers that(3)

contains the desired number of queue entries. In other words, the number of elements in

the array corresponds to the number of entries in the queue. The starting address of the

array is passed to as an argument as well as the size (in number of elements)OSQCreate()

of the array. In fact, you don’t actually need to use an array as long as the memory

occupies contiguous locations.

The configuration constant in specifies how many queues you areOS_MAX_QS OS_CFG.H

µC/OS-II User's Manual

308Copyright 2015 Micrium Inc.

allowed to have in your application and must be greater than 0. When µC/OS-II is initialized, a

list of free queue control blocks is created as shown in Figure11.3.

Figure - Figure 11.3 List of free queue control blocks.

A queue control block is a data structure used to maintain information about the queue. It

contains the fields described below. Note that the fields are preceded with a dot to show that

they are members of a structure as opposed to simple variables.

.OSQPtr links queue control blocks in the list of free queue control blocks. Once the queue is

created, this field is not used.

.OSQStart contains a pointer to the start of the message queue storage area. Your application

must declare this storage area before creating the queue.

.OSQEnd is a pointer to one location past the end of the queue. This pointer is used to make the

queue a circular buffer.

.OSQIn is a pointer to the location in the queue where the next message will be inserted. .OSQIn

is adjusted back to the beginning of the message storage area when equals ..OSQIn .OSQEnd

.OSQOut is a pointer to the next message to be extracted from the queue. is adjusted.OSQOut

back to the beginning of the message storage area when equals . is.OSQOut .OSQEnd .OSQOut

also used to insert a message [see and].OSQPostFront() OSQPostOpt()

.OSQSize contains the size of the message storage area. The size of the queue is determined by

your application when the queue is created. Note that µC/OS-II allows the queue to contain up

to 65,535 entries.

µC/OS-II User's Manual

309Copyright 2015 Micrium Inc.

.OSQEntries contains the current number of entries in the message queue. The queue is empty

when is 0 and full when it equals . The message queue is empty when the.OSQEntries .OSQSize

queue is created.

A message queue is basically a circular buffer as shown in Figure 11.4.

Figure - Figure 11.4 A message queue is a circular buffer of pointers.

(1)

 Each entry contains a pointer. The pointer to the next message is deposited at the entry(3)

pointed to by unless the queue is full (i.e.,) ..OSQIn .OSQEntries == .OSQSize

Depositing the pointer at implements a FIFO (First-In-First-Out) queue. This is.OSQIn

what does.OSQPost()

 µC/OS-II implements a LIFO (Last-In-First-Out) queue by pointing to the entry(2)

preceeding and depositing the pointer at that location (see and .OSQOut OSQPostFront()

).OSQPostOpt()

 The pointer is also considered full when . Message pointers are(4) .OSQEntries == .OSQSize

always extracted from the entry pointed to by ..OSQOut

µC/OS-II User's Manual

310Copyright 2015 Micrium Inc.

 The pointers and are simply markers used to establish the beginning(5) .OSQStart .OSQEnd

and end of the array so that and can wrap around to implement this.OSQIn .OSQOut

circular motion.

Creating a message queue, OSQCreate()

A message queue (or simply a queue) needs to be created before it can be used. Creating a

queue is accomplished by calling and passing it two arguments: a pointer to anOSQCreate()

array that will hold the messages and the size of this array. The array must be declared as an

array of pointers to void as follows:

void *MyArrayOfMsg[SIZE];

You would pass the address of to as well as the size of this array.MyArrayOfMsg[] OSQCreate()

The message queue is assumed to be initially empty – it doesn’t contain any messages.

The code to create a mailbox is shown in Listing 11.1.

µC/OS-II User's Manual

311Copyright 2015 Micrium Inc.

OS_EVENT *OSQCreate (void **start, INT16U size)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr; (1)
#endif
 OS_EVENT *pevent;
 OS_Q *pq;

 if (OSIntNesting > 0) { (2)
 return ((OS_EVENT *)0);
 }
 OS_ENTER_CRITICAL();
 pevent = OSEventFreeList; (3)
 if (OSEventFreeList != (OS_EVENT *)0) {
 OSEventFreeList = (OS_EVENT *)OSEventFreeList->OSEventPtr;
 }
 OS_EXIT_CRITICAL();
 if (pevent != (OS_EVENT *)0) { (4)
 OS_ENTER_CRITICAL();
 pq = OSQFreeList;
 if (pq != (OS_Q *)0) {
 OSQFreeList = OSQFreeList->OSQPtr;
 OS_EXIT_CRITICAL();
 pq->OSQStart = start; (5)
 pq->OSQEnd = &start[size];
 pq->OSQIn = start;
 pq->OSQOut = start;
 pq->OSQSize = size;
 pq->OSQEntries = 0;
 pevent->OSEventType = OS_EVENT_TYPE_Q; (6)
 pevent->OSEventCnt = 0;
 pevent->OSEventPtr = pq;
 OS_EventWaitListInit(pevent); (7)
 } else {
 pevent->OSEventPtr = (void *)OSEventFreeList; (8)
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 pevent = (OS_EVENT *)0;
 }
 }
 return (pevent); (9)
}

Listing - Listing 11.1 Creating a message queue.

 A local variable called cpu_sr to support #3 is allocated.(1) OS_CRITICAL_METHOD

 starts by making sure you are not calling this function from an ISR because(2) OSQCreate()

this is not allowed. All kernel objects need to be created from task level code or before

multitasking starts.

 then attempts to obtain an ECB from the free list of ECBs (see Figure 6.5)(3) OSQCreate()

and adjusts the linked list accordingly.

µC/OS-II User's Manual

312Copyright 2015 Micrium Inc.

 If there is an ECB available, attempts to allocate a queue control block(4) OSQCreate()

(OS_Q) from the free list of queue control blocks (see Figure 11.3) and adjusts the

linked list accordingly.

(5)

 If a queue control block was available from the free list, the fields of the queue control(6)

block are initialized followed by the ones of the ECB. You should note that the

 field is set to so that subsequent message queue services.OSEventType OS_EVENT_TYPE_Q

can check the validity of the ECB.

 The wait list is cleared indicating that no task is currently waiting on the message queue.(7)

 If an ECB was available but a queue control block was not then, the ECB is returned to(8)

the free list since we cannot satisfy the request to create a queue unless we also have a

queue control block.

 returns either a pointer to the ECB upon successfully creating a message(9) OSQCreate()

queue or, a NULL pointer if not. This pointer must be used (if not NULL) in subsequent

calls that operate on message queues. The pointer is basically used as the queue’s handle.

Deleting a message queue, OSQDel()

The code to delete a message queue is shown in listing 11.2 and this code will only be

generated by the compiler if is set to 1 in . This is a function that youOS_Q_DEL_EN OS_CFG.H

must use with caution because multiple tasks could attempt to access a deleted message queue.

You should always use this function with great care. Generally speaking, before you would

delete a message queue, you would first delete all the tasks that access the message queue.

µC/OS-II User's Manual

313Copyright 2015 Micrium Inc.

OS_EVENT *OSQDel (OS_EVENT *pevent, INT8U opt, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 BOOLEAN tasks_waiting;
 OS_Q *pq;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_DEL_ISR;
 return ((OS_EVENT *)0);
 }
#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (2)
 *err = OS_ERR_PEVENT_NULL;
 return (pevent);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_Q) { (3)
 *err = OS_ERR_EVENT_TYPE;
 return (pevent);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) { (4)
 tasks_waiting = TRUE;
 } else {
 tasks_waiting = FALSE;
 }
 switch (opt) {
 case OS_DEL_NO_PEND:
 if (tasks_waiting == FALSE) {
 pq = pevent->OSEventPtr; (5)
 pq->OSQPtr = OSQFreeList;
 OSQFreeList = pq;
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; (6)
 pevent->OSEventPtr = OSEventFreeList; (7)
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return ((OS_EVENT *)0); (8)
 } else {
 OS_EXIT_CRITICAL();
 *err = OS_ERR_TASK_WAITING;
 return (pevent);
 }

 case OS_DEL_ALWAYS:
 while (pevent->OSEventGrp != 0x00) { (9)
 OS_EventTaskRdy(pevent, (void *)0, OS_STAT_Q); (10)
 }
 pq = pevent->OSEventPtr; (11)
 pq->OSQPtr = OSQFreeList;
 OSQFreeList = pq;
 pevent->OSEventType = OS_EVENT_TYPE_UNUSED; (12)
 pevent->OSEventPtr = OSEventFreeList; (13)
 OSEventFreeList = pevent;
 OS_EXIT_CRITICAL();
 if (tasks_waiting == TRUE) {
 OS_Sched(); (14)
 }
 *err = OS_NO_ERR;
 return ((OS_EVENT *)0); (15)

 default:
 OS_EXIT_CRITICAL();
 *err = OS_ERR_INVALID_OPT;

µC/OS-II User's Manual

314Copyright 2015 Micrium Inc.

 return (pevent);
 }
}

Listing - Listing 11.2 Deleting a Message Queue.

 starts by making sure that this function is not called from an ISR because that’s(1) OSQDel()

not allowed.

(2)

 If (see) is set to 1, validates pevent to ensure that it’s(3) OS_ARG_CHK_EN OS_CFG.H OSQDel()

not a NULL pointer and that it points to an ECB that was created as a queue.

 then determines whether there are any tasks waiting on the queue. The flag(4) OSQDel()

tasks_waiting is set accordingly.

Based on the option (i.e. opt) specified in the call, will either delete the queueOSQDel()

only if no tasks are pending on the queue () or, delete the queueopt == OS_DEL_NO_PEND

even if tasks are waiting ().opt == OS_DEL_ALWAYS

 When opt is set to and there is no task waiting on the queue, (5) OS_DEL_NO_PEND OSQDel()

starts by returning the queue control block to the free list.

(6)

 then marks the ECB as unused and the ECB is returned to the free list of ECBs.(7) OSQDel()

This will allow another message queue (or any other ECB based object) to be created.

 You will note that returns a NULL pointer since, at this point, the queue should(8) OSQDel()

no longer be accessed through the original pointer. Because of this, you should call

 as follows:OSQDel()

QPtr = OSQDel(QPtr, opt, &err);

OSQDel() returns an error code if there were task waiting on the queue (i.e.,

) because by specifying you indicated that youOS_ERR_TASK_WAITING OS_DEL_NO_PEND

didn’t want to delete the queue if there are tasks waiting on the queue.

µC/OS-II User's Manual

315Copyright 2015 Micrium Inc.

(9)

 When opt is set to then all tasks waiting on the queue will be readied.(10) OS_DEL_ALWAYS

Each task will it received a message when in fact no message has been sent. Thethink

task should examine the pointer returned to it to make sure it’s non-NULL. Also, you

should note that interrupts are disabled while each task is being readied. This, of course,

increases interrupt latency of your system.

 then returns the queue control block to the free list.(11) OSQDel()

(12)

 Once all pending tasks are readied, marks the ECB as unused and the ECB is(13) OSQDel()

returned to the free list of ECBs.

 The scheduler is called only if there were tasks waiting on the queue.(14)

 Again, you will note that returns a NULL pointer since, at this point, the queue(15) OSQDel()

should no longer be accessed through the original pointer.

Waiting for a message at a queue (blocking), OSQPend()

The code to wait for a message to arrive at a queue is shown in Listing 11.3.

µC/OS-II User's Manual

316Copyright 2015 Micrium Inc.

void *OSQPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 void *msg;
 OS_Q *pq;

 if (OSIntNesting > 0) { (1)
 *err = OS_ERR_PEND_ISR;
 return ((void *)0);
 }
#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (2)
 *err = OS_ERR_PEVENT_NULL;
 return ((void *)0);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_Q) { (3)
 *err = OS_ERR_EVENT_TYPE;
 return ((void *)0);
 }
#endif
 OS_ENTER_CRITICAL();
 pq = (OS_Q *)pevent->OSEventPtr;
 if (pq->OSQEntries > 0) { (4)
 msg = *pq->OSQOut++; (5)
 pq->OSQEntries--; (6)
 if (pq->OSQOut == pq->OSQEnd) { (7)
 pq->OSQOut = pq->OSQStart; (8)
 }
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (msg); (9)
 }
 OSTCBCur->OSTCBStat |= OS_STAT_Q; (10)
 OSTCBCur->OSTCBDly = timeout; (11)
 OS_EventTaskWait(pevent); (12)
 OS_EXIT_CRITICAL();
 OS_Sched(); (13)
 OS_ENTER_CRITICAL();
 msg = OSTCBCur->OSTCBMsg; (14)
 if (msg != (void *)0) {
 OSTCBCur->OSTCBMsg = (void *)0; (15)
 OSTCBCur->OSTCBStat = OS_STAT_RDY;
 OSTCBCur->OSTCBEventPtr = (OS_EVENT *)0;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (msg);
 }
 OS_EventTO(pevent); (16)
 OS_EXIT_CRITICAL();
 *err = OS_TIMEOUT;
 return ((void *)0); (17)
}

Listing - Listing 11.3 Waiting for a message to arrive at a queue.

 It doesn’t make sense to call from an ISR because an ISR cannot be made to(1) OSQPend()

wait. Instead, you should call (see secrion 11.06).OSQAccept()

µC/OS-II User's Manual

317Copyright 2015 Micrium Inc.

(2)

 If (see) is set to 1, verifies that pevent is not a NULL(3) OS_ARG_CHK_EN OS_CFG.H OSQPend()

pointer and that the ECB being pointed to by pevent has been created by .OSQCreate()

(4)

 A message is available when is greater than 0. In this case, gets(5) .OSQEntries OSQPend()

the message pointed to by the field of the queue control block, stores the pointer.OSQOut

to the message in msg, and moves the pointer so that it points to the next entry.OSQOut

in the queue.

 then decrements the number of entries left in the queue since the previous(6) OSQPend()

operation ‘consumed’ the entry (i.e. removed the oldest message).

(7)

 Because a message queue is a circular buffer, needs to check that has(8) OSQPend() .OSQOut

not moved past the last valid entry in the array. When this happens, however, is.OSQOut

adjusted to point back to the beginning of the array.

 The message that was extracted from the queue is then returned to the caller of (9)

. This is the path you are looking for when calling . It also happensOSQPend() OSQPend()

to be the fastest path.

If the message queue was empty, the calling task needs to be put to sleep until another

task (or an ISR) sends a message through the queue (see section 11.04). OSQPend()

allows you to specify a timeout value (specified in integral number of ticks) as one of its

arguments (i.e., timeout). This feature is useful to avoid waiting indefinitely for a

message to arrive at the queue. If the timeout value is nonzero, suspends theOSQPend()

task until the queue receives a message or the specified timeout period expires. Note that

a timeout value of 0 indicates that the task is willing to wait forever for a message to

arrive.

 To put the calling task to sleep, sets the status flag in the task’s TCB (Task(10) OSQPend()

Control Block) to indicate that the task is suspended waiting for a queue.

µC/OS-II User's Manual

318Copyright 2015 Micrium Inc.

 The timeout is also stored in the TCB so that it can be decremented by .(11) OSTimeTick()

You should recall (see section 3.11, Clock Tick) that decrements each ofOSTimeTick()

the created task’s field if it’s nonzero..OSTCBDly

 The actual work of putting the task to sleep is done by [see section(12) OS_EventTaskWait()

6.06, Making a Task Wait for an Event,].OS_EventTaskWait()

 Because the calling task is no longer ready to run, the scheduler is called to run the next(13)

highest priority task that is ready to run. As far as your task is concerned, it made a call

to and it doesn’t know that it will be suspended until a message arrives. WhenOSQPend()

the queue receives a message (or the timeout period expires) will resumeOSQPend()

execution immediately after the call to .OS_Sched()

 When returns, checks to see if a message was placed in the task’s(14) OS_Sched() OSQPend()

TCB by .OSQPost()

 If so, the call is successful and the message is returned to the caller.(15)

 If a message is not received then must have returned because of a timeout.(16) OS_Sched()

The calling task is then removed from the queue wait list by calling .OS_EventTO()

 Note that the returned pointer is set to NULL because there is no message to return. The(17)

calling task should either examine the contents of the return pointer or the return code to

determine whether a valid message was received.

Sending a message to a queue (FIFO), OSQPost()

The code to deposit a message in a queue is shown in Listing 11.4.

µC/OS-II User's Manual

319Copyright 2015 Micrium Inc.

INT8U OSQPost (OS_EVENT *pevent, void *msg)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_Q *pq;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
 if (msg == (void *)0) { (2)
 return (OS_ERR_POST_NULL_PTR);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_Q) { (3)
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) { (4)
 OS_EventTaskRdy(pevent, msg, OS_STAT_Q); (5)
 OS_EXIT_CRITICAL();
 OS_Sched(); (6)
 return (OS_NO_ERR);
 }
 pq = (OS_Q *)pevent->OSEventPtr;
 if (pq->OSQEntries >= pq->OSQSize) { (7)
 OS_EXIT_CRITICAL();
 return (OS_Q_FULL);
 }
 *pq->OSQIn++ = msg; (8)
 pq->OSQEntries++; (9)
 if (pq->OSQIn == pq->OSQEnd) { (10)
 pq->OSQIn = pq->OSQStart;
 }
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 11.4 Depositing a message in a queue (FIFO),

(1)

(2)

 If is set to 1 in , checks to see that pevent is not a(3) OS_ARG_CHK_EN OS_CFG.H OSQPost()

NULL pointer, that the message being posted is also not a NULL pointer and finally,

checks to make sure that the ECB is a queue.

 then checks to see if any task is waiting for a message to arrive at the queue.(4) OSQPost()

There are tasks waiting when the field in the ECB contains a nonzero value..OSEventGrp

µC/OS-II User's Manual

320Copyright 2015 Micrium Inc.

 The highest priority task waiting for the message is removed from the wait list by (5)

 [see section 10.02, Making a Task Ready,], andOS_EventTaskRdy() OS_EventTaskRdy()

this task is made ready to run.

 is then called to see if the task made ready is now the highest priority task(6) OS_Sched()

ready to run. If it is, a context switch results [only if is called from a task] andOSQPost()

the readied task is executed. If the readied task is not the highest priority task,

 returns and the task that called continues execution.OS_Sched() OSQPost()

 If no task is waiting for a message, the message to post needs to be placed in the queue.(7)

In this case, makes sure that there is still room in the queue. An error codeOSQPost()

would be returned if an attempt was made to add a message to an already full queue.

(8)

 If there are no tasks waiting for a message to arrive at the queue and the queue is not(9)

already full then the message to post is inserted in the next free location (FIFO order)

and the number of entries in the queue is incremented.

 Finally, adjust the circular buffer pointer to prepare for the next post.(10) OSQPost()

Note that a context switch does not occur if is called by an ISR because contextOSQPost()

switching from an ISR only occurs when is called at the completion of the ISROSIntExit()

and from the last nested ISR (see section 3.10, Interrupts under µC/OS-II).

Sending a message to a queue (LIFO), OSQPostFront()

OSQPostFront() is basically identical to , except that uses OSQPost() OSQPostFront() .OSQOut

instead of as the pointer to the next entry to insert. The code is shown in Listing 11.5..OSQIn

µC/OS-II User's Manual

321Copyright 2015 Micrium Inc.

INT8U OSQPostFront (OS_EVENT *pevent, void *msg)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_Q *pq;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) {
 return (OS_ERR_PEVENT_NULL);
 }
 if (msg == (void *)0) {
 return (OS_ERR_POST_NULL_PTR);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_Q) {
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) {
 OS_EventTaskRdy(pevent, msg, OS_STAT_Q);
 OS_EXIT_CRITICAL();
 OS_Sched();
 return (OS_NO_ERR);
 }
 pq = (OS_Q *)pevent->OSEventPtr;
 if (pq->OSQEntries >= pq->OSQSize) {
 OS_EXIT_CRITICAL();
 return (OS_Q_FULL);
 }
 if (pq->OSQOut == pq->OSQStart) { (1)
 pq->OSQOut = pq->OSQEnd; (2)
 }
 pq->OSQOut--; (3)
 *pq->OSQOut = msg;
 pq->OSQEntries++;
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 11.5 Depositing a message in a queue (LIFO),

(1)

 You should note, however, that points to an already inserted entry, so (2) .OSQOut .OSQOut

must be made to point to the previous entry. If points at the beginning of the.OSQOut

array, then a decrement really means positioning at the end of the array..OSQOut

 However, points to one entry past the array and thus needs to be(3) .OSQEnd .OSQOut

adjusted to be within range. implements a LIFO queue because the nextOSQPostFront()

message extracted by is the last message inserted by .OSQPend() OSQPostFront()

µC/OS-II User's Manual

322Copyright 2015 Micrium Inc.

Sending a message to a queue (FIFO or LIFO), OSQPostOpt()

You can also post a message to a queue using an alternate an more flexible function called

. The reason there are three post calls is for backwards compatibility withOSQPostOpt()

previous versions of µC/OS-II. is the newer function and can replace both OSQPostOpt()

 and with a single call. In addition, allows posting aOSQPost() OSQPostFront() OSQPostOpt()

message to all tasks (i.e. broadcast) waiting on the queue. The code to deposit a message in a

queue is shown in Listing 11.6.

µC/OS-II User's Manual

323Copyright 2015 Micrium Inc.

INT8U OSQPostOpt (OS_EVENT *pevent, void *msg, INT8U opt)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_Q *pq;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
 if (msg == (void *)0) { (2)
 return (OS_ERR_POST_NULL_PTR);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_Q) { (3)
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pevent->OSEventGrp != 0x00) { (4)
 if ((opt & OS_POST_OPT_BROADCAST) != 0x00) { (5)
 while (pevent->OSEventGrp != 0x00) { (6)
 OS_EventTaskRdy(pevent, msg, OS_STAT_Q);
 }
 } else {
 OS_EventTaskRdy(pevent, msg, OS_STAT_Q); (7)
 }
 OS_EXIT_CRITICAL();
 OS_Sched(); (8)
 return (OS_NO_ERR);
 }
 pq = (OS_Q *)pevent->OSEventPtr;
 if (pq->OSQEntries >= pq->OSQSize) { (9)
 OS_EXIT_CRITICAL();
 return (OS_Q_FULL);
 }
 if ((opt & OS_POST_OPT_FRONT) != 0x00) { (10)
 if (pq->OSQOut == pq->OSQStart) { (11)
 pq->OSQOut = pq->OSQEnd;
 }
 pq->OSQOut--;
 *pq->OSQOut = msg;
 } else {
 *pq->OSQIn++ = msg; (12)
 if (pq->OSQIn == pq->OSQEnd) {
 pq->OSQIn = pq->OSQStart;
 }
 }
 pq->OSQEntries++; (13)
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 11.6 Depositing a message in a queue (Broadcast, FIFO or LIFO),

(1)

(2)

µC/OS-II User's Manual

324Copyright 2015 Micrium Inc.

 If is set to 1 in , checks to see that pevent is not a(3) OS_ARG_CHK_EN OS_CFG.H OSQPostOpt()

NULL pointer, checks that the message being posted is also not a NULL pointer and

finally, checks to make sure that the ECB is a queue.

 then checks to see if any task is waiting for a message to arrive at the queue.(4) OSQPost()

There are tasks waiting when the field in the ECB contains a nonzero value..OSEventGrp

(5)

 If you set the bit in the opt argument then all tasks waiting for a(6) OS_POST_OPT_BROADCAST

message will receive the message. All tasks waiting for the message are removed from

the wait list by [see section 10.02, Making a Task Ready, OS_EventTaskRdy()

]. You should notice that interrupt disable time is proportional to theOS_EventTaskRdy()

number of tasks waiting for a message from the queue.

 If a broadcast was not requested then, only the highest priority task waiting for a(7)

message will be made ready to run. The highest priority task waiting for the message is

removed from the wait list by .OS_EventTaskRdy()

 is then called to see if the task made ready is now the highest priority task(8) OS_Sched()

ready to run. If it is, a context switch results [only if is called from a task]OSQPostOpt()

and the readied task is executed. If the readied task is not the highest priority task,

 returns and the task that called continues execution.OS_Sched() OSQPostOpt()

 If nobody is waiting for a message, the message to post needs to be placed in the queue.(9)

In this case, makes sure that there is still room in the queue. An error codeOSQPostOpt()

would be returned if an attempt was made to add a message to an already full queue.

 then checks the opt argument to see if the calling task desires to post the(10) OSQPostOpt()

message in FIFO or LIFO (setting opt to) order.OS_POST_OPT_FRONT

 If LIFO order is selected, emulates .(11) OSQPostOpt() OSQPostFront()

 If FIFO order, emulates .(12) OSQPostOpt() OSQPost()

 In either case, the number of entries in the queue is incremented.(13)

µC/OS-II User's Manual

325Copyright 2015 Micrium Inc.

Note that a context switch does not occur if is called by an ISR because contextOSQPostOpt()

switching from an ISR only occurs when is called at the completion of the ISROSIntExit()

and from the last nested ISR (see section 3.10, Interrupts under µC/OS-II).

Getting a Message without Waiting, OSQAccept()

You can obtain a message from a queue without putting a task to sleep by calling OSQAccept()

if the queue is empty. The code for this function is shown in Listing 11.7.

void *OSQAccept (OS_EVENT *pevent)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 void *msg;
 OS_Q *pq;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return ((void *)0);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_Q) { (2)
 return ((void *)0);
 }
#endif
 OS_ENTER_CRITICAL();
 pq = (OS_Q *)pevent->OSEventPtr;
 if (pq->OSQEntries > 0) { (3)
 msg = *pq->OSQOut++; (4)
 pq->OSQEntries--; (5)
 if (pq->OSQOut == pq->OSQEnd) { (6)
 pq->OSQOut = pq->OSQStart;
 }
 } else {
 msg = (void *)0; (7)
 }
 OS_EXIT_CRITICAL();
 return (msg);
}

Listing - Listing 11.7 Getting a message without waiting (non-blocking),

(1)

 If is set to 1 in , starts by checking that pevent is not(2) OS_ARG_CHK_EN OS_CFG.H OSQAccept()

a NULL pointer and that the ECB being pointed to by pevent has been created by

.OSQCreate()

µC/OS-II User's Manual

326Copyright 2015 Micrium Inc.

 then checks to see if there are any entries in the queue by looking at the (3) OSQAccept()

 queue control block field..OSQEntries

(4)

 If a message is available, the oldest message (FIFO order) is retrieved from the queue(5)

and copied to the local pointer msg and the number of entries in the queue is decreased

by one to reflect the extraction.

 then adjust the circular queue pointer by moving the pointer to the(6) OSQAccept() .OSQOut

next entry.

 If there were no entries in the queue, the local pointer is set to NULL.(7)

The code that calls needs to examine the returned value. If returns aOSQAccept() OSQAccept()

NULL pointer, then a message was not available. You don’t want your application to

dereference a NULL pointer because, by convention, a NULL pointer is invalid. A non-NULL

pointer indicates that a message pointer is available. An ISR should use instead ofOSQAccept()

.OSQPend()

Flushing a Queue, OSQFlush()

OSQFlush() allows you to remove all the messages posted to a queue and basically start with a

fresh queue. The code for this function is shown in Listing 11.8.

µC/OS-II User's Manual

327Copyright 2015 Micrium Inc.

INT8U OSQFlush (OS_EVENT *pevent)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_Q *pq;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_Q) { (2)
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 OS_ENTER_CRITICAL();
 pq = (OS_Q *)pevent->OSEventPtr; (3)
 pq->OSQIn = pq->OSQStart;
 pq->OSQOut = pq->OSQStart;
 pq->OSQEntries = 0;
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 11.8 Flushing the contents of a queue.

(1)

 If is set to 1 in , starts by checking that pevent is not(2) OS_ARG_CHK_EN OS_CFG.H OSQFlush()

a NULL pointer and that the ECB being pointed to by pevent has been created by

.OSQCreate()

 The IN and OUT pointers are reset to the beginning of the array and the number of(3)

entries is cleared. I decided to not check to see if any tasks were pending on the queue

because it would be irrelevant anyway and would take more processing time. In other

words, if tasks are waiting on the queue, then would already be set to 0. The.OSQEntries

only difference is that and may be pointing elsewhere in the array. There.OSQIn .OSQOut

is also no need to fill the queue with NULL pointers.

µC/OS-II User's Manual

328Copyright 2015 Micrium Inc.

Obtaining the Status of a Queue, OSQQuery()

OSQQuery() allows your application to take a snapshot of the contents of a message queue. The

code for this function is shown in Listing 11.9. is passed two arguments: peventOSQQuery()

contains a pointer to the message queue, which is returned by when the queue isOSQCreate()

created, and pdata is a pointer to a data structure (OS_Q_DATA, see uC) that holdsOS_II.H

information about the message queue. Your application thus needs to allocate a variable of

type that will receive the information about the desired queue. containsOS_Q_DATA OS_Q_DATA

the following fields:

.OSMsg contains the contents pointed to by if there are entries in the queue. If the.OSQOut

queue is empty, will contain a NULL pointer..OSMsg

.OSNMsgs contains the number of messages in the queue (i.e., a copy of)..OSQEntries

.OSQSize contains the size of the queue (in number of entries).

.OSEventTbl[]

.OSEventGrp contain a snapshot of the message queue wait list. The caller to OSQQuery()

can thus determine how many tasks are waiting for the queue.

µC/OS-II User's Manual

329Copyright 2015 Micrium Inc.

INT8U OSQQuery (OS_EVENT *pevent, OS_Q_DATA *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_Q *pq;
 INT8U *psrc;
 INT8U *pdest;

#if OS_ARG_CHK_EN > 0
 if (pevent == (OS_EVENT *)0) { (1)
 return (OS_ERR_PEVENT_NULL);
 }
 if (pevent->OSEventType != OS_EVENT_TYPE_Q) { (2)
 return (OS_ERR_EVENT_TYPE);
 }
#endif
 OS_ENTER_CRITICAL();
 pdata->OSEventGrp = pevent->OSEventGrp; (3)
 psrc = &pevent->OSEventTbl[0];
 pdest = &pdata->OSEventTbl[0];
#if OS_EVENT_TBL_SIZE > 0
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 1
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 2
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 3
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 4
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 5
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 6
 *pdest++ = *psrc++;
#endif

#if OS_EVENT_TBL_SIZE > 7
 *pdest = *psrc;
#endif
 pq = (OS_Q *)pevent->OSEventPtr;
 if (pq->OSQEntries > 0) { (4)
 pdata->OSMsg = *pq->OSQOut;
 } else {
 pdata->OSMsg = (void *)0;
 }
 pdata->OSNMsgs = pq->OSQEntries; (5)
 pdata->OSQSize = pq->OSQSize; (6)
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

µC/OS-II User's Manual

330Copyright 2015 Micrium Inc.

Listing - Listing 11.9 Obtaining the status of a queue.

(1)

 As always, if is set to 1, checks that pevent is not a NULL(2) OS_ARG_CHK_EN OSQQuery()

pointer and that it points to an ECB containing a queue.

 then copies the wait list. You should note that I decided to do the copy as(3) OSQQuery()

inline code instead of using a loop for performance reasons.

 If the queue is not empty, the oldest message is extracted (but not removed) from the(4)

queue and copied to . In other words, will not move the .OSMsg OSQQuery() .OSQOut

pointer. If there are no messages in the queue, the will contain a NULL pointer..OSMsg

(5)

 Finally, the current number of entries and the queue size are placed in the and (6) .OSNMsgs

 fields of the structure, respectively..OSQSize OS_Q_DATA

Using a Message Queue When Reading Analog Inputs

It is often useful in control applications to read analog inputs at a regular interval. To

accomplish this, create a task, call [see section 5.00, Delaying a Task, OSTimeDly()

], and specify the desired sampling period.OSTimeDly()

As shown in Figure 6.11, you could use a message queue instead and have your task pend on

the queue with a timeout. The timeout corresponds to the desired sampling period. If no other

task sends a message to the queue, the task is resumed after the specified timeout, which

basically emulates the function.OSTimeDly()

You are probably wondering why I decided to use a queue when does the trickOSTimeDly()

just fine. By adding a queue, you can have other tasks abort the wait by sending a message,

thus forcing an immediate conversion. If you add some intelligence to your messages, you can

tell the ADC task to convert a specific channel, tell the task to increase the sampling rate, and

µC/OS-II User's Manual

331Copyright 2015 Micrium Inc.

more. In other words, you can say to the task: “Can you convert analog input 3 for me now?”

After servicing the message, the task would initiate the pend on the queue, which would restart

the scanning process.

Figure - Figure 11.5 Reading analog inputs

Using a Queue as a Counting Semaphore

A message queue can be used as a counting semaphore by initializing and loading a queue with

as many non-NULL pointers [(void *)1 works well] as there are resources available. A task

requesting the “semaphore” calls and releases the “semaphore” by calling OSQPend() OSQPost()

. Listing 11.10 shows how this works. You can use this technique to conserve code space if

your application only needs counting semaphores and message queues (you would then have

no need for the semaphore services). In this case, set to 0 and only use queuesOS_SEM_EN

instead of both queues and semaphores. Note that this technique consumes a pointer-sized

variable for each resource that the semaphore is guarding and requires a queue control block.

In other words, you are sacrificing RAM space in order to save code space. Also, message

queue services are slower than semaphore services. This technique would be very inefficient if

your counting semaphore (in this case a queue) is guarding a large amount of resources (you

would require a large array of pointers).

µC/OS-II User's Manual

332Copyright 2015 Micrium Inc.

OS_EVENT *QSem;
void *QMsgTbl[N_RESOURCES]

void main (void)
{
 OSInit();
 .
 .
 QSem = OSQCreate(&QMsgTbl[0], N_RESOURCES);
 for (i = 0; i < N_RESOURCES; i++) {
 OSQPost(QSem, (void *)1);
 }
 .
 .
 OSTaskCreate(Task1, .., .., ..);
 .
 .
 OSStart();
}

void Task1 (void *pdata)
{
 INT8U err;

 for (;;) {
 OSQPend(&QSem, 0, &err); /* Obtain access to resource(s) */
 .
 . /* Task has semaphore, access resource(s) */
 .
 OSMQPost(QSem, (void*)1); /* Release access to resource(s) */
 }
}

Listing - Listing 11.10 Using a queue as a counting semaphore.

µC/OS-II User's Manual

333Copyright 2015 Micrium Inc.

Memory Management
Your application can allocate and free dynamic memory using any ANSI C compiler’s

 and functions, respectively. However, using and in anmalloc() free() malloc() free()

embedded real-time system is dangerous because, eventually, you may not be able to obtain a

single contiguous memory area due to fragmentation. Fragmentation is the development of a

large number of separate free areas (i.e., the total free memory is fragmented into small,

non-contiguous pieces). Execution time of malloc() and free() are also generally

nondeterministic because of the algorithms used to locate a contiguous block of free memory.

Memory Management Configuration

µC/OS-II provides an alternative to and by allowing your application to obtainmalloc() free()

fixed-sized memory blocks from a partition made of a contiguous memory area, as illustrated

in Figure 12.1. All memory blocks are the same size and the partition contains an integral

number of blocks. Allocation and deallocation of these memory blocks is done in constant time

and is deterministic.

As shown in Figure 12.2, more than one memory partition can exist, so your application can

obtain memory blocks of different sizes. However, a specific memory block must be returned

to the partition from which it came. This type of memory management is not subject to

fragmentation.

To enable µC/OS-II memory management services, you must set configuration constants in

. Specifically, table 12.1 shows which services are compiled based on the value ofOS_CFG.H

configuration constants found in . You should note that NONE of the memoryOS_CFG.H

management services are enabled when OS_MEM_EN is set to 0. To enable specific features

(i.e., service) listed in Table 12.1, simply set the configuration constant to 1. You will notice

that , and cannot be individually disabled like the otherOSMemCreate() OSMemGet() OSMemPut()

services. That’s because they are always needed when you enable µC/OS-II memory

management.

µC/OS-II User's Manual

334Copyright 2015 Micrium Inc.

µC/OS-II Memory Service Enabled when set to 1 in OS_CFG.H

OSMemCreate()

OSMemGet()

OSMemPut()

OSMemQuery() OS_MEM_QUERY_EN

Table - Table 12.1 Memory management configuration constants in OS_CFG.H.

Figure - Figure 12.1 Memory partition.

µC/OS-II User's Manual

335Copyright 2015 Micrium Inc.

Figure - Figure 12.2 Multiple memory partitions.

Memory Control Blocks

µC/OS-II keeps track of memory partitions through the use of a data structure called a memory

 (Listing 12.1). Each memory partition requires its own memory control block.control block

typedef struct {
 void *OSMemAddr;
 void *OSMemFreeList;
 INT32U OSMemBlkSize;
 INT32U OSMemNBlks;
 INT32U OSMemNFree;
} OS_MEM;

Listing - Listing 12.1 Memory control block data structure.

.OSMemAddr

is a pointer to the beginning (base) of the memory partition from which memory blocks will be

allocated. This field is initialized when you create a partition [see section 12.01, Creating a

Partition,] and is not used thereafter.OSMemCreate()

µC/OS-II User's Manual

336Copyright 2015 Micrium Inc.

.OSMemFreeList

is a pointer used by µC/OS-II to point to either the next free memory control block or to the

next free memory block. The use depends on whether the memory partition has been created or

not (see section 12.01).

.OSMemBlkSize

determines the size of each memory block in the partition and is a parameter you specify when

the memory partition is created (see section 12.01).

.OSMemNBlks

establishes the total number of memory blocks available from the partition. This parameter is

specified when the partition is created (see section 12.01).

.OSMemNFree

is used to determine how many memory blocks are available from the partition.

µC/OS-II initializes the memory manager if you configure OS_MEM_EN to 1 in .OS_CFG.H

Initialization is done by [called by] and consists of creating a linked listOS_MemInit() OSInit()

of memory control blocks, as shown in Figure 12.3. You specify the maximum number of

memory partitions with the configuration constant OS_MAX_MEM_PART (see),OS_CFG.H

which must be set at least to 2.

As you can see, the OSMemFreeList field of the control block is used to chain the free control

blocks.

µC/OS-II User's Manual

337Copyright 2015 Micrium Inc.

Figure - Figure 12.3 List of free memory control blocks.

Creating a Partition, OSMemCreate()

Your application must create each partition before it can be used and is this done by calling

. Listing 12.2 shows how you could create a memory partition containing 100OSMemCreate()

blocks of 32 bytes each. Some processors like to have memory aligned on either 16 or 32-bit

boundaries. To accommodate these processors, you could declare the memory partitions as:

INT16U CommTxPart[100][16];

or,

INT32U CommTxPart[100][8];

OS_MEM *CommTxBuf;
INT8U CommTxPart[100][32];

void main (void)
{
 INT8U err;

 OSInit();
 .
 .
 CommTxBuf = OSMemCreate(CommTxPart, 100, 32, &err);
 .
 .
 OSStart();
}

Listing - Listing 12.2 Creating a memory partition.

The code to create a memory partition is shown in Listing 12.3. requires fourOSMemCreate()

µC/OS-II User's Manual

338Copyright 2015 Micrium Inc.

arguments: the beginning address of the memory partition, the number of blocks to be

allocated from this partition, the size (in bytes) of each block, and a pointer to a variable that

contains an error code. returns a NULL pointer if fails. OnOSMemCreate() OSMemCreate()

success, returns a pointer to the allocated memory control block. This pointerOSMemCreate()

must be used in subsequent calls to memory management services [see , OSMemGet()

 , and in sections 12.02 through 12.04].OSMemPut() OSMemQuery()

µC/OS-II User's Manual

339Copyright 2015 Micrium Inc.

OS_MEM *OSMemCreate (void *addr, INT32U nblks, INT32U blksize, INT8U *err)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 OS_MEM *pmem;
 INT8U *pblk;
 void **plink;
 INT32U i;

#if OS_ARG_CHK_EN > 0
 if (addr == (void *)0) { (1)
 *err = OS_MEM_INVALID_ADDR;
 return ((OS_MEM *)0);
 }
 if (nblks < 2) { (2)
 *err = OS_MEM_INVALID_BLKS;
 return ((OS_MEM *)0);
 }
 if (blksize < sizeof(void *)) { (3)
 *err = OS_MEM_INVALID_SIZE;
 return ((OS_MEM *)0);
 }
#endif
 OS_ENTER_CRITICAL();
 pmem = OSMemFreeList; (4)
 if (OSMemFreeList != (OS_MEM *)0) {
 OSMemFreeList = (OS_MEM *)OSMemFreeList->OSMemFreeList;
 }
 OS_EXIT_CRITICAL();
 if (pmem == (OS_MEM *)0) { (5)
 *err = OS_MEM_INVALID_PART;
 return ((OS_MEM *)0);
 }
 plink = (void **)addr; (6)
 pblk = (INT8U *)addr + blksize;
 for (i = 0; i < (nblks - 1); i++) {
 *plink = (void *)pblk;
 plink = (void **)pblk;
 pblk = pblk + blksize;
 }
 *plink = (void *)0;
 OS_ENTER_CRITICAL();
 pmem->OSMemAddr = addr; (7)
 pmem->OSMemFreeList = addr;
 pmem->OSMemNFree = nblks;
 pmem->OSMemNBlks = nblks;
 pmem->OSMemBlkSize = blksize;
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (pmem); (8)
}

Listing - Listing 12.3

 You must pass a valid pointer to the memory allocated that will be used as a partition.(1)

 Each memory partition must contain at least two memory blocks.(2)

µC/OS-II User's Manual

340Copyright 2015 Micrium Inc.

 Each memory block must be able to hold the size of a pointer because a pointer is used(3)

to chain all the memory blocks together.

 Next, obtains a memory control block from the list of free memory(4) OSMemCreate()

control blocks. The memory control block contains run-time information about the

memory partition.

 cannot create a memory partition unless a memory control block is(5) OSMemCreate()

available.

 If a memory control block is available and all the previous conditions are satisfied, the(6)

memory blocks within the partition are linked together in a singly linked list. A singly

linked list is used because insertion and removal of elements in the list is always done

from the head of the list.

 When all the blocks are linked, the memory control block is filled with information(7)

about the partition.

 returns the pointer to the memory control block so it can be used in(8) OSMemCreate()

subsequent calls to access the memory blocks from this partition.

Figure 12.4 shows how the data structures look when completes successfully.OSMemCreate()

Note that the memory blocks are shown linked one after the other. At run time, as you allocate

and deallocate memory blocks, the blocks will most likely not be in the same order.

µC/OS-II User's Manual

341Copyright 2015 Micrium Inc.

Figure - Figure 12.4 Memory partition created by OSMemCreate().

Obtaining a Memory Block, OSMemGet()

Your application can get a memory block from one of the created memory partitions by calling

. You must use the pointer returned by in the call to toOSMemGet() OSMemCreate() OSMemGet()

specify which partition the memory block will come from. Obviously, your application needs

to know how big the memory block obtained is so that it doesn’t exceed its storage capacity. In

other words, you must not use more memory than is available from the memory block. For

example, if a partition contains 32-byte blocks, then your application can use up to 32 bytes.

When you are done using the block, you must return it to the proper memory partition [see

section 12.03, Returning a Memory Block,].OSMemPut()

Listing 12.4 shows the code for .OSMemGet()

µC/OS-II User's Manual

342Copyright 2015 Micrium Inc.

void *OSMemGet (OS_MEM *pmem, INT8U *err) (1)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif
 void *pblk;

#if OS_ARG_CHK_EN > 0
 if (pmem == (OS_MEM *)0) { (2)
 *err = OS_MEM_INVALID_PMEM;
 return ((OS_MEM *)0);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pmem->OSMemNFree > 0) { (3)
 pblk = pmem->OSMemFreeList; (4)
 pmem->OSMemFreeList = *(void **)pblk; (5)
 pmem->OSMemNFree--; (6)
 OS_EXIT_CRITICAL();
 *err = OS_NO_ERR;
 return (pblk); (7)
 }
 OS_EXIT_CRITICAL();
 *err = OS_MEM_NO_FREE_BLKS;
 return ((void *)0);
}

Listing - Listing 12.4 - OSMemGet()

 The pointer passed to specifies the partition from which you want to get a(1) OSMemGet()

memory block.

 If you enabled argument checking (i.e. OS_ARG_CHK_EN is set in) then (2) OS_CFG.H

 makes sure that you didn’t pass a NULL pointer instead of a pointer to aOSMemGet()

partition. Unfortunately, doesn’t know whether a non-NULL is actuallyOSMemGet()

pointing to a valid partition (pmem could point to anything).

 checks to see if there are free blocks available.(3) OSMemGet()

 If a block is available, it is removed from the free list.(4)

(5)

 The free list is then updated so that it points to the next free memory block, and the(6)

number of blocks is decremented, indicating that it has been allocated.

 The pointer to the allocated block is finally returned to your application.(7)

µC/OS-II User's Manual

343Copyright 2015 Micrium Inc.

Note that you can call this function from an ISR because, if a memory block is not available,

there is no waiting and the ISR simply receives a NULL pointer.

Returning a Memory Block, OSMemPut()

When your application is done with a memory block, it must be returned to the appropriate

partition. This is accomplished by calling . You should note that has noOSMemPut() OSMemPut()

way of knowing whether the memory block returned to the partition belongs to that partition.

In other words, if you allocate a memory block from a partition containing blocks of 32 bytes,

then you should not return this block to a memory partition containing blocks of 120 bytes.

The next time an application requests a block from the 120-byte partition, it will only get 32

valid bytes; the remaining 88 bytes may belong to some other task(s). This could certainly

make your system crash.

Listing 12.5 shows the code for .OSMemPut()

INT8U OSMemPut (OS_MEM *pmem, void *pblk) (1)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

#if OS_ARG_CHK_EN > 0
 if (pmem == (OS_MEM *)0) { (2)
 return (OS_MEM_INVALID_PMEM);
 }
 if (pblk == (void *)0) {
 return (OS_MEM_INVALID_PBLK);
 }
#endif
 OS_ENTER_CRITICAL();
 if (pmem->OSMemNFree >= pmem->OSMemNBlks) { (3)
 OS_EXIT_CRITICAL();
 return (OS_MEM_FULL);
 }
 *(void **)pblk = pmem->OSMemFreeList; (4)
 pmem->OSMemFreeList = pblk;
 pmem->OSMemNFree++; (5)
 OS_EXIT_CRITICAL();
 return (OS_NO_ERR);
}

Listing - Listing 12.5

 You pass the address of the memory control block (pmem) to which the(1) OSMemPut()

µC/OS-II User's Manual

344Copyright 2015 Micrium Inc.

memory block belongs (pblk).

 then checks that the pointers being passed to the function are non-NULL.(2) OSMemPut()

Unfortunately, doesn’t know for whether the block returned actually belongsOSMemPut()

to the partition. It is assumed that your application will be returning the block to its

proper place.

 Next, we check to see that the memory partition is not already full. This situation would(3)

certainly indicate that something went wrong during the allocation/deallocation process.

Indeed, you are returning a block to a partition which ‘thinks’ it has all of its blocks

already returned to it.

 If the memory partition can accept another memory block, it is inserted into the linked(4)

list of free blocks.

 Finally, the number of memory blocks in the memory partition is incremented.(5)

Obtaining Status of a Memory Partition, OSMemQuery()

OSMemQuery() is used to obtain information about a memory partition. Specifically, your

application can determine how many memory blocks are free, how many memory blocks have

been used (i.e., allocated), the size of each memory block (in bytes), etc. This information is

placed in a data structure called OS_MEM_DATA, as shown in Listing 12.6.

typedef struct {
 void *OSAddr; /* Points to beginning address of memory partition */
 void *OSFreeList; /* Points to beginning of free list of memory blocks */
 INT32U OSBlkSize; /* Size (in bytes) of each memory block */
 INT32U OSNBlks; /* Total number of blocks in the partition */
 INT32U OSNFree; /* Number of memory blocks free */
 INT32U OSNUsed; /* Number of memory blocks used */
} OS_MEM_DATA;

Listing - Listing 12.6 Data structure used to obtain status from a partition.

The code for is shown in Listing 12.7.OSMemQuery()

µC/OS-II User's Manual

345Copyright 2015 Micrium Inc.

INT8U OSMemQuery (OS_MEM *pmem, OS_MEM_DATA *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

#if OS_ARG_CHK_EN > 0
 if (pmem == (OS_MEM *)0) { (1)
 return (OS_MEM_INVALID_PMEM);
 }
 if (pdata == (OS_MEM_DATA *)0) {
 return (OS_MEM_INVALID_PDATA);
 }
#endif
 OS_ENTER_CRITICAL();
 pdata->OSAddr = pmem->OSMemAddr; (2)
 pdata->OSFreeList = pmem->OSMemFreeList;
 pdata->OSBlkSize = pmem->OSMemBlkSize;
 pdata->OSNBlks = pmem->OSMemNBlks;
 pdata->OSNFree = pmem->OSMemNFree;
 OS_EXIT_CRITICAL();
 pdata->OSNUsed = pdata->OSNBlks - pdata->OSNFree; (3)
 return (OS_NO_ERR);
}

Listing - Listing 12.7

 As usual, we start off by checking the arguments passed to the function.(1)

 All the fields found in OS_MEM are copied to the OS_MEM_DATA data structure with(2)

interrupts disabled. This ensures that the fields will not be altered until they are all

copied.

 You should also notice that computation of the number of blocks used is performed(3)

outside of the critical section because it’s done using the local copy of the data.

Using Memory Partitions

Figure 12.5 shows an example of how you can use the dynamic memory allocation feature of

µC/OS-II, as well as its message-passing capability (see Chapter 11). Also, refer to Listing

12.8 for the pseudocode of the two tasks shown. The numbers in parenthesis in Figure 12.5

correspond to the appropriate action in Listing 12.8.

The first task reads and checks the value of analog inputs (pressures, temperatures, voltages)

and sends a message to the second task if any of the analog inputs exceed a threshold. The

µC/OS-II User's Manual

346Copyright 2015 Micrium Inc.

message sent contains a time stamp, information about which channel had the error, an error

code, an indication of the severity of the error, and any other information you can think of.

Error handling in this example is centralized. This means that other tasks, or even ISRs, can

post error messages to the error-handling task. The error-handling task could be responsible for

displaying error messages on a monitor (a display), logging errors to a disk, or dispatching

other tasks that could take corrective actions based on the error.

Figure - Figure 12.5 Using dynamic memory allocation.

µC/OS-II User's Manual

347Copyright 2015 Micrium Inc.

AnalogInputTask()
{
 for (;;) {
 for (all analog inputs to read) {
 Read analog input; (1)
 if (analog input exceeds threshold) {
 Get memory block; (2)
 Get current system time (in clock ticks); (3)
 Store the following items in the memory block: (4)
 System time (i.e. a time stamp);
 The channel that exceeded the threshold;
 An error code;
 The severity of the error;
 Etc.
 Post the error message to error queue; (5)
 (A pointer to the memory block containing the data)
 }
 }
 Delay task until it’s time to sample analog inputs again;
 }
}

ErrorHandlerTask()
{
 for (;;) {
 Wait for message from error queue; (6)
 (Gets a pointer to a memory block containing information
 about the error reported)
 Read the message and take action based on error reported; (7)
 Return the memory block to the memory partition; (8)
 }
}

Listing - Listing 12.8 Scanning analog inputs and reporting errors.

Waiting for Memory Blocks from a Partition

Sometimes it’s useful to have a task wait for a memory block in case a partition runs out of

blocks. µC/OS-II doesn’t support “pending” on partitions, but you can support this requirement

by adding a counting semaphore (see Chapter 7, Semaphores) to guard the memory partition.

To obtain a memory block, simply obtain a semaphore then call . To release aOSMemGet()

block, simply return the block back to its partition and post to the semaphore. The whole

process is shown in Listing 12.9.

µC/OS-II User's Manual

348Copyright 2015 Micrium Inc.

OS_EVENT *SemaphorePtr; (1)
OS_MEM *PartitionPtr;
INT8U Partition[100][32];
OS_STK TaskStk[1000];

void main (void)
{
 INT8U err;

 OSInit(); (2)
 .
 .
 SemaphorePtr = OSSemCreate(100); (3)
 PartitionPtr = OSMemCreate(Partition, 100, 32, &err); (4)
 .
 OSTaskCreate(Task, (void *)0, &TaskStk[999], &err); (5)
 .
 OSStart(); (6)
}

void Task (void *pdata)
{
 INT8U err;
 INT8U *pblock;

 for (;;) {
 OSSemPend(SemaphorePtr, 0, &err); (7)
 pblock = OSMemGet(PartitionPtr, &err); (8)
 .
 . /* Use the memory block */
 .
 OSMemPut(PartitionPtr, pblock); (9)
 OSSemPost(SemaphorePtr); (10)
 }
}

Listing - Listing 12.9 Waiting for memory blocks from a partition.

 First, declare your system objects. Note that I used hard-coded constants for clarity. You(1)

would certainly create #define constants in a real application.

(2)

 Initialize µC/OS-II by calling then create a semaphore with an initial count(3) OSInit()

corresponding to the number of blocks in the partition.

 Next, create the partition and one of the tasks that will be accessing the partition.(4)

 By now, you should be able to figure out what you need to do to add the other tasks. It(5)

would obviously not make much sense to use a semaphore if only one task is using

µC/OS-II User's Manual

349Copyright 2015 Micrium Inc.

memory blocks — there would be no need to ensure mutual exclusion! In fact, it

wouldn’t even make sense to use partitions unless you intend to share memory blocks

with other tasks.

 Multitasking is then started by calling .(6) OSStart()

(7)

 When the task executes, it obtains a memory block only if a semaphore is available.(8)

Once the semaphore is available, the memory block is obtained. There is no need to

check for an error code from because the only way µC/OS-II will return toOSSemPend()

this task is if a memory block is released because a timeout of 0 is specified. Also, you

don’t need the error code from for the same reason — you must have at leastOSMemGet()

one block in the partition in order for the task to resume.

(9)

 When the task is finished with a memory block, it simply returns it to the partition and(10)

signals the semaphore.

µC/OS-II User's Manual

350Copyright 2015 Micrium Inc.

1.

2.

3.

4.

5.

Porting µC/OS-II
This chapter describes in general terms what needs to be done in order to adapt µC/OS-II to

different processors. Adapting a real-time kernel to a microprocessor or a microcontroller is

called a . Most of µC/OS-II is written in C for portability; however, it is still necessary toport

write some processor-specific code in C and assembly language. Specifically, µC/OS-II

manipulates processor registers, which can only be done through assembly language. Porting

µC/OS-II to different processors is relatively easy because µC/OS-II was designed to be

portable. If you already have a port for the processor you are intending to use, you dont need to

read this chapter, unless of course you want to know how µC/OS-II processor-specific code

works.

µC/OS-II Hardware/Software Architecture

A processor can run µC/OS-II if it satisfies the following general requirements:

The processor has a C compiler that generates reentrant code.

Interrupts can be disabled and enabled from C.

The processor supports interrupts and can provide an interrupt that occurs at regular

intervals (typically between 10 and 100Hz).

The processor supports a hardware stack that can accommodate a fair amount of data

(possibly many kilobytes).

The processor has instructions to load and store the stack pointer and other CPU

registers, either on the stack or in memory.

Processors like the Motorola 6805 series do not satisfy requirements number 4 and 5, so

µC/OS-II cannot run on such processors.

Figure 13.1 shows the µC/OS-II architecture and its relationship with the hardware. When you

use µC/OS-II in an application, you are responsible for providing the Application Software and

the µC/OS-II Configuration sections. This book and companion CD contains all the source

code for the Processor-Independent Code section as well as the Processor-Specific Code

µC/OS-II User's Manual

351Copyright 2015 Micrium Inc.

section for the Intel 80x86, real mode, large model. If you intend to use µC/OS-II on a different

processor, you need to either obtain a copy of a port for the processor you intend to use or

write one yourself if the desired processor port has not already been ported. Check the

Micrium Web site at for a list of available ports. In fact, you may want towww.micrium.com

look at other ports and learn from the experience of others.

Figure - Figure 13.1 µC/OS-II hardware/software architecture.

Porting µC/OS-II is actually quite straightforward once you understand the subtleties of the

target processor and the C compiler you are using. Depending on the processor, a port can

consist of writing or changing between 50 and 300 lines of code and could take anywhere from

http://www.micrium.com/

µC/OS-II User's Manual

352Copyright 2015 Micrium Inc.

a few hours to about a week to accomplish. The easiest thing to do, however, is to modify an

existing port from a processor that is similar to the one you intend to use. Table 3.1

summarizes the code you will have to write or modify. I decided to add a column which

indicates the relative complexity involved: 1 means easy, 2 means average and 3 means more

complicated.

µC/OS-II User's Manual

353Copyright 2015 Micrium Inc.

Name Type File C or Assembly? Complexity

BOOLEAN Data Type OS_CPU.H C 1

INT8U Data Type OS_CPU.H C 1

INT8S Data Type OS_CPU.H C 1

INT16U Data Type OS_CPU.H C 1

INT16S Data Type OS_CPU.H C 1

INT32U Data Type OS_CPU.H C 1

INT32S Data Type OS_CPU.H C 1

FP32 Data Type OS_CPU.H C 1

FP64 Data Type OS_CPU.H C 1

OS_STK Data Type OS_CPU.H C 2

OS_CPU_SR Data Type OS_CPU.H C 2

OS_CRITICAL_METHOD #define OS_CPU.H C 3

OS_STK_GROWTH #define OS_CPU.H C 1

OS_ENTER_CRITICAL() Macro OS_CPU.H C 3

OS_EXIT_CRITICAL() Macro OS_CPU.H C 3

OSStartHighRdy() Function OS_CPU_A.ASM Assembly 2

OSCtxSw() Function OS_CPU_A.ASM Assembly 3

OSIntCtxSw() Function OS_CPU_A.ASM Assembly 3

OSTickISR() Function OS_CPU_A.ASM Assembly 3

OSTaskStkInit() Function OS_CPU_C.C C 3

OSInitHookBegin() Function OS_CPU_C.C C 1

OSInitHookEnd() Function OS_CPU_C.C C 1

OSTaskCreateHook() Function OS_CPU_C.C C 1

OSTaskDelHook() Function OS_CPU_C.C C 1

OSTaskSwHook() Function OS_CPU_C.C C 1

OSTaskStatHook() Function OS_CPU_C.C C 1

OSTCBInitHook() Function OS_CPU_C.C C 1

OSTimeTickHook() Function OS_CPU_C.C C 1

OSTaskIdleHook() Function OS_CPU_C.C C 1

Table - Table 13.1, Port Summary

µC/OS-II User's Manual

354Copyright 2015 Micrium Inc.

Development Tools

As previously stated, because µC/OS-II is written mostly in ANSI C, you need an ANSI C

compiler for the processor you intend to use. Also, because µC/OS-II is a preemptive kernel,

you should only use a C compiler that generates reentrant code.

Your tools should also include an assembler because some of the port requires to save and

restore CPU registers which are generally not accessible from C. However, some C compilers

do have extensions that allow you to manipulate CPU registers directly from C or, allow you to

write in-line assembly language statements.

Most C compilers designed for embedded systems also include a linker and a locator. The

linker is used to combine object files (compiled and assembled files) from different modules

while the locator, allows you to place the code and data anywhere in the memory map of the

target processor.

Your C compiler must also provide a mechanism to disable and enable interrupts from C.

Some compilers allow you to insert in-line assembly language statements into your C source

code. This makes it quite easy to insert the proper processor instructions to enable and disable

interrupts. Other compilers actually contain language extensions to enable and disable

interrupts directly from C.

Directories and Files

The installation program provided on the distribution diskette installs µC/OS-II and the port for

the Intel 80x86 (real mode, large model) on your hard disk. I devised a consistent directory

structure that allows you to find the files for the desired target processor easily. If you add a

port for another processor, you should consider following the same conventions.

All ports should be placed under on your hard drive. You should note that I\SOFTWARE\uCOS-II

dont specify which disk drive these files should reside; I leave this up to you. The source code

for each microprocessor or microcontroller port must be found in either two or three files:

, , and, optionally, . The assembly language file is optionalOS_CPU.H OS_CPU_C.C OS_CPU_A.ASM

because some compilers allow you to have in-line assembly language, so you can place the

needed assembly language code directly in . The directory in which the port isOS_CPU_C.C

located determines which processor you are using. Examples of directories where different

ports would be stored are shown in the Table 13.2. Note that each directory contains the same

µC/OS-II User's Manual

355Copyright 2015 Micrium Inc.

filenames, even though they have totally different targets. Also, the directory structure

accounts for different C compilers. For example, the µC/OS-II port files for the Paradigm C

(see) compiler would be placed in a Paradigm sub-directory. Similarly,www.DevTools.com

the port files for the Borland C (see) compiler V4.5 would be placed in awww.Borland.com

BC45 sub-directory. The port files for other processors such as the Motorola 68HC11

processor using a COSMIC compiler (see) would be placed as shown inwww.Cosmic-US.com

Table 13.2.

Intel/AMD 80186 \SOFTWARE\uCOS-II\Ix86L\PARADIGM
 \OS_CPU.H
 \OS_CPU_A.ASM

 \OS_CPU_C.C

\SOFTWARE\uCOS-II\Ix86L\BC45
 \OS_CPU.H
 \OS_CPU_A.ASM
 \OS_CPU_C.C

Motorola 68HC11 \SOFTWARE\uCOS-II\68HC11\COSMIC
 \OS_CPU.H
 \OS_CPU_A.ASM
 \OS_CPU_C.C

Table - Table 13.2, Examples of Port Directories

INCLUDES.H

As mentioned in Chapter 1, is a master include file found at the top of all .C files:INCLUDES.H

#include "includes.h"

INCLUDES.H allows every .C file in your project to be written without concern about which

header file will actually be needed. The only drawback to having a master include file is that

 may include header files that are not pertinent to the actual .C file being compiled.INCLUDES.H

This means that each file will require extra time to compile. This inconvenience is offset by

code portability. I assume that you would have an in each project that usesINCLUDES.H

µC/OS-II. You can thus edit the file that I provide to add your own header files, butINCLUDES.H

your header files should be added at the end of the list. is not actually consideredINCLUDES.H

part of a port but, I decided to mention it here because every µC/OS-II file assumes it.

http://www.devtools.com/
http://www.borland.com/
http://www.cosmic-us.com/

µC/OS-II User's Manual

356Copyright 2015 Micrium Inc.

OS_CPU.H

OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and

typedefs. The general layout of is shown in Listing 13.1.OS_CPU.H

/*
**
* DATA TYPES
* (Compiler Specific)
**
*/

typedef unsigned char BOOLEAN; (1)
typedef unsigned char INT8U; /* Unsigned 8 bit quantity */
typedef signed char INT8S; /* Signed 8 bit quantity */
typedef unsigned int INT16U; /* Unsigned 16 bit quantity */
typedef signed int INT16S; /* Signed 16 bit quantity */
typedef unsigned long INT32U; /* Unsigned 32 bit quantity */
typedef signed long INT32S; /* Signed 32 bit quantity */
typedef float FP32; /* Single precision floating point */ (2)
typedef double FP64; /* Double precision floating point */

typedef unsigned int OS_STK; /* Each stack entry is 16-bit wide */ (3)
typedef unsigned short OS_CPU_SR; /* Define size of CPU status register */ (4)

/*

* Processor Specifics

*/
#define OS_CRITICAL_METHOD ?? (5)

#if OS_CRITICAL_METHOD == 1
#define OS_ENTER_CRITICAL() ???? (6)
#define OS_EXIT_CRITICAL() ????
#endif

#if OS_CRITICAL_METHOD == 2
#define OS_ENTER_CRITICAL() ???? (7)
#define OS_EXIT_CRITICAL() ????
#endif

#if OS_CRITICAL_METHOD == 3
#define OS_ENTER_CRITICAL() ???? (8)
#define OS_EXIT_CRITICAL() ????
#endif

#define OS_STK_GROWTH 1 /* Stack growth (0=Up, 1=Down) */ (9)

#define OS_TASK_SW() ???? (10)

Listing - Listing 13.1

µC/OS-II User's Manual

357Copyright 2015 Micrium Inc.

Compiler-Specific Data Types

Because different microprocessors have different word lengths, the port of µC/OS-II includes a

series of type definitions that ensures portability. Specifically, µC/OS-II code never makes use

of Cs short, int, and long data types because they are inherently nonportable.

To complete the data type section, you simply need to consult your compiler documentation

and find the standard C data types that correspond to the types expected by µC/OS-II.

 Instead, I defined integer data types that are both portable and intuitive. The INT16U(1)

data type, for example, always represents a 16-bit unsigned integer. µC/OS-II and your

application code can now assume that the range of values for variables declared with this

type is from 0 to 65,535. A µC/OS-II port to a 32-bit processor could mean that an

INT16U is actually declared as an unsigned short instead of an unsigned int. Where

µC/OS-II is concerned, however, it still deals with an INT16U. All you have to do is

determine from your compiler documentation what combination of standard C data types

map to the data types µC/OS-II expects.

 Also, for convenience, I have included floating-point data types even though µC/OS-II(2)

doesnt make use of floating-point numbers.

 You must tell µC/OS-II the data type of a tasks stack. This is done by declaring the(3)

proper C data type for . If stack elements on your processor are 32 bits you canOS_STK

simply declare as:OS_STK

typedef INT32U OS_STK;

This assumes that the declaration of INT32U precedes that of . When you create aOS_STK

task and you declare a stack for this task then, you MUST always use as its dataOS_STK

type.

 If you use #3 (see next section), you will need to declare the data(4) OS_CRITICAL_METHOD

type for the Processor Status Word (PSW) . The PSW is also called the processor flags

or status register. If the PSW of your processor is 16 bit wide, simply declare it as:

µC/OS-II User's Manual

358Copyright 2015 Micrium Inc.

typedef INT16U OS_CPU_SR;

OS_ENTER_CRITICAL(), and OS_EXIT_CRITICAL()

This section is basically a repeat of section 3.00 with some items removed and others added. I

decided to repeat this text here to avoid having you flip back and forth between sections.

µC/OS-II, like all real-time kernels, needs to disable interrupts in order to access critical

sections of code and to reenable interrupts when done. This allows µC/OS-II to protect critical

code from being entered simultaneously from either multiple tasks or ISRs.

Processors generally provide instructions to disable/enable interrupts, and your C compiler

must have a mechanism to perform these operations directly from C. Some compilers allow

you to insert in-line assembly language statements into your C source code. This makes it quite

easy to insert processor instructions to enable and disable interrupts. Other compilers contain

language extensions to enable and disable interrupts directly from C.

To hide the implementation method chosen by the compiler manufacturer, µC/OS-II defines

two macros to disable and enable interrupts: and ,OS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

respectively (see L13.1(5) through L13.1(8)).

OS_ENTER_CRITICAL() and are always used in pair to wrap critical sectionsOS_EXIT_CRITICAL()

of code as shown in listing 13.2.

{
 .
 .
 OS_ENTER_CRITICAL();
 /* μC/OS-II critical code section */
 OS_EXIT_CRITICAL();
 .
 .
}

Listing - Listing 13.2 Use of critical section.

Your application can also use and to protect yourOS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

own critical sections of code. Be careful, however, because your application will crash (i.e.,

hang) if you disable interrupts before calling a service such as (see chapter 5).OSTimeDly()

This happens because the task is suspended until time expires, but because interrupts are

µC/OS-II User's Manual

359Copyright 2015 Micrium Inc.

disabled, you would never service the tick interrupt! Obviously, all the PEND calls are also

subject to this problem, so be careful. As a general rule, you should always call µC/OS-II

services with interrupts enabled!

OS_ENTER_CRITICAL() and can be implemented using three differentOS_EXIT_CRITICAL()

methods. You only need one of the three methods even though I show (Listing 13.1)OS_CPU.H

containing three different methods. The actual method used by your application depends on the

capabilities of the processor as well as the compiler used. The method used is selected by the

#define constant which is defined in of the port you will beOS_CRITICAL_METHOD OS_CPU.H

using for your application (i.e., product). The #define constant isOS_CRITICAL_METHOD

necessary in because µC/OS-II allocates a local variable called cpu_sr if OS_CPU.H

 is set to 3.OS_CRITICAL_METHOD

OS_CRITICAL_METHOD == 1

The first and simplest way to implement these two macros is to invoke the processor

instruction to disable interrupts for and the enable interrupts instructionOS_ENTER_CRITICAL()

for . However, there is a little problem with this scenario. If you call aOS_EXIT_CRITICAL()

µC/OS-II function with interrupts disabled, on return from a µC/OS-II service (i.e., function),

interrupts would be enabled! If you had disabled interrupts prior to calling µC/OS-II, you may

want them to be disabled on return from the µC/OS-II function. In this case, this

implementation would not be adequate. However, with some processors/compilers, this is the

only method you can use. An example declaration is shown in listing 13.3. Here, I assume that

the compiler you are using provides you with two functions to disable and enable interrupts,

respectively. The names and are arbitrarily chosen for sake ofdisable_int() enable_int()

illustration. You compiler may have different names for them.

#define OS_ENTER_CRITICAL() disable_int() /* Disable interrupts */
#define OS_EXIT_CRITICAL() enable_int() /* Enable interrupts */

Listing - Listing 13.3 Critical Method #1

µC/OS-II User's Manual

360Copyright 2015 Micrium Inc.

OS_CRITICAL_METHOD == 2

The second way to implement is to save the interrupt disable status ontoOS_ENTER_CRITICAL()

the stack and then disable interrupts. is implemented by restoring theOS_EXIT_CRITICAL()

interrupt status from the stack. Using this scheme, if you call a µC/OS-II service with interrupts

either enabled or disabled, the status is preserved across the call. In other words, interrupts

would be enabled after the call if they were enabled before the call and, interrupts would be

disabled after the call if they were disabled before the call. Be careful when you call a

µC/OS-II service with interrupts disabled because you are extending the interrupt latency of

your application. The pseudo code for these macros is shown in Listing 13.4.

#define OS_ENTER_CRITICAL() \
 asm(PUSH PSW); \
 asm(DI);

#define OS_EXIT_CRITICAL() \
 asm(POP PSW);

Listing - Listing 13.4 Critical Method #2

Here, I'm assuming that your compiler will allow you to execute inline assembly language

statements directly from your C code as shown above (thus the pseudo-function). Youasm()

will need to consult your compiler documentation for this.

The PUSH PSW instruction pushes the Processor Startus Word, PSW (also known as the

condition code register or, processor flags) onto the stack. The DI instruction stands for

Disable Interrupts. Finally, the POP PSW instruction is assumed to restore the original state of

the interrupt flag from the stack. The instructions I used are only for illustration purposes and

may not be actual processor instructions.

Some compilers do not optimize inline code real well and thus, this method may not work

because the compiler may not be smart enough to know that the stack pointer was changed (by

the PUSH instruction). Specifically, the processor you are using may provide a stack pointer

relative addressing mode which the compiler can use to access local variables or function

arguments using and offset from the stack pointer. Of course, if the stack pointer is changed by

the macro then all these stack offsets may be wrong and would mostOS_ENTER_CRITICAL()

likely lead to incorrect behavior.

µC/OS-II User's Manual

361Copyright 2015 Micrium Inc.

OS_CRITICAL_METHOD == 3

Some compiler provides you with extensions that allow you to obtain the current value of the

PSW (Processor Status Word) and save it into a local variable declared within a C function.

The variable can then be used to restore the PSW back as shown in listing 13.5.

void Some_uCOS_II_Service (arguments)
{
 OS_CPU_SR cpu_sr (1)

 .
 cpu_sr = get_processor_psw(); (2)
 disable_interrupts(); (3)
 .
 /* Critical section of code */ (4)
 .
 set_processor_psw(cpu_sr); (5)
 .
}

Listing - Listing 13.5 Saving and restoring the PSW

 is a µC/OS-II data type that is declared in the processor specific file .(1) OS_CPU_SR OS_CPU.H

When you select this critical section method, and OS_ENTER_CRITICAL()

 always assume the presence of the cpu_sr variable. In other words,OS_EXIT_CRITICAL()

if you use this method to protect your own critical sections, you will need to declare a

cpu_sr variable in your function. However, you will not need to declare this variable in

any of the µC/OS-II functions because thats already done.

 To enter a critical section, a function provided by the compiler vendor is called to obtain(2)

the current state of the PSW (condition code register, processor flags or whatever else

this register is called for your processor). I called this function forget_processor_psw()

sake of discussion but it will likely have a different name.

 Another compiler provided function () is called to, of course,(3) disable_interrupt()

disable interrupts.

 At this point, the critical code can be execute.(4)

 Once the critical section has completed, interrupts can be reenabled by calling another(5)

compiler specific extension that, for sake of discussion, I called .set_processor_psw()

µC/OS-II User's Manual

362Copyright 2015 Micrium Inc.

The function receives as an argument the previous state of the PSW. Its assumed that this

function will restore the processor PSW to this value.

Because I dont know what the compiler functions are (there is no standard naming

convention), the µC/OS-II macros are used to encapsulate the functionality as follows:

#define OS_ENTER_CRITICAL() \
 cpu_sr = get_processor_psw(); \
 disable_interrupts();

#define OS_EXIT_CRITICAL() \
 set_processor_psw(cpu_sr);

Listing - Listing 13.6 Critical Method #3

OS_STK_GROWTH

The stack on most microprocessors and microcontrollers grows from high to low memory.

However, some processors work the other way around.

 µC/OS-II has been designed to be able to handle either flavor by specifying which way(9)

the stack grows through the configuration constant , as shown below.OS_STK_GROWTH

Set to 0 for low to high memory stack growth.OS_STK_GROWTH

Set to 1 for high to low memory stack growth.OS_STK_GROWTH

The reason this #define constant is provided is twofold. First, needs to knowOSInit()

where the top-of-stack is when its creating and . Second, ifOSTaskIdle() OSTaskStat()

you call , µC/OS-II needs to know where the bottom of stack isOSTaskStkChk()

(high-memory or low-memory) in order to determine stack usage.

µC/OS-II User's Manual

363Copyright 2015 Micrium Inc.

OS_TASK_SW()

(10) is a macro that is invoked when µC/OS-II switches from a low-priorityOS_TASK_SW()

task to the highest priority task. is always called from task-level code.OS_TASK_SW()

Another mechanism, , is used to perform a context switch when an ISROSIntExit()

makes a higher priority task ready for execution. A context switch simply consists of

saving the processor registers on the stack of the task being suspended and restoring the

registers of the higher priority task from its stack.

In µC/OS-II, the stack frame for a ready task always looks as if an interrupt has just occurred

and all processor registers were saved onto it. In other words, all that µC/OS-II has to do to run

a ready task is to restore all processor registers from the tasks stack and execute a return from

interrupt. You thus need to implement to simulate an interrupt. Most processorsOS_TASK_SW()

provide either software interrupt or TRAP instructions to accomplish this. The ISR or trap

handler (also called the exception handler) must vector to the assembly language function

 (see section 13.04.02).OSCtxSw()

For example, a port for an Intel or AMD 80x86 processor would use an INT instruction as

shown in listing 13.7. The interrupt handler needs to vector to . You must determineOSCtxSw()

how to do this with your compiler/processor.

#define OS_TASK_SW() asm INT 080H

Listing - Listing 13.7 Task level context switch macro.

A port for the Motorola 68HC11 processor would most likely uses the SWI instruction. Again,

the SWI handler is . Finally, a port for a Motorola 680x0/CPU32 processor probablyOSCtxSw()

uses one of the 16 TRAP instructions. Of course, the selected TRAP handler is none other than

 .OSCtxSw()

Some processors, like the Zilog Z80, do not provide a software interrupt mechanism. In this

case, you need to simulate the stack frame as closely to an interrupt stack frame as you can.

 would simply call instead of vectoring to it. The Z80 is a processorOS_TASK_SW() OSCtxSw()

that has been ported to µC/OS and is thus portable to µC/OS-II.

µC/OS-II User's Manual

364Copyright 2015 Micrium Inc.

OS_CPU_C.C

A µC/OS-II port requires that you write ten (10) fairly simple C functions:

OSTaskStkInit()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskSwHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTimeTickHook()
OSInitHookBegin()
OSInitHookEnd()
OSTCBInitHook()

The only required function is . The other nine functions must be declared butOSTaskStkInit()

may not need to contain any code. Function prototypes as well as a reference manual type

summary is provided at the end of this chapter.

OSTaskStkInit()

This function is called by and to initialize the stack frameOSTaskCreate() OSTaskCreateExt()

of a task so that the stack looks as if an interrupt just occurred and all the processor registers

were pushed onto that stack. The pseudo code for is shown in listing 13.8.OSTaskStkInit()

OS_STK *OSTaskStkInit (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT16U opt);
{
 Simulate call to function with an argument (i.e., pdata); (1)
 Simulate ISR vector; (2)
 Setup stack frame to contain desired initial values of all registers; (3)
 Return new top-of-stack pointer to caller; (4)
}

Listing - Listing 13.8 Pseudo-code for

Figure 13.2 shows what needs to put on the stack of the task being created.OSTaskStkInit()

Note that I assume a stack grows from high to low memory. The discussion that follows

applies just as well for a stack growing in the opposite direction.

Figure 13.2 Stack frame initialization with pdata passed on the stack.

µC/OS-II User's Manual

365Copyright 2015 Micrium Inc.

Listing 13.9 shows the function prototypes for , and OSTaskCreate() OSTaskCreateExt()

. The arguments in bold font are passed from the create calls to OSTaskStkInit()

. When calls , it sets the opt argument toOSTaskStkInit() OSTaskCreate() OSTaskStkInit()

0x0000 because doesnt support additional options.OSTaskCreate()

INT8U OSTaskCreate (void (*task)(void *pd),
 Void *pdata,
 OS_STK *ptos,
 INT8U prio)

INT8U OSTaskCreateExt (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio,
 INT16U id,
 OS_STK *pbos,
 INT32U stk_size,
 void *pext,
 INT16U opt)

OS_STK *OSTaskStkInit (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT16U opt);

Listing - Listing 13.9 Function prototypes

Figure - Figure 13.2: Stack-frame initialization with pdata passed to the stack.

Recall that under µC/OS-II, a task is an infinite loop but otherwise looks just like any other C

function. When the task is started by µC/OS-II, it receives an argument just as if it was called

µC/OS-II User's Manual

366Copyright 2015 Micrium Inc.

by another function as shown in Listing 13.10.

void MyTask (void *pdata)
{
 /* Do something with argument 'pdata' */
 for (;;) {
 /* Task code */
 }
}

Listing - Listing 13.10 Task Code

If I were to call from another function, the C compiler would push the argument ontoMyTask()

the stack followed by the return address of the function calling . MyTask() OSTaskStkInit()

needs to simulate this behavior. Some compilers actually pass pdata in one or more registers.

Ill discuss this situation later.

The notes below apply both and simultaneously to Listing 13.8 and Figure 13.2.

When reading each numbered note, refer to both the listing and the figure.

 F13.2(1)

 L13.8 - Assuming pdata is pushed onto the stack, simply simulates this(1) OSTaskStkInit()

scenario and loads the stack accordingly.

 F13.2(2)

 L13.8 - Unlike a C function call, the address of the caller is unknown because(1) return

your task was never really called (we are just trying to setup the stack frame of a task, as

 the code was called). All knows about is the start address of your taskif OSTaskStkInit()

(its passed as an argument). It turns out that you dont really need the return address

because the task is not supposed to return to another function anyway.

 F13.2(3)

 L13.8 - At this point, needs to put on the stack the registers that are(2) OSTaskStkInit()

automatically pushed by the processor when it recognizes and starts servicing an

interrupt. Some processors stack all of its registers; others stack just a few. Generally

µC/OS-II User's Manual

367Copyright 2015 Micrium Inc.

speaking, a processor stacks at least the value of the program counter of the instruction

to return to upon returning from an interrupt, and the processor status word. Obviously,

you must match the order exactly.

 F13.2(4)

 L13.8 - Next, need to put the rest of the processor registers on the(3) OSTaskStkInit()

stack. The stacking order depends on whether your processor gives you a choice or not.

Some processors have one or more instructions that push many registers at once. You

would have to emulate the stacking order of such instructions. For example, the Intel

80x86 has the PUSHA instruction, which pushes eight registers onto the stack. On the

Motorola 68HC11 processor, all the registers are automatically pushed onto the stack

during an interrupt response, so you would also need to match the stacking order.

 F13.2(5)

 L13.8 - Once youve initialized the stack, needs to return the address(4) OSTaskStkInit()

where the stack pointer points after the stacking is complete. or OSTaskCreate()

 takes this address and saves it in the task control block (). TheOSTaskCreateExt() OS_TCB

processor documentation tells you whether the stack pointer should point to the next free

location on the stack or the location of the last stored value. For example, on an Intel

80x86 processor, the stack pointer points to the last stored data, whereas on a Motorola

68HC11 processor, it points at the next free location.

Now its time to come back to the issue of what to do if your C compiler passes the pdata

argument in registers instead of on the stack.

 Similar to the previous case, saves the task address onto the stack in(1) OSTaskStkInit()

order to simulate a call to your task code.

 Again, needs to put on the stack the registers that are automatically(2) OSTaskStkInit()

pushed by the processor when it recognizes and starts servicing an interrupt. Some

processors stack all of its registers; others stack just a few. Generally speaking, a

µC/OS-II User's Manual

368Copyright 2015 Micrium Inc.

processor stacks at least the value of the program counter for the instruction to return to

upon returning from an interrupt, and the processor status word. Obviously, you must

match the order exactly.

 Next, need to put the rest of the processor registers on the stack. The(3) OSTaskStkInit()

stacking order depends on whether your processor gives you a choice or not. Some

processors have one or more instructions that push many registers at once. You would

have to emulate the stacking order of such instructions. Because the compiler passed

arguments to a function in registers (at least some of them), you need to find out from

the compiler documentation the register in which pdata is stored. pdata is placed on the

stack in the same area you save the corresponding register.

 Once youve initialized the stack, needs to return the address where the(4) OSTaskStkInit()

stack pointer points after the stacking is complete. or OSTaskCreate() OSTaskCreateExt()

takes this address and saves it in the task control block (). Again, the processorOS_TCB

documentation tells you whether the stack pointer should point to the next free location

on the stack or the location of the last stored value.

Figure - Figure 13.3 Stack frame initialization with pdata passed in register.

µC/OS-II User's Manual

369Copyright 2015 Micrium Inc.

OSTaskCreateHook()

OSTaskCreateHook() is called by whenever a task is created. This allows you orOS_TCBInit()

the user of your port to extend the functionality of µC/OS-II. is calledOSTaskCreateHook()

when µC/OS-II is done setting up most of the but before the is linked to theOS_TCB OS_TCB

active task chain and before the task is made ready to run. Interrupts are enabled when this

function is called.

When called, receives a pointer to the of the task created and canOSTaskCreateHook() OS_TCB

thus access all of the structure elements. has limited capability when theOSTaskCreateHook()

task is created with . However, with , you get access to aOSTaskCreate() OSTaskCreateExt()

TCB extension pointer (OSTCBExtPtr) in that can be used to access additional dataOS_TCB

about the task, such as the contents of floating-point registers, MMU (Memory Management

Unit) registers, task counters, and debug information. You may want to examine OS_TCBInit()

to see exactly whats being done.

Note about OS_CPU_HOOKS_EN: The code for the hook functions ()OS???Hook()

that are described in this and the following sections is generated from the file

 only if is set to 1 in . The functionsOS_CPU_C.C OS_CPU_HOOKS_EN OS_CFG.H OS???Hook()

are always needed and the #define constant doesnt mean that theOS_CPU_HOOKS_EN

code will not be called. All means is that the hook functions are in OS_CPU_HOOKS_EN

 (when 1) or elsewhere, in another file (when 0). This allows the user ofOS_CPU_C.C

your port to redefine all the hook functions in a different file. Obviously, users of

your port need access to the source to compile it with set to 0 inOS_CPU_HOOKS_EN

order to prevent multiply defined symbols at link time. If you dont need to use hook

functions because you dont intend to extend the functionality of µC/OS-II through

this mechanism then you can simply leave the function bodies empty. Again,

µC/OS-II always expects that the hook functions exist (i.e., they must ALWAYS be

declared somewhere).

µC/OS-II User's Manual

370Copyright 2015 Micrium Inc.

OSTaskDelHook()

OSTaskDelHook() is called by after removing the task from either the ready list or aOSTaskDel()

wait list (if the task was waiting for an event to occur). It is called before unlinking the task

from µC/OS-IIs internal linked list of active tasks. When called, receives aOSTaskDelHook()

pointer to the task control block (OS_TCB) of the task being deleted and can thus access all of

the structure members. can see if a TCB extension has been created (aOSTaskDelHook()

non-NULL pointer) and is thus responsible for performing cleanup operations.

 is called with interrupts disabled which means that your canOSTaskDelHook() OSTaskDelHook()

affect interrupt latency if its too long. You may want to study and see exactlyOSTaskDel()

what is accomplised before is called.OSTaskDelHook()

OSTaskSwHook()

OSTaskSwHook() is called whenever a task switch occurs. This happens whether the task switch

is performed by or (see). can access OSCtxSw() OSIntCtxSw() OS_CPU_A.ASM OSTaskSwHook()

 and directly because they are global variables. points to the OSTCBCur OSTCBHighRdy OSTCBCur

 of the task being switched out, and points to the of the new task.OS_TCB OSTCBHighRdy OS_TCB

Note that interrupts are always disabled during the call to , so you should keepOSTaskSwHook()

additional code to a minimum since it will affect interrupt latency. has noOSTaskSwHook()

arguments and is not expected to return anything.

OSTaskStatHook()

OSTaskStatHook() is called once every second by . You can thus extend theOSTaskStat()

statistics capability with . For instance, you can keep track of and display theOSTaskStatHook()

execution time of each task, the percentage of the CPU that is used by each task, how often

each task executes, and more. has no arguments and is not expected to returnOSTaskStatHook()

anything. You may want to study .OS_TaskStat()

OSTimeTickHook()

OSTaskTimeHook() is called by at every system tick. In fact, isOSTimeTick() OSTimeTickHook()

called before a tick is actually processed by µC/OS-II to give your port or application first

claim of the tick. has no arguments and is not expected to return anything.OSTimeTickHook()

µC/OS-II User's Manual

371Copyright 2015 Micrium Inc.

OSTCBInitHook()

OSTCBInitHook() is called by immediately before calling OS_TCBInit() OSTaskCreateHook()

which is also called by . I did this so that you could initialize related dataOS_TCBInit() OS_TCB

with and task related data with (there may be aOSTCBInitHook() OSTaskCreateHook()

difference). Its up to you to decide whether you need to populate both of these functions. Like

, receives a pointer to the newly created tasks OSTaskCreateHook() OSTCBInitHook() OS_TCB

after initializing most of the field, but before linking the to the chain of created tasks.OS_TCB

You may want to examine .OS_TCBInit()

OSTaskIdleHook()

Many microprocessors allow you to execute instructions that brings the CPU into a low-power

mode. The CPU exits low-power mode when it receives an interrupt. isOSTaskIdleHook()

called by and, as shown in Listing 13.11, can be made to use this CPU feature.OS_TaskIdle()

void OS_TaskIdle (void *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
#endif

 pdata = pdata;
 for (;;) {
 OS_ENTER_CRITICAL();
 OSIdleCtr++; (1)
 OS_EXIT_CRITICAL();
 OSTaskIdleHook(); (2)
 }
}

void OSTaskIdleHook (void)
{
 asm(STOP); (3)
 /* Interrupt received and serviced */ (4)
}

Listing - Listing 13.11 Use of OSTaskIdleHook()

 As you know, is executed whenever no other task is ready to run. (1) OS_TaskIdle()

 increments the idle counter, OSIdleCtr.OS_TaskIdle()

 Next calls the hook function that you would declare in(2) OS_TaskIdle() OSTaskIdleHook()

µC/OS-II User's Manual

372Copyright 2015 Micrium Inc.

the port file .OS_CPU_C.C

 immediately invokes the CPU instruction to bring the CPU in(3) OSTaskIdleHook()

low-power mode. I assumed, for sake of illustration, that your compiler supports inline

assembly language and that the instruction to execute is called STOP. Other compilers

may not allow you to do inline assembly language and, in those cases, you could declare

 in the assembly language file but make sure you includeOSTaskIdleHook() OS_CPU_A.ASM

a return from the call. Also, the instruction to bring the CPU in low-power mode may be

called something else.

 When an interrupt occurs, the CPU exits low-power mode and processes the ISR(4)

(Interrupt Service Routine). The ISR signals a higher priority task which executes upon

completion of the ISR because the ISR calls . When all tasks are againOSIntExit()

waiting for events to occur, µC/OS-II switches back to the idle task immediately after

item L13.9(4) and returns to and the same processOSTaskIdleHook() OS_TaskIdle()

repeats.

You could also use to blink an LED (Light Emitting Diode) which could beOSTaskIdleHook()

used as an indication of how busy the CPU is. A dim LED would indicate a very busy CPU

while a bright LED indicates a lightly loaded CPU.

OSInitHookBegin()

OSInitHookBegin() is called immediately upon entering . The reason I added thisOSInit()

function is to encapsulate OS related initialization within . This allows you to extend OSInit()

 with your own port specific code. The user of your port still only sees andOSInit() OSInit()

thus makes the code cleaner.

OSInitHookEnd()

OSInitHookEnd() is similar to except that the hook is called at the end of OSInitHookBegin()

 just before returning to s caller. The reason is the same as above and you canOSInit() OSInit()

see an example of the use of in Chapter 15, 80x86 with Floating-Point.OSInitHookEnd()

OS_CPU_A.ASM

A µC/OS-II port requires that you write four assembly language functions:

µC/OS-II User's Manual

373Copyright 2015 Micrium Inc.

OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()
OSTickISR()

If your compiler supports in-line assembly language code, you could actually place these

functions in instead of having a separate assembly language file.OS_CPU_C.C

OSStartHighRdy()

This function is called by to start the highest priority task ready to run. TheOSStart()

pseudo-code for this function is shown in Listing 13.12. You need to convert this pseudo-code

to assembly language.

void OSStartHighRdy (void)
{
 Call user definable OSTaskSwHook(); (1)
 OSRunning = TRUE; (2)
 Get the stack pointer of the task to resume: (3)
 Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

 Restore all processor registers from the new task's stack; (4)
 Execute a return from interrupt instruction; (5)
}

Listing - Listing 13.12 Pseudo-code for OSStartHighRdy().

 must call . However, only does half(1) OSStartHighRdy() OSTaskSwHook() OSStartHighRdy()

a context switch — you are only restoring the registers of the highest priority task and

NOT saving the register of a task. can examine to tell itOSTaskSwHook() OSRunning

whether was called from (is FALSE) orOSTaskSwHook() OSStartHighRdy() OSRunning

from a regular context switch (is TRUE).OSRunning

 sets to TRUE before the highest priority task is restored,(2) OSStartHighRdy() OSRunning

but after calling .OSTaskSwHook()

You should note that I should have placed the previous two statements in OSStart()

instead of requiring that they be placed in because they dont need toOSStartHighRdy()

be done in assembly language. Unfortunately, I didnt notice this fact when I first wrote

µC/OS-II User's Manual

374Copyright 2015 Micrium Inc.

. If I were to change at this point, a large number of ports may notOSStart() OSStart()

work properly. I have thus decided to leave these statements in inOSStartHighRdy()

order to avoid a lot of e-mails!

 then needs to load the stack pointer of the CPU with the top-of-stack(3) OSStartHighRdy()

pointer of the highest priority task. assumes that pointsOSStartHighRdy() OSTCBHighRdy

to the task control block of the task with the highest priority. To simplify things, the

stack pointer is always stored at the beginning of the task control block (i.e., its

OS_TCB). In other words, the stack pointer of the task to resume is always stored at

offset 0 in the OS_TCB.

 In µC/OS-II, the stack frame for a ready task always looks as if an interrupt has just(4)

occurred and all processor registers were saved onto it. To run the highest priority task,

all you need to do is restore all processor registers from the tasks stack in the proper

order and execute a return from interrupt. In this step, retrieves theOSStartHighRdy()

contents of all the CPU registers from the stack. Its important to pop the registers in the

reverse order from how they were placed onto the stack by (see SectionOSTaskStkInit()

13.??,).OSTaskStkInit()

 The last step is to execute a return from interrupt instruction which causes the CPU to(5)

retrieve the program counter and possibly the CPU flags register (also called the status

register) from the stack. This causes the CPU to resume execution at the first instruction

of the highest priority task.

Before you can call , however, you must have created at least one of your tasks [see OSStart()

 and].OSTaskCreate() OSTaskCreateExt()

OSCtxSw()

A task-level context switch is accomplished by issuing a software interrupt instruction or,

depending on the processor, executing a TRAP instruction. The interrupt service routine, trap,

or exception handler must vector to .OSCtxSw()

The sequence of events that leads µC/OS-II to vector to begins when the current taskOSCtxSw()

calls a service provided by µC/OS-II, which causes a higher priority task to be ready to run. At

the end of the service call, µC/OS-II calls , which concludes that the current task isOS_Sched()

no longer the most important task to run. loads the address of the highest priorityOS_Sched()

µC/OS-II User's Manual

375Copyright 2015 Micrium Inc.

task into then executes the software interrupt or trap instruction by invoking theOSTCBHighRdy

macro . Note that the variable already contains a pointer to the currentOS_TASK_SW() OSTCBCur

tasks task control block, OS_TCB. The software interrupt instruction (or TRAP) forces some

of the processor registers (most likely the return address and the processors status word) onto

the current tasks stack, then the processor vectors to .OSCtxSw()

The pseudocode for is shown in Listing 13.13. This code must be written inOSCtxSw()

assembly language because you cannot access CPU registers directly from C. Note that

interrupts are disabled during and also during execution of the user-definableOSCtxSw()

function . When is invoked, it is assumed that the processorsOSTaskSwHook() OSCtxSw()

program counter (PC) and possibly the flag register (or status register) are pushed onto the

stack by the software interrupt instruction which is invoked by the macro.OS_TASK_SW()

void OSCtxSw(void)
{
 Save processor registers; (1)
 Save the current tasks stack pointer into the current tasks OS_TCB: (2)
 OSTCBCur->OSTCBStkPtr = Stack pointer;
 Call user definable OSTaskSwHook(); (3)
 OSTCBCur = OSTCBHighRdy; (4)
 OSPrioCur = OSPrioHighRdy; (5)
 Get the stack pointer of the task to resume: (6)
 Stack pointer = OSTCBHighRdy->OSTCBStkPtr;
 Restore all processor registers from the new tasks stack; (7)
 Execute a return from interrupt instruction; (8)
}

Listing - Listing 13.13 Pseudocode for OSCtxSw().

 saves all the processor registers (except the ones already saved by the(1) OSCtxSw()

software interrupt) in the SAME order as they are placed on the stack by

.OSTaskStkInit()

 Once all CPU registers are on the stack of the task to suspend, saves the stack(2) OSCtxSw()

pointer into the tasks OS_TCB.

 calls in case your port needs to extend the functionality of a(3) OSCtxSw() OSTaskSwHook()

context switch. Note that is ALWAYS called whether this function isOSTaskSwHook()

declared in or elsewhere.OS_CPU_C.C

 then needs to make the pointer to the current point to the of the(4) OSCtxSw() OS_TCB OS_TCB

task being resumed. In other words, the new task will become the current task.

µC/OS-II User's Manual

376Copyright 2015 Micrium Inc.

 needs to copy the new tasks priority into the current task priority.(5) OSCtxSw()

 The new tasks stack pointer is then retrieved from the new tasks OS_TCB.(6)

 then needs to restore the value of the CPU registers for the task that is being(7) OSCtxSw()

resumed. You must restore the registers in exactly the reverse order as they were saved.

For example, if your processor has four registers called R1, R2, R3 and R4 and you

saved them in that order then you must retrieve them starting from R4 and ending with

R1.

 Since the value of the high priority tasks program counter (and possibly the status(8)

register) are still on the stack, a return from interrupt would cause the program counter

and status register to be popped off the stack and loaded into the CPU. This causes your

task code to be resumed.

void main(void)
{
 .
 .
 OSInit(); /* Initialize μC/OS-II */
 .
 .
 /* Application initialization code ... */
 /* ... Create at least on task by calling OSTaskCreate() */
 .
 .
 Enable TICKER interrupts; /* DO NOT DO THIS HERE!!! */
 .
 .
 OSStart(); /* Start multitasking */
}

Listing - Listing 13.14 Incorrect place to start the tick interrupt.

OSTickISR()

µC/OS-II requires you to provide a periodic time source to keep track of time delays and

timeouts. A tick should occur between 10 and 100 times per second, or Hertz. To accomplish

this, either dedicate a hardware timer or obtain 50/60Hz from an AC power line.

You must enable ticker interrupts after multitasking has started; that is, after calling .OSStart()

Note that you really cant do this because never returns. However, you can andOSStart()

µC/OS-II User's Manual

377Copyright 2015 Micrium Inc.

should initialize and tick interrupts in the first task that executes following a call to .OSStart()

This would of course be the highest priority task that you would have created before calling

. A common mistake is to enable ticker interrupts between calling and OSStart() OSInit()

, as shown in Listing 13.14. This is a problem because the tick interrupt could beOSStart()

serviced before µC/OS-II starts the first task and, at that point, µC/OS-II is in an unknown state

and your application could crash.

The pseudocode for the tick ISR is shown in Listing 13.15. This code must be written in

assembly language because you cannot access CPU registers directly from C.

void OSTickISR(void)
{
 Save processor registers; (1)
 Call OSIntEnter() or increment OSIntNesting; (2)
 if (OSIntNesting == 1) { (3)
 OSTCBCur->OSTCBStkPtr = Stack Pointer;
 }
 Clear interrupting device; (4)
 Re-enable interrupts (optional); (5)
 Call OSTimeTick(); (6)
 Call OSIntExit(); (7)
 Restore processor registers; (8)
 Execute a return from interrupt instruction; (9)
}

Listing - Listing 13.15 Pseudocode for tick ISR.

 The tick ISR (as with any ISR) needs to save all the CPU registers onto the current tasks(1)

stack. Of course, they need to be saved in the same order as they are placed in

.OSTaskStkInit()

 It is assumed that interrupts are disabled at this point so you can directly increment (2)

 without fear of data corruption from another ISR. In the past, IOSIntNesting

recommended that you called which handles the increment. At the time, IOSIntEnter()

wanted to encapsulate the increment in case I needed to do more processing at the

beginning of the ISR. It turns out that I added a boundary check in toOSIntEnter()

ensure that interrupt nesting never exceeded 255 levels. If dont expect to nest this deep,

you can increment without this boundary check. If you want to be safe,OSIntNesting

simply call . However, calling adds overhead to the ISR. ItsOSIntEnter() OSIntEnter()

up to you to decide which way you want to implement your port.

 The tick ISR then needs to check the value of and if its one, you need to(3) OSIntNesting

µC/OS-II User's Manual

378Copyright 2015 Micrium Inc.

save the contents of the stack pointer into the current tasks OS_TCB. This step has been

added in version 2.51 and although it complicates the ISR slightly, it does make a port

more compiler independent.

 Depending on the source of the interrupt, the interrupting device may need to be cleared(4)

to acknowledge the interrupt.

 You may want to re-enable interrupts at this point in order to allow higher priority(5)

interrupts to be recognized. This is an optional step because you may not want to allow

nested interrupts because they consume stack space.

 must call which is responsible for maintaining µC/OS-IIs(6) OSTickISR() OSTimeTick()

internal timers. The timers allow tasks to be suspended for a certain amount of time or

allow timeouts on PEND-type calls.

 Because we are done servicing this ISR, we need to call . As you probably(7) OSIntExit()

remember, will determine whether a higher priority task has been madeOSIntExit()

ready to run because of this ISR. If a higher priority task is ready to run, OSIntExit()

will not return to the interrupted task but instead, context switch to this higher priority

task.

 If there is no higher priority task then returns, and we simply restore the(8) OSIntExit()

CPU registers from the values stacked at the beginning of the ISR. Again, the registers

must be restored in the reverse order.

 needs to execute a return from interrupt in order to resume execution of the(9) OSTickISR()

interrupted task.

OSIntCtxSw()

OSIntCtxSw() is called by to perform a context switch from an ISR. Because OSIntExit()

 is called from an ISR, it is assumed that all the processor registers are properlyOSIntCtxSw()

saved onto the interrupted tasks stack (see).section 13.05.03, OSTickISR()

The pseudocode for is shown in Listing 13.16. This code must be written inOSIntCtxSw()

assembly language because you cannot access CPU registers directly from C. If your C

compiler supports inline assembly, put the code for in instead of OSIntCtxSw() OS_CPU_C.C

µC/OS-II User's Manual

379Copyright 2015 Micrium Inc.

. You should note that this is the pseudocode for V2.51 (and higher) becauseOS_CPU_A.ASM

prior to V2.51, required a few extra steps. If you have a port that was done for aOSIntCtxSw()

version prior to V2.51, I highly recommend that you change it to match the algorithm shown in

Listing 13.16.

A lot of the code is identical to except that we dont save the CPU registers onto theOSCtxSw()

current task because thats already done by the ISR. In fact, you can reduce the amount of code

in the port by jumping to the appropriate section of code in if you want. Because ofOSCtxSw()

the similarity between and , once you figure out how to do ,OSCtxSw() OSIntCtxSw() OSCtxSw()

you have automatically figured out how to do !OSIntCtxSw()

void OSIntCtxSw(void)
{
 Call user-definable OSTaskSwHook();
 OSTCBCur = OSTCBHighRdy;
 OSPrioCur = OSPrioHighRdy;
 Get the stack pointer of the task to resume:
 Stack pointer = OSTCBHighRdy->OSTCBStkPtr;
 Restore all processor registers from the new tasks stack;
 Execute a return from interrupt instruction;
}

Listing - Listing 13.16 Pseudocode for OSIntCtxSw() for V2.51 and higher.

Listing 13.17 shows the pseudocode for for a port made for a version ofOSIntCtxSw()

µC/OS-II prior to V2.51. You will recognize such a port because of the added two items before

calling : L13.17(1) and L13.17(2). ISRs for such a port also would not haveOSTaskSwHook()

the statements shown in L13.15(3) to save the stack pointer into the of the interruptedOS_TCB

task. Because of this, had to do these operations (again, L13.17(1) andOSIntCtxSw()

L13.17(2)). However, because the stack pointer was not pointing to the proper stack frame

location (when starts executing, the return address of and OSIntCtxSw() OSIntExit()

 were placed on the stack by the calls), the stack pointer needed to be adjusted.OSIntCtxSw()

The solution was to add an offset to the stack pointer. The value of this offset was dependent

on the compiler options and generated more e-mail than I expected or cared for. One of those

e-mail was from a clever individual named Nicolas Pinault which pointed out how this stack

adjustment business could all be avoided as previously described. Because of Nicolas,

µC/OS-II is no longer dependent on compiler options. Thanks again Nicolas!

µC/OS-II User's Manual

380Copyright 2015 Micrium Inc.

1.

2.

3.

4.

void OSIntCtxSw(void)
{
 Adjust the stack pointer to remove calls to: (1)
 OSIntExit();
 OSIntCtxSw();
 Save the current tasks stack pointer into the current tasks OS_TCB: (2)
 OSTCBCur->OSTCBStkPtr = Stack Pointer;
 Call user-definable OSTaskSwHook();
 OSTCBCur = OSTCBHighRdy;
 OSPrioCur = OSPrioHighRdy;
 Get the stack pointer of the task to resume:
 Stack pointer = OSTCBHighRdy->OSTCBStkPtr;
 Restore all processor registers from the new tasks stack;
 Execute a return from interrupt instruction;
}

Listing - Listing 13.17 Pseudocode for OSIntCtxSw() prior to V2.51.

Testing a Port

Once you have a port of µC/OS-II for your processor, you need to verify its operation. This is

probably the most complicated part of writing a port. You should test your port without

application code. In other words, test the operations of the kernel by itself. There are two

reasons to do this. First, you dont want to complicate things anymore than they need to be.

Second, if something doesnt work, you know that the problem lies in the port as opposed to

your application. Start with a couple of simple tasks and only the ticker interrupt service

routine. Once you get multitasking going, its quite simple to add your application tasks.

There are a number of techniques you could use to test your port depending on your level of

experience with embedded systems and processors in general. When I write a port, I generally

follow the following four steps:

Ensure that the code compiles, assembles and links

Verify and OSTaskStkInit() OSStartHighRdy()

Verify OSCtxSw()

Verify and OSIntCtxSw() OSTickISR()

µC/OS-II User's Manual

381Copyright 2015 Micrium Inc.

Ensure that the Code Compiles, Assembles and Links

Once you complete the port, you need to compile, assemble and link it along with the µC/OS-II

processor independent code. This step is obviously compiler specific and you will need to

consult your compiler documentation to determine how to do this.

I generally setup a simple test directory as follows:

\SOFTWARE\uCOS-II\processor\compiler\TEST

where is the name of the processor or microcontroller for which you did the port,processor

and is the name of the compiler you used.compiler

Table 13.2 shows the directories you will need to work with, along with the files found in those

directories. In the TEST directory, you should have at least three file: , and TEST.C INCLUDES.H

. Depending on the processor used, you may also need to have an interrupt vectorOS_CFG.H

table which I assumed would be called but, it could certainly be called somethingVECTORS.C

else.

The TEST directory could also contain a MAKEFILE which specifies compiler, assembler and

linker directives to build your project. A MAKEFILE assumes, of course, that you use a make

utility. If your compiler provides an IDE (Integrated Development Environment), you may not

have a MAKEFILE but instead, you could have project files which are specific to the IDE.

The port you did (refer to section 13.01) should be found in the following directory:

\SOFTWARE\uCOS-II\processor\compiler

Table 13.2, Files needed to test a Port

Directory File

\SOFTWARE\uCOS-II\processor\compiler\TEST TEST.C

 OS_CFG.H

 INCLUDES.H

 VECTORS.C

 MAKEFILE or IDE project file(s)

µC/OS-II User's Manual

382Copyright 2015 Micrium Inc.

\SOFTWARE\uCOS-II\processor\compiler OS_CPU_A.ASM

 OS_CPU_C.C

 OS_CPU.H

\SOFTWARE\uCOS-II\SOURCE OS_CORE.C

 OS_FLAG.C

 OS_MBOX.C

 OS_MEM.C

 OS_MUTEX.C

 OS_Q.C

 OS_SEM.C

 OS_TASK.C

 OS_TIME.C

 uCOS_II.H

 uCOS_II.H

Listing 13.18 shows the contents of a typical . is needed because INCLUDES.H STRING.H

 uses the ANSI C function to initialize the stack of a task. TheOSTaskCreateExt() memset()

other standard C header files (, and) are not actually used bySTDIO.H CTYPE.H STDLIB.H

µC/OS-II but are included in case your application needs them.

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

#include "os_cpu.h"
#include "os_cfg.h"
#include "ucos_ii.h"

Listing - Listing 13.18 Typical

Listing 13.19 shows the content of which was setup to enable ALL the features ofOS_CFG.H

µC/OS-II. You can find a similar file in the \SOFTWARE\uCOS-II\EX1_x86L\BC45\SOURCE

directory of the companion CD so that you can use it as a starting point instead of typing an

 from scratch.OS_CFG.H

µC/OS-II User's Manual

383Copyright 2015 Micrium Inc.

/* ---------------------- MISCELLANEOUS ----------------------- */
#define OS_ARG_CHK_EN 1 /* Enable (1) or Disable (0) argument checking
*/

#define OS_CPU_HOOKS_EN 1 /* uC/OS-II hooks are found in the processor port files
*/

#define OS_LOWEST_PRIO 63 /* Defines the lowest priority that can be assigned ...
*/
 /* ... MUST NEVER be higher than 63!
*/

#define OS_MAX_EVENTS 20 /* Max. number of event control blocks in your application ...
*/
 /* ... MUST be > 0
*/
#define OS_MAX_FLAGS 10 /* Max. number of Event Flag Groups in your application ...
*/
 /* ... MUST be > 0
*/
#define OS_MAX_MEM_PART 10 /* Max. number of memory partitions ...
*/
 /* ... MUST be > 0
*/
#define OS_MAX_QS 10 /* Max. number of queue control blocks in your application ...
*/
 /* ... MUST be > 0
*/
#define OS_MAX_TASKS 63 /* Max. number of tasks in your application ...
*/
 /* ... MUST be >= 2
*/

#define OS_SCHED_LOCK_EN 1 /* Include code for OSSchedLock() and OSSchedUnlock()
*/

#define OS_TASK_IDLE_STK_SIZE 512 /* Idle task stack size (# of OS_STK wide entries)
*/

#define OS_TASK_STAT_EN 1 /* Enable (1) or Disable(0) the statistics task
*/
#define OS_TASK_STAT_STK_SIZE 512 /* Statistics task stack size (# of OS_STK wide entries)
*/

#define OS_TICKS_PER_SEC 200 /* Set the number of ticks in one second
*/

 /* ----------------------- EVENT FLAGS ------------------------
*/
#define OS_FLAG_EN 1 /* Enable (1) or Disable (0) code generation for EVENT FLAGS
*/
#define OS_FLAG_WAIT_CLR_EN 1 /* Include code for Wait on Clear EVENT FLAGS
*/
#define OS_FLAG_ACCEPT_EN 1 /* Include code for OSFlagAccept()
*/
#define OS_FLAG_DEL_EN 1 /* Include code for OSFlagDel()
*/
#define OS_FLAG_QUERY_EN 1 /* Include code for OSFlagQuery()
*/

 /* -------------------- MESSAGE MAILBOXES ---------------------
*/
#define OS_MBOX_EN 1 /* Enable (1) or Disable (0) code generation for MAILBOXES
*/
#define OS_MBOX_ACCEPT_EN 1 /* Include code for OSMboxAccept()

µC/OS-II User's Manual

384Copyright 2015 Micrium Inc.

*/
#define OS_MBOX_DEL_EN 1 /* Include code for OSMboxDel()
*/
#define OS_MBOX_POST_EN 1 /* Include code for OSMboxPost()
*/
#define OS_MBOX_POST_OPT_EN 1 /* Include code for OSMboxPostOpt()
*/
#define OS_MBOX_QUERY_EN 1 /* Include code for OSMboxQuery()
*/

 /* --------------------- MEMORY MANAGEMENT --------------------
*/
#define OS_MEM_EN 1 /* Enable (1) or Disable (0) code generation for MEMORY MANAGER
*/
#define OS_MEM_QUERY_EN 1 /* Include code for OSMemQuery()
*/

 /* ---------------- MUTUAL EXCLUSION SEMAPHORES ---------------
*/
#define OS_MUTEX_EN 1 /* Enable (1) or Disable (0) code generation for MUTEX
*/
#define OS_MUTEX_ACCEPT_EN 1 /* Include code for OSMutexAccept()
*/
#define OS_MUTEX_DEL_EN 1 /* Include code for OSMutexDel()
*/
#define OS_MUTEX_QUERY_EN 1 /* Include code for OSMutexQuery()
*/

 /* ---------------------- MESSAGE QUEUES ----------------------
*/
#define OS_Q_EN 1 /* Enable (1) or Disable (0) code generation for QUEUES
*/
#define OS_Q_ACCEPT_EN 1 /* Include code for OSQAccept()
*/
#define OS_Q_DEL_EN 1 /* Include code for OSQDel()
*/
#define OS_Q_FLUSH_EN 1 /* Include code for OSQFlush()
*/
#define OS_Q_POST_EN 1 /* Include code for OSQPost()
*/
#define OS_Q_POST_FRONT_EN 1 /* Include code for OSQPostFront()
*/
#define OS_Q_POST_OPT_EN 1 /* Include code for OSQPostOpt()
*/
#define OS_Q_QUERY_EN 1 /* Include code for OSQQuery()
*/

 /* ------------------------ SEMAPHORES ------------------------
*/
#define OS_SEM_EN 1 /* Enable (1) or Disable (0) code generation for SEMAPHORES
*/
#define OS_SEM_ACCEPT_EN 1 /* Include code for OSSemAccept()
*/
#define OS_SEM_DEL_EN 1 /* Include code for OSSemDel()
*/
#define OS_SEM_QUERY_EN 1 /* Include code for OSSemQuery()
*/

 /* --------------------- TASK MANAGEMENT ----------------------
*/
#define OS_TASK_CHANGE_PRIO_EN 1 /* Include code for OSTaskChangePrio()
*/
#define OS_TASK_CREATE_EN 1 /* Include code for OSTaskCreate()

µC/OS-II User's Manual

385Copyright 2015 Micrium Inc.

*/
#define OS_TASK_CREATE_EXT_EN 1 /* Include code for OSTaskCreateExt()
*/
#define OS_TASK_DEL_EN 1 /* Include code for OSTaskDel()
*/
#define OS_TASK_SUSPEND_EN 1 /* Include code for OSTaskSuspend() and OSTaskResume()
*/
#define OS_TASK_QUERY_EN 1 /* Include code for OSTaskQuery()
*/

 /* --------------------- TIME MANAGEMENT ----------------------
*/
#define OS_TIME_DLY_HMSM_EN 1 /* Include code for OSTimeDlyHMSM()
*/
#define OS_TIME_DLY_RESUME_EN 1 /* Include code for OSTimeDlyResume()
*/
#define OS_TIME_GET_SET_EN 1 /* Include code for OSTimeGet() and OSTimeSet()
*/

typedef INT16U OS_FLAGS; /* Date type for event flag bits (8, 16 or 32 bits)
*/

Listing - Listing 13.19

Listing 13.20 shows the contents of a simple file that you can start with to prove yourTEST.C

compile process. For this first step, there is no need for any more code because all we are

trying to accomplish is a build. At this point, its up to you to resolve any compiler, assembler

and/or linker errors. You may also get some warnings and you will need to determine whether

the warnings are severe enough to be a problem.

#include "includes.h"

void main (void)
{
 OSInit();
 OSStart();
}

Listing - Listing 13.20 Minimal

Verify OSTaskStkInit() and OSStartHighRdy()

Once you achieved a successful build, you are actually ready to start testing your port. As the

title of this section suggest, this step will verify the proper operation of and OSTaskStkInit()

.OSStartHighRdy()

µC/OS-II User's Manual

386Copyright 2015 Micrium Inc.

Testing with a source level debugger

If you have a source level debugger, you should be able to verify this step fairly quickly. I

assume you already know how to use your debugger.

Start by modifying to disable the statistic task by setting to 0.OS_CFG.H OS_TASK_STAT_EN

Because your file (see Listing 13.20) doesnt create any application task, the only taskTEST.C

created is the µC/OS-II idle task: . We will step into the code until µC/OS-IIOS_TaskIdle()

switches to .OS_TaskIdle()

You should load the code into the debugger and start single stepping into . You shouldmain()

step over the function and then step into the code for (shown in listingOSInit() OSStart()

13.21). Step through the code until you reach the call to (the last statementOSStartHighRdy()

in) then step into the code for . At this point, your debuggerOSStart() OSStartHighRdy()

should switch to assembly language mode since is written in assemblyOSStartHighRdy()

language. This is the code you wrote to start the first task and because we didnt create any

other task than , should start this task.OS_TaskIdle() OSStartHighRdy()

void OSStart (void)
{
 INT8U y;
 INT8U x;

 if (OSRunning == FALSE) {
 y = OSUnMapTbl[OSRdyGrp];
 x = OSUnMapTbl[OSRdyTbl[y]];
 OSPrioHighRdy = (INT8U)((y << 3) + x);
 OSPrioCur = OSPrioHighRdy;
 OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
 OSTCBCur = OSTCBHighRdy;
 OSStartHighRdy();
 }
}

Listing - Listing 13.21 OSStart().

Step through your code and verify that it does what you expect. Specifically, OSStartHighRdy()

should start populating CPU registers in the reverse order that they were placed onto the task

stack by (see). If this doesnt happen, you most likely misalignedOSTaskStkInit() OS_CPU_C.C

the stack pointer. In this case, you will have to correct accordingly. The lastOSTaskStkInit()

instruction in should be a return from interrupt and, as soon as you executeOSStartHighRdy()

that code, your debugger should be positioned at the first instruction of . If thisOS_TaskIdle()

µC/OS-II User's Manual

387Copyright 2015 Micrium Inc.

doesnt happen, you may not have placed the proper start address of the task onto the task stack

and, you will most likely have to correct this in . If your debugger ends up in OSTaskStkInit()

 and you can execute a few times through the infinite loop, you are done withOS_TaskIdle()

this step and have succesfully verified and .OSTaskStkInit() OSStartHighRdy()

GO/noGO Testing

If you dont have access to a source level debugger but have an LED (Light Emitting Diode) on

your target system, you can write a GO/noGO test. What we will do is start by turning OFF the

LED and if and works, the LED will be turned ON by theOSTaskStkInit() OSStartHighRdy()

idle task. In fact, the LED will be turned ON and OFF very quickly and will appear to always

be ON. If you have an oscilloscope, you will be able to confirm that the LED is blinking at a

roughly 50% duty cycle.

For this test, you will need to temporarily modify three files , and .OS_CFG.H OS_CPU_C.C TEST.C

In , you need to disable the statistic task by setting to 0. In ,OS_CFG.H OS_TASK_STAT_EN TEST.C

you will need to add code to turn OFF the LED as shown in Listing 13.22. In , youOS_CPU_C.C

need to modify to toggle the LED as shown in the pseudocode of ListingOSTaskIdleHook()

13.23.

The next step is to load the code in your target system and run it. If the LED doesnt toggle,

youll need to find out whats wrong in either or . With suchOSTaskStkInit() OSStartHighRdy()

limited and primitive tools, the best you can do is carefully inspect your code until you find

what you did wrong!

#include includes.h

void main (void)
{
 OSInit();
 Turn OFF LED;
 OSStart();
}

Listing - Listing 13.22 Modifying

µC/OS-II User's Manual

388Copyright 2015 Micrium Inc.

void OSTaskIdleHook (void)
{
 if (LED is ON) { /* Toggle LED */
 Turn OFF LED;
 } else {
 Turn ON LED;
 }
}

Listing - Listing 13.23 Modifying

Verify OSCtxSw()

This should be an easy step because in the previous step, we verified that the stack frame of a

task is correctly initialized by . For this test, we will create an application taskOSTaskStkInit()

and force a context switch back to the idle task. For this test, you need to ensure that you have

correctly setup the software interrupt or TRAP to vector to .OSCtxSw()

Testing with a Source Level Debugger

Start by modifying in as shown in Listing 13.24. For sake of discussion, Imain() TEST.C

decided to assume that the stack of your processor grows downwards from high to low

memory and that 100 entries is sufficient stack space for the test task. Of course, you should

modify this code according to your own processor requirements.

#include "includes.h"

OS_STK TestTaskStk[100];

void main (void)
{
 OSInit();
 OSTaskCreate(TestTask, (void *)0, &TestTaskStk[99], 0); (1)
 OSStart();
}

void TestTask (void *pdata) (2)
{
 pdata = pdata;
 while (1) {
 OSTimeDly(1); (3)
 }
}

Listing - Listing 13.24 Testing

µC/OS-II User's Manual

389Copyright 2015 Micrium Inc.

 We will create a high priority task. I decided to use priority level 0 but you can use(1)

anything below (see).OS_LOWEST_PRIO _CFG.H

 Since we proved in 13.06.02 that works, µC/OS-II should start(2) OSStartHighRdy()

executing as its first task instead of the idle task. You can step through theTestTask()

code until you get to the beginning of .TestTask()

 enters an infinite loop which continuously calls . In other(3) TestTask() OSTimeDly(1)

words, doesnt really do anything except wait for time to expire. Because weTestTask()

didnt enable interrupts nor did we start the clock tick, will never return to OSTimeDly(1)

!TestTask()

You can now step into . The function will call and OSTimeDly() OSTimeDly() OS_Sched()

 will in turn calls the assembly language function . In most cases, this isOS_Sched() OSCtxSw()

accomplished through a TRAP or software interrupt mechanism. In other words, if you setup

the software interrupt or TRAP correctly, this instruction should cause the CPU to start

executing . You can step through the code for and see the registers of OSCtxSw() OSCtxSw()

 be saved onto its stack and the value of the registers for be loadedTestTask() OS_TaskIdle()

into the CPU. When the return from interrupt is executed (for the software interrupt or TRAP),

you should be in !OS_TaskIdle()

If doesnt bring you into you will need to find out why and make theOSCtxSw() OS_TaskIdle()

necessary corrections to .OSCtxSw()

GO/noGO Testing

Modify in as shown in Listing 13.25. I decided to assume that the stack of yourmain() TEST.C

processor grows downwards from high to low memory and that 100 entries is sufficient stack

space for the test task.

µC/OS-II User's Manual

390Copyright 2015 Micrium Inc.

#include "includes.h"

OS_STK TestTaskStk[100];

void main (void)
{
 OSInit();
 Turn OFF LED; (1)
 OSTaskCreate(TestTask, (void *)0, &TestTaskStk[99], 0); (2)
 OSStart();
}

void TestTask (void *pdata) (3)
{
 pdata = pdata;
 while (1) {
 OSTimeDly(1); (4)
 }
}

Listing - Listing 13.25 Testing

 You need to turn OFF the LED before you run the rest of the code so that if the test fails,(1)

hopefully the LED will be turned OFF. I say hopefully because the processor could crash

and stiff turn the LED ON. However, if is written correctly, the LED shouldOSCtxSw()

toggle very quickly and you can thus verify this with an oscilloscope.

 We will create a high priority task. I decided to use priority level 0 but you can use(2)

anything below (see).OS_LOWEST_PRIO OS_CFG.H

 Since we proved in 13.06.02 that works, µC/OS-II should start(3) OSStartHighRdy()

executing as its first task instead of the idle task.TestTask()

 enters an infinite loop which continuously calls . In other(4) TestTask() OSTimeDly(1)

words, doesnt really do anything except wait for time to expire. Because weTestTask()

didnt enable interrupts nor did we start the clock tick, will never return to OSTimeDly(1)

! When is called, a context switch to the idle task should occurTestTask() OSTimeDly(1)

(if is properly written) and you should get the LED to blink very quickly. InOSCtxSw()

fact, it will blink so fast that it will appear to be always ON. You should verify that it

blinks using an oscilloscope (if one is available). If the LED is not blinking or is OFF,

you will need to find out why and make the necessary corrections to .OSCtxSw()

µC/OS-II User's Manual

391Copyright 2015 Micrium Inc.

Verify OSIntCtxSw() and OSTickISR()

This should be an easy step because is similar but simpler than . InOSIntCtxSw() OSCtxSw()

fact, most of the code for can be borrowed from . For this test, you willOSIntCtxSw() OSCtxSw()

need to setup an interrupt vector for the clock tick ISR. We will then initialize the clock tick

and enable interrupts.

Start by modifying in as shown in Listing 13.26.main() TEST.C

#include "includes.h"

OS_STK TestTaskStk[100];

void main (void)
{
 OSInit();
 Turn LED OFF; (1)
 Install the clock tick interrupt vector; (2)
 OSTaskCreate(TestTask, (void *)0, &TestTaskStk[99], 0); (3)
 OSStart();
}

void TestTask (void *pdata) (4)
{
 BOOLEAN led_state;

 pdata = pdata;
 Initialize the clock tick interrupt (i.e., timer); (5)
 Enable interrupts; (6)
 led_state = FALSE;
 Turn ON LED; (7)
 while (1) {
 OSTimeDly(1); (8)
 if (led_state == FALSE) { (9)
 led_state = TRUE;
 Turn ON LED;
 } else {
 led_state = FALSE;
 Turn OFF LED;
 }
 }
}

Listing - Listing 13.26 Testing

 Regardless of whether you have a degugger or not, its useful for this test to have access(1)

to an LED (or some display device). You need to turn OFF the LED before you run the

rest of the code.

µC/OS-II User's Manual

392Copyright 2015 Micrium Inc.

 We will need to install the clock tick interrupt vector. You will need to consult your(2)

compiler or processor documentation to determine how to do this. Some processors do

not allow you to install interrupt vectors at run time (e.g., the Motorola 68HC11 assumes

that vectors reside in ROM). The tick interrupt needs to vector to your ports OSTickISR()

.

 We will create a high priority task. I decided to use priority level 0 but you can use(3)

anything below (see).OS_LOWEST_PRIO OS_CFG.H

 Again, since we proved in 13.06.02 that works, µC/OS-II should start(4) OSStartHighRdy()

executing as its first task.TestTask()

 Upon entry into , we should intialize the device (typically a timer) to generate(5) TestTask()

a clock tick interrupt at the desired rate. I would recommend making the tick rate 10 Hz

or so in order to be able to make the LED blink at 5 Hz. This rate should match what you

set to in .OS_TICKS_PER_SEC OS_CFG.H

 You can now enable interrupts to allow the tick interrupt to invoke .(6) OSTickISR()

 Turn ON the LED to show that you made it to .(7) TestTask()

 The call to will cause a context switch to the idle task using . The(8) OSTimeDly() OSCtxSw()

idle task will spin until the tick interrupt is received. The tick interrupt should invoke

 which in turn calls . will decrement the OSTickISR() OSTimeTick() OSTimeTick()

 count of to 0 and make this task ready to run. When .OSTCBDly TestTask() OSTickISR()

completes and calls , should notice that the more importantOSIntExit() OSIntExit()

task, , is ready to run and thus, the ISR will not return to the idle task butTestTask()

instead, context switch back to . Of course, all this assumes that TestTask() OSIntCtxSw()

and are both working.OSTickISR()

 If does works, you ought to see the LED blink at 5Hz if you set the tick(9) OSIntCtxSw()

rate at 10 Hz.

If the LED is not blinking and you are using a debugger, you can set a breakpoint in

 and follow whats going on. I would also suggest trying to run the ISR withoutOSTickISR()

having it call . In this case, you could simply have the ISR blink the LED (orOSIntExit()

µC/OS-II User's Manual

393Copyright 2015 Micrium Inc.

another LED). If the LED is blinking then the problem is with . Again, because OSIntCtxSw()

 should have been derived from , I suspect that the problem is in the OSIntCtxSw() OSCtxSw()

.OSTickISR()

At this point, your port should work and you can now start adding application tasks. Have fun!

µC/OS-II User's Manual

394Copyright 2015 Micrium Inc.

OSCtxSw()

void OSCtxSw(void)

File Called from

OS_CPU_A.ASM OS_TASK_SW() Always needed

This function is called to perform a task level context switch. Generally, this function is

invoked via a software interrupt instruction (also called a TRAP instruction). The pseudocode

for this function is shown below.

void OSCtxSw (void)
{
 Save processor registers;
 Save the current tasks stack pointer into the current tasks OS_TCB:
 OSTCBCur->OSTCBStkPtr = Stack pointer;
 Call user definable OSTaskSwHook();
 OSTCBCur = OSTCBHighRdy;
 OSPrioCur = OSPrioHighRdy;
 Get the stack pointer of the task to resume:
 Stack pointer = OSTCBHighRdy->OSTCBStkPtr;
 Restore all processor registers from the new tasks stack;
 Execute a return from interrupt instruction;
}

Arguments

NONE

Return Value

NONE

Notes/Warnings

Interrupts are disabled when this function is called.

Some compilers will allow you to create software interrupts (or traps) directly in C and thus,

you could place this function in . In some cases, the compiler also requires that youOS_CPU_C.C

declare the prototype for this function differently. In this case, you can define the #define

constant in your . This allows you to delare OS_ISR_PROTO_EXT INCLUDES.H OSCtxSw()

differently. In other words, you are not forced to use the void prototype.OSCtxSw(void)

µC/OS-II User's Manual

395Copyright 2015 Micrium Inc.

Example

NONE

µC/OS-II User's Manual

396Copyright 2015 Micrium Inc.

OSInitHookBegin()

void OSInitHookBegin(void)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OSInit() OS_CPU_HOOKS_EN == 1

This function is called by at the very beginning of . This allows you toOSInit() OSInit()

perform CPU (or other) initialization as part of . For example, you can initialize I/OOSInit()

devices from . The reason this is done is to encapsulate this initialization asOSInitHookBegin()

part of the port. In other words, it prevents requiring that the user of µC/OS-II know anything

about such additional initialization.

Arguments

NONE

Return Value

NONE

Notes/Warnings

NONE

Example

NONE

µC/OS-II User's Manual

397Copyright 2015 Micrium Inc.

OSInitHookEnd()

void OSInitHookEnd(void)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OSInit() OS_CPU_HOOKS_EN == 1

This function is called by at the very end of . This allows you to performOSInit() OSInit()

CPU (or other) initialization as part of . For example, you can initialize I/O devicesOSInit()

from . The reason this is done is to encapsulate this initialization as part of theOSInitHookEnd()

port. In other words, it prevents requiring that the user of µC/OS-II know anything about such

additional initialization.

Arguments

NONE

Return Value

NONE

Notes/Warnings

NONE

Example

NONE

µC/OS-II User's Manual

398Copyright 2015 Micrium Inc.

OSIntCtxSw()

void OSIntCtxSw(void)

File Called from

OS_CPU_A.ASM OSIntExit() Always needed

This function is called from when determines that there is a higherOSIntExit() OSIntExit()

priority task to execute because of an ISR. The pseudocode for this function is shown below.

void OSIntCtxSw (void)
{
 Call user-definable OSTaskSwHook();
 OSTCBCur = OSTCBHighRdy;
 OSPrioCur = OSPrioHighRdy;
 Get the stack pointer of the task to resume:
 Stack pointer = OSTCBHighRdy->OSTCBStkPtr;
 Restore all processor registers from the new tasks stack;
 Execute a return from interrupt instruction;
}

Arguments

NONE

Return Value

NONE

Notes/Warnings

Interrupts are disabled when this function is called.

Example

NONE

µC/OS-II User's Manual

399Copyright 2015 Micrium Inc.

OSStartHighRdy()

void OSStartHighRdy(void)

File Called from

OS_CPU_A.ASM OSStart() Always needed

This function is called from to start the highest priority task that you created prior toOSStart()

you calling . The pseudocode for this function is shown below.OSStart()

void OSStartHighRdy (void)
{
 Call user definable OSTaskSwHook();
 OSRunning = TRUE;
 Get the stack pointer of the task to resume:
 Stack pointer = OSTCBHighRdy->OSTCBStkPtr;

 Restore all processor registers from the new task's stack;
 Execute a return from interrupt instruction;
}
void OSStartHighRdy (void)

Arguments

NONE

Return Value

NONE

Notes/Warnings

Interrupts are disabled when this function is called.

Example

NONE

µC/OS-II User's Manual

400Copyright 2015 Micrium Inc.

OSTaskCreateHook()

void OSTaskCreateHook(OS_TCB *ptcb)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OSTaskCreate() and OSTaskCreateExt() OS_CPU_HOOKS_EN == 1

This function is called whenever a task is created, after a TCB has been allocated and

initialized and after the stack frame of the task is initialized. allows you toOSTaskCreateHook()

extend the functionality of the task creation function with your own features. For example, you

can initialize and store the contents of floating-point registers, MMU registers or anything else

that can be associated with a task. Typically, you would store this additional information in

memory allocated by your application. You should note that is calledOSTaskCreateHook()

immediately after another hook function called . In other words, either ofOSTCBInitHook()

these functions can be used to initialize the TCB. However, you ought to use OSTCBInitHook()

for TCB related items and for other task related items. You could also use OSTaskCreateHook()

 to trigger an oscilloscope or a logic analyzer or to set a breakpoint.OSTaskCreateHook()

Arguments

ptcb

is a pointer to the task control block of the task created.

Return Value

NONE

Notes/Warnings

Interrupts are enabled when this function is called. Because of this, you might need to call

 and to protect critical sections inside OS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

.OSTaskCreateHook()

µC/OS-II User's Manual

401Copyright 2015 Micrium Inc.

Example

This example assumes that you created a task using because it expects toOSTaskCreateExt()

have the field in the tasks contain a pointer to storage for floating-point.OSTCBExtPtr OS_TCB

registers.

void OSTaskCreateHook (OS_TCB *ptcb)
{
 if (ptcb->OSTCBExtPtr != (void *)0) {
 /* Save contents of floating-point registers in .. */
 /* .. the TCB extension */
 }
}

µC/OS-II User's Manual

402Copyright 2015 Micrium Inc.

OSTaskDelHook()

void OSTaskDelHook(OS_TCB *ptcb)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OSTaskDel() OS_CPU_HOOKS_EN == 1

This function is called whenever you delete a task by calling . You can thusOSTaskDel()

dispose of memory you have allocated through the task create hook, . OSTaskCreateHook()

 is called just before the TCB is removed from the TCB chain. You can alsoOSTaskDelHook()

use to trigger an oscilloscope or a logic analyzer or to set a breakpoint.OSTaskCreateHook()

Arguments

ptcb

is a pointer to the task control block of the task being deleted.

Return Value

NONE

Notes/Warnings

Interrupts are disabled when this function is called. Because of this, you should keep the code

in this function to a minimum because it directly affects interrupt latency.

Example

void OSTaskDelHook (OS_TCB *ptcb)
{
 /* Output signal to trigger an oscilloscope */
}

µC/OS-II User's Manual

403Copyright 2015 Micrium Inc.

OSTaskIdleHook()

void OSTaskIdleHook(void)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OS_TaskIdle() OS_CPU_HOOKS_EN == 1

This function is called by the idle task () when there are no other higher priorityOS_TaskIdle()

task ready to run. can be used to force the CPU in low power mode forOSTaskIdleHook()

battery operated products to conserve energy when none of your tasks need to be serviced.

Arguments

NONE

Return Value

NONE

Notes/Warnings

OSTaskIdleHook() is called with interrupts enabled.

Example

void OSTaskIdleHook (void)
{
 /* Put the CPU in low power mode. */
}

µC/OS-II User's Manual

404Copyright 2015 Micrium Inc.

OSTaskStatHook()

void OSTaskStatHook(void)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OSTaskStat() OS_CPU_HOOKS_EN == 1

This function is called every second by µC/OS-IIs statistic task. allows youOSTaskStatHook()

to add your own statistics.

Arguments

NONE

Return Value

NONE

Notes/Warnings

The statistic task starts executing about five seconds after calling . Note that thisOSStart()

function is not called if either or is set to 0.OS_TASK_STAT_EN OS_TASK_CREATE_EXT_EN

Example

void OSTaskStatHook (void)
{
 /* Compute the total execution time of all the tasks */
 /* Compute the percentage of execution of each task */
}

OSTaskStkInit()

OS_STK *OSTaskStkInit(void (*task)(void *pd), void *pdata, OS_STK *ptos, INT16U

opt);

File Called from

OS_CPU_C.C OSTaskCreate() or OSTaskCreateExt() Always needed

µC/OS-II User's Manual

405Copyright 2015 Micrium Inc.

This function is called by either or to initialize the stackOSTaskCreate() OSTaskCreateExt()

frame of a task. Generally speaking, the stack frame is made to look las if an interrupt just

occurred and all the CPU registers were saved onto it. The pseudocode for this function is

shown below.

OS_STK *OSTaskStkInit (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT16U opt);
{
 Simulate call to function with an argument (i.e., pdata);
 Simulate ISR vector;
 Setup stack frame to contain desired initial values of all registers;
 Return new top-of-stack pointer to caller;
}

Arguments

task

is a pointer to the task code (i.e., the address of the function you want to declare as a

task).

pdata

is a pointer to a user supplied data area that will be passed to the task when the task first

executes. Sometimes, the compiler will pass pdata into registers while other compilers

will pass pdata on the stack. You will need to consult your compiler documentation for

the actual method used.

ptos

is a pointer to the top of stack. It is assumed that ptos points to a 'free' entry on the task

stack. If is set to 1 then ptos will contain the HIGHEST valid address ofOS_STK_GROWTH

the stack. Similarly, if is set to 0, ptos will contains the LOWEST validOS_STK_GROWTH

address of the stack.

opt

specifies options that can be used to alter the behavior of . See OSTaskStkInit() uCOS_II.H

for .OS_TASK_OPT_???

µC/OS-II User's Manual

406Copyright 2015 Micrium Inc.

Return Value

A pointer to the new top-of-stack.

Notes/Warnings

Interrupts are enabled when this function is called.

Example

NONE

µC/OS-II User's Manual

407Copyright 2015 Micrium Inc.

OSTaskSwHook()

void OSTaskSwHook(void)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OSCtxSw() and OSIntCtxSw() OS_CPU_HOOKS_EN == 1

This function is called whenever a context switch is performed. The global variable

 points to the TCB of the task that will get the CPU, and points to theOSTCBHighRdy OSTCBCur

TCB of the task being switched out. is called just after saving the tasksOSTaskSwHook()

registers and after saving the stack pointer into the current tasks TCB. You can use this

function to save/restore the contents of floating-point registers or MMU registers, to keep track

of task execution time and of how many times the task has been switched-in, and more.

 is also called by . Because of this, you need to verify the flagOSTaskSwHook() OSStartHighRdy()

 in so you dont perform any action as you would when a task isOSRunning OSTaskSwHook()

switched-out (see the example).

Arguments

NONE

Return Value

NONE

Notes/Warnings

Interrupts are disabled when this function is called. Because of this, you should keep the code

in this function to a minimum because it directly affects interrupt latency.

Example

void OSTaskSwHook (void)
{
 if (OSRunning == TRUE) {
 /* Save floating-point registers in current tasks TCB ext. */
 }
 /* Restore floating-point registers from new tasks TCB ext. */
}

µC/OS-II User's Manual

408Copyright 2015 Micrium Inc.

OSTCBInitHook()

void OSTCBInitHook(OS_TCB *ptcb)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OS_TCBInit() OS_CPU_HOOKS_EN == 1

This function is called whenever a task is created, after a TCB has been allocated and

initialized and when the stack frame of the task is initialized. allows you toOSTCBInitHook()

extend the functionality of the TCB creation function with your own features. For example,

you can initialize and store the contents of floating-point registers, MMU registers or anything

else that can be associated with a task. Typically, you would store this additional information

in memory allocated by your application. You should note that is calledOSTCBInitHook()

immediately before . In other words, either of these functions can be usedOSTaskCreateHook()

to initialize the TCB. However, you ought to use for TCB related items and OSTCBInitHook()

 for other task related items.OSTaskCreateHook()

Arguments

ptcb

is a pointer to the task control block of the task created.

Return Value

NONE

Notes/Warnings

Interrupts are enabled when this function is called. Because of this, you might need to call

 and to protect critical sections inside OS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

.OSTCBInitHook()

µC/OS-II User's Manual

409Copyright 2015 Micrium Inc.

Example

This example assumes that you created a task using because it expects toOSTaskCreateExt()

have the field in the tasks contain a pointer to storage for floating-point.OSTCBExtPtr OS_TCB

registers.

void OSTCBInitHook (OS_TCB *ptcb)
{
 if (ptcb->OSTCBExtPtr != (void *)0) {
 /* Save contents of floating-point registers in .. */
 /* .. the TCB extension */
 }
}

µC/OS-II User's Manual

410Copyright 2015 Micrium Inc.

OSTickISR()

void OSTickISR(void)

File Called from

OS_CPU_A.ASM Tick Interrupt Always needed

When a tick interrupt occurs, the CPU needs to vector to this Interrupt Service Routine (ISR).

The pseudocode for the ISR is shown below.

Void OSTickISR (void)
{
 Save processor registers;
 Call OSIntEnter() or increment OSIntNesting;
 if (OSIntNesting == 1) {
 OSTCBCur->OSTCBStkPtr = Stack Pointer;
 }
 Clear interrupting device;
 Re-enable interrupts (optional);
 Call OSTimeTick();
 Call OSIntExit();
 Restore processor registers;
 Execute a return from interrupt instruction;
}

Arguments

NONE

Return Value

NONE

µC/OS-II User's Manual

411Copyright 2015 Micrium Inc.

1.

2.

Notes/Warnings

The interrupting device that causes to be called should generally be setupOSTickISR()

to generate an interrupt every 10 to 100 mS.

Some compilers will allow you to create ISRs directly in C and thus, you could place

this function in . In some cases, the compiler also requires that you declareOS_CPU_C.C

the prototype for this function differently. In this case, you can define the #define

constant in your . This allows you to delare OS_ISR_PROTO_EXT INCLUDES.H OSTickISR()

differently. In other words, you are not forced to use the void OSTickISR(void)

prototype.

Example

NONE

µC/OS-II User's Manual

412Copyright 2015 Micrium Inc.

OSTimeTickHook()

void OSTimeTickHook(void)

File Called from Code enabled in ifOS_CPU_C.C

OS_CPU_C.C OSTimeTick() OS_CPU_HOOKS_EN == 1

This function is called by , which in turn is called whenever a clock tick occurs. OSTimeTick()

 is called immediately upon entering , to allow execution ofOSTimeTickHook() OSTimeTick()

time-critical code in your application. You can also use this function to trigger an oscilloscope

for debugging, trigger a logic analyzer, or establish a breakpoint for an emulator.

Arguments

NONE

Return Value

NONE

Notes/Warnings

OSTimeTick() is generally called by an ISR, so the execution time of the tick ISR is increased

by the code you provide in this function. Interrupts may or may not be enabled when

 is called, depending on how the processor port has been implemented. IfOSTimeTickHook()

interrupts are disabled, this function affects interrupt latency.

Example

void OSTimeTickHook (void)
{
 /* Trigger an oscilloscope */
}

µC/OS-II User's Manual

413Copyright 2015 Micrium Inc.

80x86 Port with Emulated FP Support

Real Mode, Large Model with Emulated Floating-Point Support

This chapter describes how µC/OS-II has been ported to the Intel 80x86 series of processors

running in real mode, large model for the Borland C++ V4.51 tools. This port assumes that

your application will not be doing any floating-point math or, if it does, it will use the Borland

 library. In other words, I assumed that you would use this port withFloating-Point Emulation

embedded 80186, 80286, 80386 or even ‘plain’ 8086 class processors which rely only on

integer math. This port can also be adapted (i.e., changed) to run ‘plain’ 8086 processors but

requires that you replace the use of the PUSHA instruction with the proper number of PUSH

instructions.

The Intel 80x86 series includes the 80186, 80286, 80386, 80486, Pentiums™ (all models),

Celeron as well most 80x86 processors from AMD, NEC (V-series), and others. Literally

millions of 80x86 CPUs are sold each year. Most of these end up in desktop computers, but a

growing number of processors are making their way into embedded systems.

Most C compilers that support 80x86 processors running in real mode offer different memory

models, each suited for a different program and data size. Each model uses memory

differently. The large model allows your application (code and data) to reside in a 1Mb

memory space. Pointers in this model require 32 bits, although they only address up to 1Mb.

The next section shows why a 32-bit pointer in this model can only address 20 bits worth of

memory.

Figure 14.1 shows the programming model of an 80x86 processor running in real mode. All

registers are 16 bits wide, and they all need to be saved during a context switch. As can be

seen, there are no floating-point registers since these are emulated by the Borland compiler

library using the integer registers.

µC/OS-II User's Manual

414Copyright 2015 Micrium Inc.

Figure - Figure 14.1 80x86 real-mode register model.

The 80x86 provides a clever mechanism to access up to 1Mb of memory with its 16-bit

registers. Memory addressing relies on using a segment and an offset register. Physical address

calculation is done by shifting a segment register by four (multiplying it by 16) and adding one

of five other registers (BP, SP, SI, DI, or IP). The result is a 20-bit address that can access up

to 1Mb. Figure 14.2 shows how the registers are combined. Each segment points to a block of

16 memory locations called a paragraph. A 16-bit segment register can point to any of 65,536

different paragraphs of 16 bytes and thus address 1,048,576 bytes. Because the offset is also 16

bits, a single segment of code cannot exceed 64Kb. In practice, however, programs are made

up of many smaller segments.

µC/OS-II User's Manual

415Copyright 2015 Micrium Inc.

Figure - Figure 14.2 Addressing with a segment and an offset.

The code segment register (CS) points to the base of the program currently executing, the stack

segment register (SS) points to the base of the stack, the data segment register (DS) points to

the base of one data area, and the extra segment register (ES) points to the base of another area

where data may be stored. Each time the CPU needs to generate a memory address, one of the

segment registers is automatically chosen and its contents is added to an offset. It is common to

find the segment-colon-offset notation in literature to reference a memory location. For

example, 1000:00FF represents physical memory location 0x100FF.

Development Tools

I used the Borland C/C++ V4.51 compiler along with the Borland Turbo Assembler to port and

test the 80x86 port. This compiler generates reentrant code and provides in-line assembly

language instructions that can be inserted in C code. The compiler comes with a floating-point

emulation library that simulates the floating-point hardware found on 80x86 processors

equipped with floating-point hardware. Once compiled, the code is executed on a PC. I tested

the code on a 300 MHz Pentium-II-based computer running the Microsoft Windows 2000

operating system. In fact, I configured the compiler to generate a DOS executable which was

run in a DOS window.

I thought of changing compilers because some readers have complained that they can’t find the

Borland tools anymore which makes it harder to build the example code provided in this book.

It turns out that a similar compiler and assembler that will compile the example code is in fact

available from Borland for only $70 USD (circa 2002). Borland calls it the Turbo C++ Suite

 and you can order a copy by visiting the Borland web site at andfor DOS www.Borland.com

follow the links to this product.

You can also get professional 80x86 level tools from Paradigm () thatwww.DevTools.com

http://www.borland.com/
http://www.devtools.com/

µC/OS-II User's Manual

416Copyright 2015 Micrium Inc.

contains not only a Borland compatible compiler and assembler but also an IDE (Integrated

Development Environment), a utility that will allow you to your code for deployementlocate

in embedded systems, a source level debugger and more. Paradigm calls their package the

.Paradigm C++ Professional Real

Finally, you can also adapt the port provided in this chapter to other 80x86 compiler as long as

they generate real-mode code. You will most likely have to change some of the compiler

options and assembler directives if you use a different development environment.

Table 14.1 shows the Borland C/C++ compiler V4.51 options (i.e., flags) supplied on the

command line. These settings were used to compile the port as well as the example code

provided in Chapter 1.

µC/OS-II User's Manual

417Copyright 2015 Micrium Inc.

Option (i.e., setting) Description

-1 Generate 80186 code

-B Compile and call assembler

-c Compiler to .OBJ

-G Select code for speed

-I Path to compiler include files is C:\BC45\INCLUDE

-k- Standard stack frame

-L Path to compiler libraries is C:\BC45\LIB

-ml Large memory model

-N- Do not check for stack overflow

-n..\obj Path where to place object files is ..\OBJ

-O Optimize jumps

-Ob Dead code elimination

-Oe Global register allocation

-Og Optimize globally

-Oi Expand common intrinsic functions inline

-Ol Loop optimization

-Om Invariant code motion

-Op Copy propagation

-Ov Induction variable

-v Source debugging ON

-vi Turn inline expansion ON

-wpro Error reporting: call to functions with no prototype

-Z Suppress redundant loads

Table - Table 14.1, Compiler options used to compile port and examples.

Table 14.2 shows the Borland Turbo Assembler V4.0 options (i.e., flags) supplied on the

command line. These settings were used to assemble the port’s .OS_CPU_A.ASM

µC/OS-II User's Manual

418Copyright 2015 Micrium Inc.

Option (i.e., setting) Description

/MX Case sensitive on globals

/ZI Full debug info

/O Generate overlay code

Table - Table 14.2, Assembler options used to assemble .ASM files.

Directories and Files

The installation program provided on the companion CD installs the port for the Intel 80x86

(real mode, large model) on your hard disk. The port is found under the \SOFTWARE\uCOS-II\Ix86L\BC45

 directory. The directory name stands for I ntel 80 x86 real mode, L arge model and is placed

 in the B orland C ++ V 4 . 5 x directory. The source code for the port is found in the following

 files: OS_CPU.H , OS_CPU_C.C , and OS_CPU_A.ASM .

INCLUDES.H

INCLUDES.H is a master include file and is found at the top of all .C files. allowsINCLUDES.H

every .C file in your project to be written without concern about which header file is actually

needed. The only drawbacks to having a master include file are that may includeINCLUDES.H

header files that are not pertinent to the actual .C file being compiled and the compilation

process may take longer. These inconveniences are offset by code portability. You can edit

 to add your own header files, but your header files should be added at the end ofINCLUDES.H

the list. Listing 14.1 shows the contents of for the 80x86 port.INCLUDES.H

INCLUDES.H is not really part of the port but is described here because it is needed to compile

the port files.

µC/OS-II User's Manual

419Copyright 2015 Micrium Inc.

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include <math.h>
#include <setjmp.h>

#include "os_cpu.h"
#include "os_cfg.h"
#include "ucos_ii.h"
#include "pc.h"

Listing - Listing 14.1 INCLUDES.H.

OS_CPU.H

OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and

typedefs. for the 80x86 port is shown in Listing 14.2.OS_CPU.H

OS_CPU_GLOBALS and allows us to declare global variables that are specific to thisOS_CPU_EXT

port (described later).

#ifdef OS_CPU_GLOBALS
#define OS_CPU_EXT
#else
#define OS_CPU_EXT extern
#endif

typedef unsigned char BOOLEAN; (1)
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned int INT16U;
typedef signed int INT16S;
typedef unsigned long INT32U;
typedef signed long INT32S;
typedef float FP32; (2)
typedef double FP64;

typedef unsigned int OS_STK; (3)
typedef unsigned short OS_CPU_SR; (4)

#define BYTE INT8S (5)
#define UBYTE INT8U
#define WORD INT16S
#define UWORD INT16U
#define LONG INT32S
#define ULONG INT32U

Listing - Listing 14.2

µC/OS-II User's Manual

420Copyright 2015 Micrium Inc.

 If you were to consult the Borland compiler documentation, you would find that an int is(1)

16 bits and a long is 32 bits.

 Floating-point data types are included even though µC/OS-II doesn’t make use of(2)

floating-point numbers.

 A stack entry for the 80x86 processor running in real mode is 16 bits wide; thus, (3) OS_STK

is declared accordingly. All task stacks must be declared using as its data type.OS_STK

 The status register (also called the processor flags) on the 80x86 processor running in(4)

real mode is 16 bits wide. The data type is used only if isOS_CPU_SR OS_CRITICAL_METHOD

set to 3 which it isn’t for this port. I included the data type anyway, in caseOS_CPU_SR

you use a different compiler and need to used #3.OS_CRITICAL_METHOD

 I also included data types to allow for backward compatibility with older µC/OS V1.xx(5)

applications. These are not necessary if you don’t have any applications written with

µC/OS V1.xx.

OS_CPU.H, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

#define OS_CRITICAL_METHOD 2 (6)

#if OS_CRITICAL_METHOD == 1
#define OS_ENTER_CRITICAL() asm CLI (7)
#define OS_EXIT_CRITICAL() asm STI
#endif

#if OS_CRITICAL_METHOD == 2
#define OS_ENTER_CRITICAL() asm {PUSHF; CLI} (8)
#define OS_EXIT_CRITICAL() asm POPF
#endif

#if OS_CRITICAL_METHOD == 3
#define OS_ENTER_CRITICAL() (cpu_sr = OSCPUSaveSR()) (9)
#define OS_EXIT_CRITICAL() (OSCPURestoreSR(cpu_sr))
#endif

#if OS_CRITICAL_METHOD == 3 (10)
OS_CPU_SR OSCPUSaveSR(void);
void OSCPURestoreSR(OS_CPU_SR cpu_sr);
#endif

Listing - Listing 14.2

µC/OS-II User's Manual

421Copyright 2015 Micrium Inc.

 µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access(6)

critical sections of code and re-enable interrupts when done. Because the Borland

compiler supports in-line assembly language, it’s quite easy to specify the instructions to

disable and enable interrupts. µC/OS-II defines two to disable and enablemacros

interrupts: and , respectively. I actually allowOS_ENTER_CRITICAL() OS_EXIT_CRITICAL()

you to use one of three methods for disabling and enabling interrupts. For this port, the

prefered one is method #2 because it’s directly supported by the compiler.

OS_CRITICAL_METHOD == 1

 The first and simplest way to implement these two macros is to invoke the processor(7)

instruction to disable interrupts (CLI) for and the enable interruptsOS_ENTER_CRITICAL()

instruction (STI) for .OS_EXIT_CRITICAL()

OS_CRITICAL_METHOD == 2

 The second way to implement is to save the interrupt disable status(8) OS_ENTER_CRITICAL()

onto the stack and then disable interrupts. This is accomplished on the 80x86 by

executing the PUSHF instruction followed by the CLI instruction. OS_EXIT_CRITICAL()

simply needs to execute a POPF instruction to restore the original contents of the

processor’s SW register.

OS_CRITICAL_METHOD == 3

 The third way to implement is to write a function that will save the(9) OS_ENTER_CRITICAL()

status register of the CPU in a variable. invokes another function toOS_EXIT_CRITICAL()

restore the status register from the variable. I didn’t include this code in the port but if

you are familiar with assembly language, you should be able to write this easily.

 I recommend that you call the functions expected in and (10) OS_ENTER_CRITICAL()

: and , respectively. You wouldOS_EXIT_CRITICAL() OSCPUSaveSR() OSCPURestoreSR()

declare the code for these two functions in .OS_CPU_A.ASM

µC/OS-II User's Manual

422Copyright 2015 Micrium Inc.

1.

OS_CPU.H, Stack Growth

#define OS_STK_GROWTH 1 (11)

Listing - Listing 14.2

(11) The stack on an 80x86 processor grows from high to low memory, which means that

 must be set to 1.OS_STK_GROWTH

OS_CPU.H, OS_TASK_SW()

#define uCOS 0x80 (12)

#define OS_TASK_SW() asm INT uCOS (13)

Listing - Listing 14.2

(13) To switch context, needs to simulate an interrupt. The 80x86 provides 256OS_TASK_SW()

software interrupts to accomplish this. The interrupt service routine (ISR) (also called the

exception handler) must vector to the assembly language function (see OSCtxSw() OS_CPU_A.ASM

). We thus need to ensure that the pointer at vector 0x80 points to .OSCtxSw()

(12) I tested the code on a PC and I decided to use interrupt number 128 (0x80) because I

found it to be available. Actually, the original PC used interrupts 0x80 through 0xF0 for the

BASIC interpreter. Few if any PCs come with a BASIC interpreter built in anymore so it

should be safe to use these vectors. Optionally, you can also use vectors 0x4B to 0x5B, 0x5D

to 0x66, or 0x68 to 0x6F. If you use this port on an embedded processor such as the 80186,

you will most likely not be as restricted in your choice of vectors.

OS_CPU.H, Tick Rate

The tick rate for an RTOS should generally be set between 10 and 100Hz. It is always

preferable (but not necessary) to set the tick rate to a round number. Unfortunately, on the PC,

the default tick rate is 18.20648Hz, which is not what I would call a nice round number. For

this port, I decided to change the tick rate of the PC from the standard 18.20648Hz to 200Hz

(i.e., 5ms between ticks). There are three reasons to do this:

µC/OS-II User's Manual

423Copyright 2015 Micrium Inc.

1.

2.

3.

200Hz happens to be almost exactly 11 times faster than 18.20648Hz. The port will

need to “chain” into DOS once every 11 ticks. In DOS, the tick handler is responsible

for some system maintenance that is expected to happen every 54.93ms.

It’s useful to have a 5.00ms time resolution for time delays and timeouts. If you are

running the example code on an 80386 PC, you may find the overhead of a 200Hz tick

rate to be unacceptable. However, on todays fast Pentium class processors, a 200Hz tick

rate is not likely to be a problem.

Even if it’s possible to change the tick rate on a PC to be exactly 20 Hz or even 100 Hz,

it would be difficult to chain into the DOS tick handler at exactly 18.20648Hz. That’s

why I chose an exact multiple and thus, had to choose 200 Hz. Of course, I could also

have used 22 as a multiple and would have obtained 400 Hz (2.5 ms). On a fast PC, you

should have no problems running at this tick rate or even faster.

OS_CPU_EXT INT8U OSTickDOSCtr; (14)

Listing - Listing 14.2

L14.2(14) This statement declares an 8-bit variable that keeps track of(OSTickDOSCtr)

the number of times the ticker is called. Every 11th time, the DOS tick handler is called

 is used in and really only applies to a PC environment. You.OSTickDOSCtr OS_CPU_A.ASM

most likely would not use this scheme if you designed an embedded system around a

non-PC architecture because you would set the tick rate to the proper value in the first

place.

OS_CPU.H, Floating-Point Emulation

As previously mentionned, the Borland compiler provides a floating-point emulation library.

However, this library is non-reentrant.

void OSTaskStkInit_FPE_x86(OS_STK **pptos, OS_STK **ppbos, INT32U *psize); (15)

Listing - Listing 14.2

(15) A function has been added to allow you to ‘pre-condition’ the stack of a task in

order to make the Borland library think it only has one task and thus, make the library

reentrant. This function will be discussed in section 14.05.02.

µC/OS-II User's Manual

424Copyright 2015 Micrium Inc.

OS_CPU_C.C

A µC/OS-II port requires that you write ten fairly simple C functions:

OSTaskStkInit()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskSwHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTimeTickHook()
OSInitHookBegin()
OSInitHookEnd()
OSTCBInitHook()

µC/OS-II only requires . The other nine functions must be declared but don’tOSTaskStkInit()

need to contain any code. In the case of this port, I did just that. The #define constant

 (see) should be set to 1.OS_CPU_HOOKS_EN OS_CFG.H

OSTaskStkInit()

This function is called by and to initialize the stack frameOSTaskCreate() OSTaskCreateExt()

of a task so that it looks as if an interrupt has just occurred and all processor registers were

pushed onto it. Figure 14.3 shows what puts on the stack of the task beingOSTaskStkInit()

created. Note that the diagram doesn’t show the stack frame of the code calling

 but rather, the stack frame of the task being created.OSTaskStkInit()

µC/OS-II User's Manual

425Copyright 2015 Micrium Inc.

Figure - Figure 14.3 Stack frame initialization with pdata passed on the stack.

When you create a task, you pass the start address of the task (task), a pointer (pdata), the

 task’s top-of-stack (ptos), and the task’s priority (prio) to OSTaskCreate() or

 OSTaskCreateExt() . OSTaskCreateExt() requires additional arguments, but these are irrelevant

 in discussing OSTaskStkInit() . To properly initialize the stack frame, OSTaskStkInit()

 (Listing 14.3) requires only the first three arguments just mentioned (i.e., task , pdata , and

 ptos).

µC/OS-II User's Manual

426Copyright 2015 Micrium Inc.

OS_STK *OSTaskStkInit (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT16U opt)
{
 INT16U *stk;

 opt = opt;
 stk = (INT16U *)ptos; (1)
 *stk-- = (INT16U)FP_SEG(pdata); (2)
 *stk-- = (INT16U)FP_OFF(pdata);
 *stk-- = (INT16U)FP_SEG(task); (3)
 *stk-- = (INT16U)FP_OFF(task);
 *stk-- = (INT16U)0x0202; (4)
 *stk-- = (INT16U)FP_SEG(task);
 *stk-- = (INT16U)FP_OFF(task);
 *stk-- = (INT16U)0xAAAA; (5)
 *stk-- = (INT16U)0xCCCC;
 *stk-- = (INT16U)0xDDDD;
 *stk-- = (INT16U)0xBBBB;
 *stk-- = (INT16U)0x0000;
 *stk-- = (INT16U)0x1111;
 *stk-- = (INT16U)0x2222;
 *stk-- = (INT16U)0x3333;
 *stk-- = (INT16U)0x4444;
 *stk = _DS; (6)
 return ((OS_STK *)stk); (7)
}

Listing - Listing 14.3

 creates and initializes a local pointer to 16-bit elements because stack(1) OSTaskStkInit()

entries are 16 bits wide on the 80x86. Note that µC/OS-II requires that the pointer ptos

points to an empty stack entry.

 The Borland C compiler passes the argument pdata on the stack instead of registers.(2)

Because of this, pdata is placed on the stack frame with the offset and segment in the

order shown.

 The address of your task is placed on the stack next. In theory, this should be the return(3)

address of your task. However, in µC/OS-II, a task must never return, so what is placed

here is not really critical.

 The status word (SW) along with the task address are placed on the stack to simulate the(4)

behavior of the processor in response to an interrupt. The SW register is initialized to

0x0202. This allows the task to have interrupts enabled when it starts. You can in fact

start all your tasks with interrupts disabled by forcing SW to 0x0002 instead. There are

no options in µC/OS-II to selectively enable interrupts upon startup for some tasks and

µC/OS-II User's Manual

427Copyright 2015 Micrium Inc.

disable interrupts upon task startup for others. In other words, either all tasks have

interrupts disabled upon startup or all tasks have them disabled. You could, however,

overcome this limitation by passing the desired interrupt startup state of a task by using

pdata or the opt argument for task created with . However, the latter isOSTaskCreateExt()

not currently implemented. If you chose to have interrupts disabled, each task needs to

enable them when they execute. In this case, you also have to modify the code for

 and to enable interrupts in those functions. If you don’t,OS_TaskIdle() OS_TaskStat()

your application will crash! I would thus recommend that you leave SW initialized to

0x0202 and have interrupts enabled when the task starts.

 The remaining registers are placed on the stack to simulate the PUSHA, PUSH ES, and(5)

PUSH DS instructions, which are assumed to be found at the beginning of every ISR.

Note that the AX, BX, CX, DX, SP, BP, SI, and DI registers are placed to satisfy the

order of the PUSHA instruction. If you port this code to a ‘plain’ 8086 processor, you

may want to simulate the PUSHA instruction or place the registers in a neater order. You

should also note that each register has a unique value instead of all zeros. This can be

useful for debugging.

 Also, the Borland compiler supports “pseudoregisters” (i.e., the _DS keyword notifies(6)

the compiler to obtain the value of the DS register), which in this case is used to copy the

current value of the DS register to the simulated stack frame.

 Once completed, returns the address of the new top-of-stack. (7) OSTaskStkInit()

 or takes this address and saves it in the task’s .OSTaskCreate() OSTaskCreateExt() OS_TCB

OSTaskStkInit_FPE_x86()

When floating-point emulation is enable (see the Borland documentation), the stack of the

Borland compiled program is organized as shown in Figure 14.3. The compiler assumes that

the application runs in a single threaded (i.e., tasking) environment.

µC/OS-II User's Manual

428Copyright 2015 Micrium Inc.

Figure - Figure 14.5 Borland Floating-Point emulation stack.

The Borland C Floating-Point Emulation (FPE) library assumes that about 300 bytes starting at

SS:0x0000 are reserved to hold floating-point emulation variables. As far as I can tell, this

applies to the ‘large memory model’ only. To accommodate this, a special function (

 OSTaskStkInit_FPE_x86()) must be called prior to calling either OSTaskCreate() or

 OSTaskCreateExt() to properly initialize the stack frame of each task that needs to perform

floating-point operations. This function applies to Borland V3.x and V4.5x compilers and thus,

 OSTaskStkInit_FPE_x86() would most likely not be included in a port using a different

compiler.

The floating-point emulation library stores its data within the reserved space in relation to the

current SS register value, assuming that some space starting form SS up (from SS:0x0000 up)

is reserved for floating point operations.

µCOS-II’s task stacks are generally allocated statically as shown below.

OS_STK Task1Stk[TASK_STK_SIZE]; /* stack table for task 1 */
OS_TSK Task2Stk[TASK_STK_SIZE]; /* stack table for task 2 */

When a task is created by µCOS-II the highest table address of the stack is pass to

µC/OS-II User's Manual

429Copyright 2015 Micrium Inc.

 (or) as shown below:OSTaskCreate() OSTaskCreateExt()

OSTaskCreate(Task1, (void*)0, &Task1Stk[TASK_STK_SIZE-1], prio1);
OSTaskCreate(Task2, (void*)0, &Task2Stk[TASK_STK_SIZE-1], prio2);

The stack of starts at while the stack of startsTask1() DS:&Task1Stk[TASK_STK_SIZE-1] Task2()

at . Once initialized by µC/OS-II, the tasks top-of-stack (TOS)DS:&Task2Stk[TASK_STK_SIZE-1]

is saved in the task’s (Task Control Block).OS_TCB

The stack of the two tasks created from the previous code is shown in Figure 14.5. As can be

seen, both tasks are part of the same segment and, more importantly, they share the same

segment base since both stacks are allocated from the same data segment. When µC/OS-II

loads a task during a context switch, it sets the SS register to the value of the DS register of the

stack. This causes a problem since both tasks would have to share the same floating-point

emulation variables!

Figure - Figure 14.5 Borland Floating-Point emulation stack.

The beginning of the data segment is overwritten with the floating-point emulation library even

when we use a semaphore. Protecting this resource with a semaphore would allow exclusive

access to the floating-point variables but it does not protect the data segment from being

overwriting. Even a single µCOS-II task using floating point overwrites the data segment!

µC/OS-II User's Manual

430Copyright 2015 Micrium Inc.

Further system behavior depends on what data are overwritten and typically data segment

overwriting crashes the system.

A similar situation occurs when the stacks are allocated from the heap since we don’t know

what part of memory is being overwritten. Typically, the heap is corrupted because the

floating-point emulation library overwrites the header of the heap allocated block.

To fix this problem, the function shown in Listing 14.4 needs to beOSTaskStkInit_FPE_x86()

called prior to creating a task. This function basically ‘normalizes’ the stack so that every stack

starts at SS:0x0000 and, the function reserves and properly initializes the floating-point

emulation variables for the task being created.

void OSTaskStkInit_FPE_x86 (OS_STK **pptos,
 OS_STK **ppbos,
 INT32U *psize)
{
 INT32U lin_tos;
 INT32U lin_bos;
 INT16U seg;
 INT16U off;
 INT32U bytes;

 seg = FP_SEG(*pptos); (1)
 off = FP_OFF(*pptos);
 lin_tos = ((INT32U)seg <<; 4) + (INT32U)off; (2)
 bytes = *psize * sizeof(OS_STK); (3)
 lin_bos = (lin_tos - bytes + 15) & 0xFFFFFFF0L; (4)

 seg = (INT16U)(lin_bos >> 4); (5)
 *ppbos = (OS_STK *)MK_FP(seg, 0x0000); (6)
 memcpy(*ppbos, MK_FP(_SS, 0), 384); (7)
 bytes = bytes - 16; (8)
 *pptos = (OS_STK *)MK_FP(seg, (INT16U)bytes); (9)
 *ppbos = (OS_STK *)MK_FP(seg, 384); (10)
 bytes = bytes - 384; (11)
 *psize = bytes / sizeof(OS_STK); (12)
}

Listing - Listing 14.4 OS_CPU_C.C, OSTaskStkInit_FPE_x86()

 starts off by decomposing the TOS into its segment and offset(1) OSTaskStkInit_FPE_x86()

components.

 We then convert the address of the TOS into a linear address. Remember that on the(2)

80x86 (Real Mode), the segment is multiplied by 16 and added to the offset to form the

actual memory address.

µC/OS-II User's Manual

431Copyright 2015 Micrium Inc.

 We then determine the size of the stack (in number of bytes). Remember that with(3)

µC/OS-II, you must declare a stack using the data type which may represent anOS_STK

8-bit wide stack, a 16-bit wide stack or a 32-bit wide stack. For the Borland compiler,

the stack width is 16 bits but it’s always better to use the C operator sizeof().

 The linear address for the BOS is then determined by subtracting the number of bytes(4)

allocated to the stack from the TOS address. You should note that I added 15 bytes to the

bottom of the stack and ANDed it with so that I would align the BOS on a0xFFFFFFF0L

‘paragraph’ boundary (i.e., a 16-byte boundary).

 From the BOS’s linear address, we determine the new segment of the BOS.(5)

 A far pointer with an offset of is then created and assigned to the new BOS(6) 0x0000

pointer.

 To initialize the floating-point emulation variables of the task’s stack, we can simply(7)

copy the bottom of the calling’s task stack into the new stack. You should note that the

calling task MUST have also been created from a task that has it’s stack initialized with

the floating-point emulation variables. Failure to do this could cause unpredictable

results. The Borland Floating-Point Emulation (FPE) assumes that about 300 bytes

starting at are reserved to hold floating-point emulation variables. This appliesSS:0x0000

to the ‘large memory model’ only. Note that I decided to copy 384 bytes (). It0x0180

turns out that you don’t need to copy this many bytes but I find it safe to add a little extra

in case of expansion. This also means that your task stack MUST have at least 384 bytes

PLUS the anticipated stack requirements of your task (including ISR nesting, of course).

Note that _SS is a Borland ‘pseudoregister’ which allows the code to obtain the current

value of the CPU’s stack segment register. Also, I decided to use the ANSI function

memcpy() because the Borland most likely optimized this function.

 The next step to to determine the address of the TOS. We first need to subtract(8) normalize

16 bytes because we aligned the stack on a page boundary. If I could guaranty that you

would always align your stacks to a paragraph boundary, I would not have to do this.

 The new TOS is determined by making a far pointer using the new segment (found in(9)

L14.4(6)) and the new size of the stack (aligned to a paragraph).

 The final step is to move the BOS up by 384 bytes in case the BOS is used to perform(10)

µC/OS-II User's Manual

432Copyright 2015 Micrium Inc.

stack checking (i.e., if your application calls).OSTaskStkChk()

(11)

 If you use stack checking, µC/OS-II needs to know the size of the new stack. Of course,(12)

we don’t want to start the stack check from the bottom of the original stack but in fact,

the new stack.

As can be seen from the code, you need to pass three arguments to :OSTaskStkInit_FPE_x86()

pptos

is a pointer to the task’s top-of-stack (TOS) pointer (a pointer to a pointer). The task’s

TOS is passed to or when you create a task. The stackOSTaskCreate() OSTaskCreateExt()

is allocated from the data space and consist of a value for the DS register and an offset

from this segment register. Because normalizes the TOS, aOSTaskStkInit_FPE_x86()

pointer to the initial TOS is passed to this function so that it can be altered.

ppbos

is a pointer to the task’s bottom-of-stack (BOS) pointer (a pointer to a pointer). The task’s

BOS is not passed to however, it is passed to . In otherOSTaskCreate() OSTaskCreateExt()

words, ppbos is necessary for . The bottom of this stack is generallyOSTaskCreateExt()

not located at but instead, at some offset from the DS register. Because DS:0000

 normalizes the BOS, a pointer to the initial BOS is passed toOSTaskStkInit_FPE_x86()

this function so that it can be altered.

psize

is a pointer to a variable which contains the size of the stack.. The task’s size is not

needed by but it is for . Because OSTaskCreate() OSTaskCreateExt()

 reserves storage for the floating-point emulation variables, theOSTaskStkInit_FPE_x86()

available stack size is actually altered by this function which is why a pointer to the size is

passed. You must ensure that you pass a stack large enough toOSTaskStkInit_FPE_x86()

hold the floating-point emulation variables plus the anticipated stack space needed by

your application task.

µC/OS-II User's Manual

433Copyright 2015 Micrium Inc.

Figure 14.6 shows what does. Note that paragraph alignment is notOSTaskStkInit_FPE_x86()

shown in Figure 14.6.

Figure - Figure 14.6 Stack normalization by OSTaskStkInit_FPE_x86().

You would use OSTaskStkInit_FPE_x86() as shown in Listing 14.5 which contains an example

 with both OSTaskCreate() and OSTaskCreateExt() . The code shows that if your task is to do

 floating-point math, OSTaskStkInit_FPE_x86() MUST be called BEFORE calling either

 OSTaskCreate() or OSTaskCreateExt() in order to initialize the task's stack as just described.

The returned pointers (ptos and pbos) MUST be used in the task creation call. Note that pbos

 would be passed to OSTaskCreateExt() as the new bottom of stack. You should note that if you

 were call OSTaskStkChk() (only if the task is created with OSTaskCreateExt()) to determine the

 size of the task’s stack at run-time, then OSTaskStkChk() would report that the stack contains

384 bytes less than it’s original size (see the AFTER case of Figure 14.6)!

µC/OS-II User's Manual

434Copyright 2015 Micrium Inc.

OS_STK Task1Stk[1000];
OS_STK Task2Stk[1000];

void main (void)
{
 OS_STK *ptos;
 OS_STK *pbos;
 INT32U size;

 OSInit();
 .
 .
 ptos = &Task1Stk[999];
 pbos = &Task1Stk[0];
 size = 1000;
 OSTaskStkInit_FPE_x86(&ptos, &pbos, &size);
 OSTaskCreate(Task1,
 (void *)0,
 ptos,
 10);
 .
 .
 ptos = &Task2Stk[999];
 pbos = &Task2Stk[0];
 size = 1000;
 OSTaskStkInit_FPE_x86(&ptos, &pbos, &size);
 OSTaskCreateExt(Task2,
 (void *)0,
 ptos,
 11,
 11,
 pbos,
 size,
 (void *)0,
 OS_TASK_OPT_SAVE_FP);
 .
 .
 OSStart();
}

Listing - Listing 14.5

You should be careful that your code doesn’t generate any floating-point exception (e.g.,

divide by zero) because the floating-point library would not work properly under these

circumstances. Run-time exceptions can, however, be avoided by adding range testing code.

OSTaskCreateHook()

As previously mentioned, does not define code for this function. In other words, noOS_CPU_C.C

additional work is done by the port when a task is created. The assignment of ptcb to ptcb is

done so that the compiler doesn’t complain about not doing anything withOSTaskCreateHook()

the argument.

µC/OS-II User's Manual

435Copyright 2015 Micrium Inc.

void OSTaskCreateHook (OS_TCB *ptcb)
{
 ptcb = ptcb;
}

Listing - Listing 14.6

OSTaskDelHook()

As previously mentioned, does not define code for this function. In other words, noOS_CPU_C.C

additional work is done by the port when a task is deleted. The assignment of ptcb to ptcb is

again done so that the compiler doesn’t complain about not doing anythingOSTaskDelHook()

with the argument.

void OSTaskDelHook (OS_TCB *ptcb)
{
 ptcb = ptcb;
}

Listing - Listing 14.7

OSTaskSwHook()

Again, doesn’t do anything in this function. You should note that I added theOS_CPU_C.C

‘skeleton’ of the code you would need if you were toactually do something in .OSTaskSwHook()

void OSTaskSwHook (void)
{
#if 0
 if (OSRunning == TRUE) {
 /* Save for task being ‘switched-out’ */
 }
 /* Code for task being ‘switched-in’ */
#endif
}

Listing - Listing 14.8

OSTaskIdleHook()

Again, doesn’t do anything in this function.OS_CPU_C.C

µC/OS-II User's Manual

436Copyright 2015 Micrium Inc.

void OSTaskIdleHook (void)
{
}

Listing - Listing 14.9

OSTaskStatHook()

OS_CPU_C.C doesn’t do anything in this function. See Example 3 in Chapter 1 for an example on

what you can do with this function.

void OSTaskStatHook (void)
{
}

Listing - Listing 14.10

OSTimeTickHook()

OS_CPU_C.C doesn’t do anything in this function either.

void OSTimeTickHook (void)
{
}

Listing - Listing 14.11

OSInitHookBegin()

OS_CPU_C.C doesn’t do anything in this function.

void OSInitHookBegin (void)
{
}

Listing - Listing 14.12

µC/OS-II User's Manual

437Copyright 2015 Micrium Inc.

OSInitHookEnd()

OS_CPU_C.C doesn’t do anything in this function.

void OSInitHookEnd (void)
{
}

Listing - Listing 14.13

OSTCBInitHook()

OS_CPU_C.C doesn’t do anything in this function.

void OSTCBInitHook (void)
{
}

Listing - Listing 14.14

OS_CPU_A.ASM

A µC/OS-II port requires that you write four assembly language functions:

OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()
OSTickISR()

OSStartHighRdy()

This function is called by to start the highest priority task ready to run. However,OSStart()

before you can call , you must have called and then created at least one taskOSStart() OSInit()

[see and]. sets up so that it pointsOSTaskCreate() OSTaskCreateExt() OSStart() OSTCBHighRdy

to the task control block of the task with the highest priority. Figure 14.7 shows the stack frame

for an 80x86 real-mode task created by either or justOSTaskCreate() OSTaskCreateExt()

before calls .OSStart() OSStartHighRdy()

µC/OS-II User's Manual

438Copyright 2015 Micrium Inc.

Figure - Figure 14.7 80x86 stack frame when task is created.

The code for OSStartHighRdy() is shown in Listing 14.15.

_OSStartHighRdy PROC FAR

 MOV AX, SEG _OSTCBHighRdy
 MOV DS, AX
;
 CALL FAR PTR _OSTaskSwHook (1)
;
 MOV AL, 1 (2)
 MOV BYTE PTR DS:_OSRunning, AL
;
 LES BX, DWORD PTR DS:_OSTCBHighRdy (3)
 MOV SS, ES:[BX+2]
 MOV SP, ES:[BX+0]
;
 POP DS (4)
 POP ES
 POPA
;
 IRET (5)

_OSStartHighRdy ENDP

Listing - Listing 14.15

µC/OS-II User's Manual

439Copyright 2015 Micrium Inc.

 As mentioned in Chapter 13, must call when it starts.(1) OSStartHighRdy() OSTaskSwHook()

Remember that your function must check the state of (whichOSTaskSwHook() OSRunning

should be FALSE at this point) so that it only performs a restore context operation

instead of a save and restore context.

 then sets to TRUE so that subsequent calls to (2) OSStartHighRdy() OSRunning

 will be able to perform both save and restore operations. Because theOSTaskSwHook()

code is done in assembly language, there is no way to get the exact value of TRUE from

the C compiler. I’m thus assuming that TRUE is 1.

 then retrieves and loads the stack pointer from the task’s . As I(3) OSStartHighRdy() OS_TCB

mentionned before, I decided to store the stack pointer at the beginning of the task

control block (i.e., its) to make it easier to access from assembly language.OS_TCB

 then restores the contents of all the CPU integer registers from the(4) OSStartHighRdy()

task’s stack.

 The IRET instruction is executed to perform a return from interrupt. Remember that the(5)

stack frame of the task was created so that it looks as if an interrupt occurred and all the

CPU registers were pushed onto the task’s stack. The IRET instruction pulls the task

address and places it into the CS:IP registers followed by the value to load into the SW

register (called status word or flags).

As seen in Figure 14.7, upon executing the IRET instruction, the stack pointer (SS:SP) points

to the return address of the task and ‘looks’ as if the task was called by a normal function.

SS:SP+4 points to the argument pdata, which is passed to the task. In other words, your task

will not know whether it was called by or any other function!OSStartHighRdy()

µC/OS-II User's Manual

440Copyright 2015 Micrium Inc.

OSCtxSw()

A task-level context switch is accomplished on the 80x86 processor by executing a software

interrupt instruction. The interrupt service routine must vector to . The sequence ofOSCtxSw()

events that leads µC/OS-II to vector to begins when the current task calls a serviceOSCtxSw()

provided by µC/OS-II, which causes a higher priority task to be ready to run. At the end of the

service call, µC/OS-II calls the function , which concludes that the current task is noOS_Sched()

longer the most important task to run. loads the address of the of the highestOS_Sched() OS_TCB

priority task into , then executes the software interrupt instruction by invoking theOSTCBHighRdy

macro . Note that the variable already contains a pointer to the currentOS_TASK_SW() OSTCBCur

task’s task control block, . The code for is shown in Listing 14.16.OS_TCB OSCtxSw()

_OSCtxSw PROC FAR (1)
;
 PUSHA (2)
 PUSH ES
 PUSH DS
;
 MOV AX, SEG _OSTCBCur
 MOV DS, AX
;
 LES BX, DWORD PTR DS:_OSTCBCur (3)
 MOV ES:[BX+2], SS
 MOV ES:[BX+0], SP
;
 CALL FAR PTR _OSTaskSwHook (4)
;
 MOV AX, WORD PTR DS:_OSTCBHighRdy+2 (5)
 MOV DX, WORD PTR DS:_OSTCBHighRdy
 MOV WORD PTR DS:_OSTCBCur+2, AX
 MOV WORD PTR DS:_OSTCBCur, DX
;
 MOV AL, BYTE PTR DS:_OSPrioHighRdy (6)
 MOV BYTE PTR DS:_OSPrioCur, AL
;
 LES BX, DWORD PTR DS:_OSTCBHighRdy (7)
 MOV SS, ES:[BX+2]
 MOV SP, ES:[BX]
;
 POP DS (8)
 POP ES
 POPA
;
 IRET (9)
;
_OSCtxSw ENDP

Listing - Listing 14.16

Figure 14.8 shows the stack frames of the task being suspended and the task being resumed.

µC/OS-II User's Manual

441Copyright 2015 Micrium Inc.

Figure - Figure 14.8 80x86 stack frames during a task-level context switch.

The notes below apply both and simultaneously to Listing 14.16 and Figure 14.8.

When reading each numbered note, refer to both the listing and the figure.

 F14.8(1)

 L14.16 - On the 80x86 processor, the software interrupt instruction forces the SW(1)

register to be pushed onto the current task’s stack followed by the return address

(segment and then offset) of the task that executed the INT instruction [i.e., the task that

invoked].OS_TASK_SW()

 F14.8(2)

 L14.16 - The remaining CPU registers of the task to suspend are saved onto the current(2)

task’s stack.

 F14.8(3)

 L14.16 - The pointer to the new stack frame is saved into the task’s . This pointer(3) OS_TCB

is composed of the stack segment (SS register) and the stack pointer (SS register). The

µC/OS-II User's Manual

442Copyright 2015 Micrium Inc.

 in µC/OS-II is organized such that the stack pointer is placed at the beginning ofOS_TCB

the structure to make it easier to save and restore the stack pointer using assemblyOS_TCB

language.

 L14.16 - The user-definable task switch hook is then called. Note that(4) OSTaskSwHook()

when is called, points to the current task’s , while OSTaskSwHook() OSTCBCur OS_TCB

 points to the new task’s . You can thus access each task’s OSTCBHighRdy OS_TCB OS_TCB

from . If you never intend to use the context switch hook, you canOSTaskSwHook()

comment out the call and save yourself a few clock cycles during the context switch. In

other words, there is no point in going through the overhead of calling and returning

from a funtion if your port doesn’t use . As a general rule, however, I likeOSTaskSwHook()

to make the call to be consistent between port.

 L14.16 - Upon return from , is copied to because(5) OSTaskSwHook() OSTCBHighRdy OSTCBCur

the new task will now also be the current task.

 L14.16 - Also, is copied to for the same reason.(6) OSPrioHighRdy OSPrioCur

 F14.8(4)

 L14.16 - At this point, can load the processor’s registers with the new task’s(7) OSCtxSw()

context. This is done by retrieving the SS and SP registers from the new task’s .OS_TCB

 L14.16 - F14.8(5)

 L14.16 - The remaining CPU registers are pulled from the new task’s stack.(8)

 F14.8(6)

 L14.16 - An IRET instruction is executed to load the new task’s program counter and(9)

status word. After this instruction, the processor resumes execution of the new task.

Note that interrupts are disabled during and also during execution of theOSCtxSw()

user-definable function .OSTaskSwHook()

µC/OS-II User's Manual

443Copyright 2015 Micrium Inc.

OSIntCtxSw()

OSIntCtxSw() is called by to perform a context switch from an ISR (InterruptOSIntExit()

Service Routine). Because is called from an ISR, it is assumed that all theOSIntCtxSw()

processor registers are already properly saved onto the interrupted task’s stack.

The code shown in Listing 14.17 is identical to , except for the fact that there is noOSCtxSw()

need to save the registers (i.e., no PUSHA, PUSH ES, or PUSH DS) onto the stack because it

is assumed that the beginning of the ISR has already done that. Also, it is also assumed that the

stack pointer is saved into the task’s by the ISR. Figure 14.9 also shows the contextOS_TCB

switch process, from ’ s point of view.OSIntCtxSw()

To understand the difference, let’s assume that the processor receives an interrupt. Let’s also

supposed that interrupts are enabled. The processor completes the current instruction and

initiates an interrupt handling procedure.

(1) The 80x86 automatically pushes the processor’s SW register followed by the return

address of the interrupted task onto the stack. The CPU then vectors to the proper ISR.

µC/OS-II requires that your ISR begins by saving the rest of the processor registers.

Once the registers are saved, µC/OS-II requires that you also save the contents of the

stack pointer in the task’s .OS_TCB

Your ISR then needs to either call or, increment the global variable OSIntEnter() OSIntNesting

by one. At this point, we can assume that the task is suspended and we could, if needed, switch

to a different task.

The ISR can now start servicing the interrupting device and possibly, make a higher priority

task ready. This occurs if the ISR sends a message to a task by calling either , OSFlagPost()

, , , or . A higher priorityOSMboxPost() OSMboxPostOpt() OSQPostFront() OSQPost() OSQPostOpt()

task can also be resumed if the ISR calls , or .OSTaskResume() OSTimeTick() OSTimeDlyResume()

Assume that a higher priority task is made ready to run by the ISR. µC/OS-II requires that an

ISR calls when it has finished servicing the interrupting device. OSIntExit() OSIntExit()

basically tell µC/OS-II that it’s time to return back to task-level code if all nested interrupts

have completed. In other words, when is decremented to 0 by , OSIntNesting OSIntExit()

 would return to task level code.OSIntExit()

µC/OS-II User's Manual

444Copyright 2015 Micrium Inc.

When executes, it notices that the interrupted task is no longer the task that needsOSIntExit()

to run because a higher priority task is now ready. In this case, the pointer isOSTCBHighRdy

made to point to the new task’s , and calls to perform theOS_TCB OSIntExit() OSIntCtxSw()

context switch.

_OSIntCtxSw PROC FAR
;
 CALL FAR PTR _OSTaskSwHook (1)
;
 MOV AX, SEG _OSTCBCur
 MOV DS, AX
;
 MOV AX, WORD PTR DS:_OSTCBHighRdy+2 (2)
 MOV DX, WORD PTR DS:_OSTCBHighRdy
 MOV WORD PTR DS:_OSTCBCur+2, AX
 MOV WORD PTR DS:_OSTCBCur, DX
;
 MOV AL, BYTE PTR DS:_OSPrioHighRdy (3)
 MOV BYTE PTR DS:_OSPrioCur, AL
;
 LES BX, DWORD PTR DS:_OSTCBHighRdy (4)
 MOV SS, ES:[BX+2]
 MOV SP, ES:[BX]
;
 POP DS (5)
 POP ES
 POPA
;
 IRET (6)
;
_OSIntCtxSw ENDP

Listing - Listing 14.17

µC/OS-II User's Manual

445Copyright 2015 Micrium Inc.

Figure - Figure 14.9 80x86 stack frames during an interrupt-level context switch.

The notes below apply both and simultaneously to Listing 14.17 and Figure 14.7.

When reading each numbered note, refer to both the listing and the figure.

 L14.17 - The first thing does is call the user-definable task switch hook (1) OSIntCtxSw()

. Note that when is called, points to the currentOSTaskSwHook() OSTaskSwHook() OSTCBCur

task’s , while points to the new task’s . You can thus accessOS_TCB OSTCBHighRdy OS_TCB

each task’s from . Again, if you never intend to use the contextOS_TCB OSTaskSwHook()

switch hook, you can comment out the call and save yourself a few clock cycles during

the context switch.

 L14.17 - Upon return from , is copied to because(2) OSTaskSwHook() OSTCBHighRdy OSTCBCur

the new task will now also be the current task.

 L14.17 - is also copied to for the same reason.(3) OSPrioHighRdy OSPrioCur

 F14.9(2)

 L14.17 - At this point, can load the processor’s registers with the new task’s(4) OSCtxSw()

context. This is done by retrieving the SS and SP registers from the new task’s .OS_TCB

µC/OS-II User's Manual

446Copyright 2015 Micrium Inc.

 F14.9(3)

 L14.17 - The remaining CPU registers are pulled from the stack.(5)

 F14.9(4)

 L14.17 - An IRET instruction is executed to load the new task’s program counter and(6)

status word. After this instruction, the processor resumes execution of the new task.

Note that interrupts are disabled during and also during execution of theOSIntCtxSw()

user-definable function .OSTaskSwHook()

OSTickISR()

As mentioned in section 14.03.05, Tick Rate, the tick rate of an RTOS should be set between

10 and 100Hz. On the PC, the ticker occurs every 54.93ms (18.20648Hz) and is obtained by a

hardware timer that interrupts the CPU. Recall that I reprogrammed the tick rate to 200Hz. The

ticker on the PC is assigned to vector 0x08 but µC/OS-II redefined it so that it vectors to

 instead. Because of this, the PC’s tick handler is saved [see PC.C, OSTickISR()

] in vector 129 (0x81). To satisfy DOS, however, the PC’s handler isPC_DOSSaveReturn()

called every 54.93ms (described shortly). Figure 14.10 shows the contents of the interrupt

vector table (IVT) before and after installing µC/OS-II.

µC/OS-II User's Manual

447Copyright 2015 Micrium Inc.

Figure - Figure 14.10 The PC interrupt vector table (IVT).

With µC/OS-II, it is very important that you enable ticker interrupts after multitasking has

started; that is, after calling OSStart() . In the case of the PC, however, ticker interrupts are

already occurring before you actually execute your µC/OS-II application.

To prevent the ISR from invoking until µC/OS-II is ready, do the following:OSTickISR()

main():

Call to initialize µC/OS-II.OSInit()

Call (see PC.C)PC_DOSSaveReturn()

µC/OS-II User's Manual

448Copyright 2015 Micrium Inc.

Call to install context switch vector at vector 0x80PC_VectSet() OSCtxSw()

Create at least one application task

Call when you are ready to multitaskOSStart()

The first task to execute needs to:

Install at vector 0x08OSTickISR()

Change the tick rate from 18.20648 to 200Hz

The tick handler on the PC is somewhat tricky, so I will explain it using the pseudocode shown

in Listing 14.18. This code would normally be written in assembly language.

void OSTickISR (void)
{
 Save all registers on the current task's stack; (1)
 OSIntNesting++; (2)
 if (OSIntNesting == 1) { (3)
 OSTCBCur->OSTCBStkPtr = SS:SP (4)
 }
 OSTickDOSCtr--; (5)
 if (OSTickDOSCtr == 0) { (6)
 OSTickDOSCtr = 11; (7)
 INT 81H; /* Interrupt will be cleared by DOS */
 } else {
 Send EOI to PIC; (8)
 }
 OSTimeTick(); (9)
 OSIntExit(); (10)
 Restore all registers that were save on the current task's stack;(11)
 Return from Interrupt; (12)
}

Listing - Listing 14.18 Pseudocode for OSTickISR().

 Like all µC/OS-II ISRs, all registers need to be saved onto the current task’s stack.(1)

 Upon entering an ISR, you need to tell µC/OS-II that you are starting an ISR by either(2)

calling or directly incrementing . I like to increment OSIntEnter() OSIntNesting

 directly because it’s faster. However, checks that you don’tOSIntNesting OSIntEnter()

increment beyond 255 and thus, is safer if you nest your ISRs.OSIntNesting

(3)

 If this ISR is the first nested ISR, you need to save the stack pointer into the current(4)

µC/OS-II User's Manual

449Copyright 2015 Micrium Inc.

task’s .OS_TCB

(5)

(6)

 Next, the counter is decremented and when it reaches 0, the DOS ticker(7) OSTickDOSCtr

handler is called. This happens every 54.93ms.

 Ten times out of 11, however, a command is sent to the Priority Interrupt Controller(8)

(PIC) to clear the interrupt. Note that there is no need to do this when the DOS ticker is

called because the DOS tick handler directly clears the interrupt source.

 then calls so that µC/OS-II can update all tasks waiting for(9) OSTickISR() OSTimeTick()

time to expire or pending for some event to occur, with a timeout.

 At the completion of all ISRs, is called. If a higher priority task has been(10) OSIntExit()

made ready by this ISR (or any other nested ISRs) and this is the last nested ISR, then

 will not return to ! Instead, restores theOSIntExit() OSTickISR() OSIntCtxSw()

processor’s context of the new task and issues an IRET. If the ISR is not the last nested

ISR or the ISR did not cause a higher priority task to be ready, then returnsOSIntExit()

back to .OSTickISR()

(11)

 IF returns, it’s because it didn’t find any higher priority task to run and thus,(12) OSIntExit()

the contents of the interrupt task’s processor registers are restored. When the IRET

instruction is executed, the ISR returns to the interrupted task.

The actual code for is shown in Listing 14.19 for your reference. The number inOSTickISR()

Listing 14.19 corresponds to the same item in Listing 14.18. You should note that the actual

code in the file contains comments.

µC/OS-II User's Manual

450Copyright 2015 Micrium Inc.

_OSTickISR PROC FAR
;
 PUSHA (1)
 PUSH ES
 PUSH DS
;
 MOV AX, SEG(_OSIntNesting) (2)
 MOV DS, AX
 INC BYTE PTR DS:_OSIntNesting
;
 CMP BYTE PTR DS:_OSIntNesting, 1 (3)
 JNE SHORT _OSTickISR1
 MOV AX, SEG(_OSTCBCur)
 MOV DS, AX
 LES BX, DWORD PTR DS:_OSTCBCur (4)
 MOV ES:[BX+2], SS
 MOV ES:[BX+0], SP
;
_OSTickISR1:
 MOV AX, SEG(_OSTickDOSCtr) (5)
 MOV DS, AX
 DEC BYTE PTR DS:_OSTickDOSCtr
 CMP BYTE PTR DS:_OSTickDOSCtr, 0 (6)
 JNE SHORT _OSTickISR2
;
 MOV BYTE PTR DS:_OSTickDOSCtr, 11 (7)
 INT 081H
 JMP SHORT _OSTickISR3

_OSTickISR2:
 MOV AL, 20H (8)
 MOV DX, 20H
 OUT DX, AL
;
_OSTickISR3:
 CALL FAR PTR _OSTimeTick (9)
;
 CALL FAR PTR _OSIntExit (10)
;
 POP DS (11)
 POP ES
 POPA
;
 IRET (12)
;
_OSTickISR ENDP

Listing - Listing 14.19 OSTickISR().

You can simplify OSTickISR() by not increasing the tick rate from 18.20648 to 200Hz, as

shown in the pseudocode in Listing 14.20. The actual code is shown in Listing 14.21 and

matches the same item from Listing 14.20. This code is included so that you can model your

ISRs after it.

µC/OS-II User's Manual

451Copyright 2015 Micrium Inc.

void OSTickISR (void)
{
 Save all registers on the current task's stack; (1)
 OSIntNesting++; (2)
 if (OSIntNesting == 1) { (3)
 OSTCBCur->OSTCBStkPtr = SS:SP (4)
 }
 INT 81H; (5)
 OSTimeTick(); (6)
 OSIntExit(); (7)
 Restore all registers that were save on the current task's stack; (8)
 Return from Interrupt; (9)
}

Listing - Listing 14.20 Pseudocode for 18.2Hz

 Like all µC/OS-II ISRs, all registers need to be saved onto the current task’s stack.(1)

 Upon entering an ISR, you need to tell µC/OS-II that you are starting an ISR by either(2)

calling or directly incrementing . I like to increment OSIntEnter() OSIntNesting

 directly because it’s faster.OSIntNesting

(3)

 If this ISR is the first nested ISR, you need to save the stack pointer into the current(4)

task’s .OS_TCB

 Next, the DOS tick handler is called by issuing an INT caal (see the remapping of the(5)

IVT, Figure 14.10). Note that you do not need to clear the interrupt because this is

handled by the DOS ticker.

 Call so that µC/OS-II can update all tasks waiting for time to expire or(6) OSTimeTick()

pending on some event to occur with a timeout. If your ISR is not for the DOS tick, this

is the place you would put the code to service your own interrupt.

 When you are done servicing the ISR, call . If the ISR makes a higher(7) OSIntExit()

priority task ready to run, will not return to this ISR but instead, contextOSIntExit()

switch to the new, higher priority task.

 The processor registers are restored.(8)

 The ISR returns to the interrupted source by executing an IRET instruction.(9)

µC/OS-II User's Manual

452Copyright 2015 Micrium Inc.

Note that you must not change the tick rate by calling if you are to use thisPC_SetTickRate()

version of the code. In other words, you must leave the tick rate alone. You also have to

change the configuration constant (see) from 200 to 18. YouOS_TICKS_PER_SEC OS_CFG.H

should note that the tick rate is not actually 18 but 18.20648. You need to be aware of this,

especially if you want to delay a task for 10 seconds. You would specify 10 *OS_TICKS_PER_SEC

ticks and it would actually end up being only 9.8866 seconds!

_OSTickISR PROC FAR
;
 PUSHA (1)
 PUSH ES
 PUSH DS
;
 MOV AX, SEG(_OSIntNesting) (2)
 MOV DS, AX
 INC BYTE PTR DS:_OSIntNesting
;
 CMP BYTE PTR DS:_OSIntNesting, 1 (3)
 JNE SHORT _OSTickISR1
 MOV AX, SEG(_OSTCBCur)
 MOV DS, AX
 LES BX, DWORD PTR DS:_OSTCBCur (4)
 MOV ES:[BX+2], SS
 MOV ES:[BX+0], SP
;
_OSTickISR1:
 INT 081H (5)
;
 CALL FAR PTR _OSTimeTick (6)
;
 CALL FAR PTR _OSIntExit (7)
;
 POP DS (8)
 POP ES
 POPA
;
 IRET (9)
;
_OSTickISR ENDP

Listing - Listing 14.21 18.2 Hz version of OSTickISR().

Memory Usage

Table 14.3 shows the amount of memory (both code and data space) used by µC/OS-II based

on the value of configuration constants. Data in this case means RAM and code means ROM if

µC/OS-II is used in an embedded system.

The spreadsheet is actually provided in the downloadable package ().uCOS-II-RAM-Calc.XLS

µC/OS-II User's Manual

453Copyright 2015 Micrium Inc.

You need Microsoft Excel for Office 2000 (or higher) to use this file. The spreadsheet allows

you to do “what-if” scenarios based on the options you select. You can change the

configuration values (in RED) and see how they affects µC/OS-II’s ROM and RAM usage on

the 80x86. For the values, you MUST use either 0 or 1.???_EN

I setup the Borland compiler to generate the fastest code. The number of bytes shown are not

meant to be accurate but are simply provided to give you a relative idea of how much code

space each of the µC/OS-II group of services require. For example, if you don’t need message

queue services (is set to 0), then you will save between 1,900 and 2,200 bytes of codeOS_Q_EN

space.

The spreadsheet also shows you the difference in code size based on the value of

 in your . You don’t need to change the value of to seeOS_ARG_CHK_EN OS_CFG.H OS_ARG_CHK_EN

the difference.

The Data column is not as straightforward. Notice that the stacks for both the idle task and the

statistics task have been set to 1,024 bytes (1Kb) each. Based on your own requirements, these

number may be higher or lower. As a minimum, µC/OS-II requires about 3,500 bytes of RAM

for µC/OS-II internal data structures if you configure the maximum number of tasks (62

application tasks).

Table 14.4 shows how µC/OS-II can scale down the amount of memory required with most of

the services disabled. In this case, I allowed only 16 tasks with 20 priority levels (0 to 19).

Notice that the Code space is now between 2,400 and 2,700 bytes and Data space for µC/OS-II

internals is only about 500 bytes. However, just about the only service you can use in your

tasks is !OSTimeDly()

If you use an 80x86 processor, you will most likely not be too restricted with memory and

thus, µC/OS-II will most likely not be the largest user of memory.

µC/OS-II User's Manual

454Copyright 2015 Micrium Inc.

µCOS-II, The Real-Time Kernel V2.52

80x86, Real Mode, Large Model
ROM and RAM Usage Worksheet

Configuration Parameters Value in
OS_CFG.H

Data
(Bytes)

Code (Bytes)
OS_ARG_CHK_EN
== 0

Code (Bytes)
OS_ARG_CHK_EN
== 1

Delta
Code
(Bytes)

Delta
Code
(%)

TOTAL 5523 13048 14919 1871 14%

OS_MAX_EVENTS 10 164

OS_MAX_FLAGS 2 14

OS_MAX_MEM_PART 2 44

OS_MAX_QS 2 52

OS_MAX_TASKS 62 2,880

OS_LOWEST_PRIO 63 264

OS_TASK_lDLE_STK_SIZE 512 1024

OS_TASK_STAT_EN 1 10 351 351

OS_TASK_STAT_STK_SIZE 512 1024

OS_ARG_CHK_EN 1

OS_CPU_HO0KS_EN 1

MINIMUM 2177 2493 316

OS_FLAG_EN 1 2174 2539 82

OS_FLAG_WAIT_CLR_EN 1 108

OS_FLAG_ACCEPT_EN 1 41

OS_FLAG_DEL_EN 1 95

OS_FLAG_OUERY_EN 1 39

OS_MBOX_EN 1 958 1185 55

OS_MBOX_ACCEPT_EN 1 23

µC/OS-II User's Manual

455Copyright 2015 Micrium Inc.

OS_MBOX_DEL_EN 1 49

OS_MBOX_POST_EN 1 35

OS_MBOX_POST_OPT_EN 1 39

OS_MBOX_QUERY_EN 1 25

OS_MEM_EN 1 689 838 123

OS_MEM_QUERY_EN 1 26

OS_MUTEX_EN 1 1596 1792 83

OS_MUTEX_ACCEPT_EN 1 39

OS_MUTEX_DEL_EN 1 47

OS_MUTEX_OUERY_EN 1 27

OS_O_EN 1 1917 2206 45

OS_Q_ACCEPT_EN 1 23

OS_O_DEL_EN 1 49

OS_Q_FLUSH_EN 1 25

OS_Q_POST_EN 1 40

OS_Q_POST_FRONT_EN 1 40

OS_Q_POST_OPT_EN 1 40

OS_O_OUERY_EN 1 27

OS_SEM_EN 1 707 864 62

OS_SEM_ACCEPT_EN 1 21

OS_SEM_DEL_EN 1 49

OS_SEM_QUERY_EN 1 25

OS_TASK_CHANGE_PRI0_EN 1 444 455 22

OS_TASK_CREATE_EN 1 185 196 11

OS_TASK_CREATE_EXT_EN 1 441 467 26

OS_TASK_DEL_EN 1 527 578 51

OS_TASK_SUSPEND_EN 1 264 300 36

OS_TASK_OUERY_EN 1 87 103 16

OS_TIME_DLY_HMSM_EN 1 248 248

µC/OS-II User's Manual

456Copyright 2015 Micrium Inc.

OS_TIME_DLY_RESUME_EN 1 122 132 10

OS_TIME_GET_SET_EN 1 59 59

OS_SCHED_LOCK_EN 1 102 102

µC/OS-II Internals 47

Total Application Stacks 0

Total Application RAM 0

Table - Table 14.3, Maximum µC/OS-II configuration.

µC/OS-II User's Manual

457Copyright 2015 Micrium Inc.

µCOS-II, The Real-Time Kernel V2.52

80x86, Real Mode, Large Model
ROM and RAM Usage Worksheet

Configuration Parameters Value in
OS_CFG.H

Data
(Bytes)

Code (Bytes)
OS_ARG_CHK_EN
== 0

Code (Bytes)
OS_ARG_CHK_EN
== 1

Delta
Code
(Bytes)

Delta
Code
(%)

TOTAL 1508 2362 2689 327 14%

OS_MAX_EVENTS 10

OS_MAX_FLAGS 2

OS_MAX_MEM_PART 2

OS_MAX_QS 2

OS_MAX_TASKS 16 360

OS_LOWEST_PRI0 20 87

OS_TASK_lDLE_STK_SIZE 512 1024

OS_TASK_STAT_EN 0

OS_TASK_STAT_STK_SIZE 512

OS_ARG_CHK_EN 1

OS_CPU_HO0KS_EN 1

MINIMUM 2177 2493 316

OS_FLAG_EN 0

OS_FLAG_WAIT_CLR_EN 1

OS_FLAG_ACCEPT_EN 1

OS_FLAG_DEL_EN 1

OS_FLAG_OUERY_EN 1

OS_MBOX_EN 1

OS_MBOX_ACCEPT_EN 1

µC/OS-II User's Manual

458Copyright 2015 Micrium Inc.

OS_MBOX_DEL_EN 1

OS_MBOX_POST_EN 1

OS_MBOX_POST_OPT_EN 1

OS_MBOX_QUERY_EN 1

OS_MEM_EN 0

OS_MEM_QUERY_EN 1

OS_MUTEX_EN 0

OS_MUTEX_ACCEPT_EN 1

OS_MUTEX_DEL_EN 1

OS_MUTEX_OUERY_EN 1

OS_Q_EN 0

OS_Q_ACCEPT_EN 1

OS_O_DEL_EN 1

OS_Q_FLUSH_EN 1

OS_Q_POST_EN 1

OS_Q_POST_FRONT_EN 1

OS_Q_POST_OPT_EN 1

OS_O_OUERY_EN 1

OS_SEM_EN 0

OS_SEM_ACCEPT_EN 1

OS_SEM_DEL_EN 1

OS_SEM_QUERY_EN 1

OS_TASK_CHANGE_PRIO_EN 0

OS_TASK_CREATE_EN 1 185 196 11

OS_TASK_CREATE_EXT_EN 0

OS_TASK_DEL_EN 0

OS_TASK_SUSPEND_EN 0

OS_TASK_OUERY_EN 0

OS_TIME_DLY_HMSM_EN 0

µC/OS-II User's Manual

459Copyright 2015 Micrium Inc.

OS_TIME_DLY_RESUME_EN 0

OS_TIME_GET_SET_EN 0

OS_SCHED_LOCK_EN 0

µC/OS-II Internals 37

Total Application Stacks 0

Total Application RAM 0

Table - Table 14.4, Minimum µC/OS-II configuration.

µC/OS-II User's Manual

460Copyright 2015 Micrium Inc.

80x86 Port with Hardware FP Support

Real Mode, Large Model with Hardware Floating-Point Support

This section describes how µC/OS-II has been ported to the Intel 80x86 series of processors

that provides a Floating-Point Unit (FPU). Some of the processors that can make use of this

port are the Intel 80486™, Pentiums™ (all models), Xeon™, AMD Athlon™, K6™-series,

ElanSC520™ and more. The port assumes the Borland C/C++ compiler V4.51 and was setup

to generate code for the large memory model. The processor is assumed to be running in real

mode. The code for this port is very similar to the one presented in 80x86 Port with Emulated

 and in some cases, I will only be presenting the differences.FP Support

This port assumes that you enabled code generation for (by setting OSTaskCreateExt

 to 1 in) and that you enabled µC/OS-IIís memoryOS_TASK_CREATE_EXT_EN OS_CFG.H

management services (by setting to 1 in). Of course, you must set OS_MEM_EN OS_CFG.H

 to at least 1. Finally, tasks that will perform floating-point operations MUSTOS_MAX_MEM_PART

be created using and set the option.OSTaskCreateExt OS_TASK_OPT_SAVE_FP

Figure 15.1 shows the programming model of an 80x86 processor running in real mode. The

integer registers are identical to those presented in . In80x86 Port with Emulated FP Support

fact, they are saved and restored using the same technique. The only difference between this

port and the one presented in that section is that we also need to save and restore the FPU

registers which is done by using the context switch hook functions.

µC/OS-II User's Manual

461Copyright 2015 Micrium Inc.

Figure - Figure 15.1 80x86 real-mode register model.

Development Tools

As in the section , I used the Borland C/C++ V4.5180x86 Port with Emulated FP Support

compiler along with the Borland Turbo Assembler for porting and testing. This compiler

generates reentrant code and provides in-line assembly language instructions that can be

inserted in C code. The compiler can be directed to generate code specifically to make use of

the FPU. I tested the code on a 300 MHz Pentium-II-based computer running the Microsoft

Windows 2000 operating system. In fact, I configured the compiler to generate a DOS

executable which was run in a DOS window.

Finally, you can also adapt the port provided in this section to other 80x86 compiler as long as

they generate real-mode code. You will most likely have to change some of the compiler

options and assembler directives if you use a different development environment.

Table 15.1 shows the Borland C/C++ compiler V4.51 options (i.e., flags) supplied on the

µC/OS-II User's Manual

462Copyright 2015 Micrium Inc.

command line. These settings were used to compile the port as well as example 4 provided in

.Getting Started with µC/OS-II

Option (i.e., setting) Description

-1 Generate 80186 code

-B Compile and call assembler

-c Compiler to .OBJ

-d Merge duplicate strings

-f287 Use FPU hardware instructions

-G Select code for speed

-I Path to compiler include files is C:\BC45\INCLUDE

-k- Standard stack frame

-L Path to compiler libraries is C:\BC45\LIB

-ml Large memory model

-N- Do not check for stack overflow

-n..\obj Path where to place object files is ..\OBJ

-O Optimize jumps

-Ob Dead code elimination

-Oe Global register allocation

-Og Optimize globally

-Oi Expand common intrinsic functions inline

-Ol Loop optimization

-Om Invariant code motion

-Op Copy propagation

-Ov Induction variable

-v Source debugging ON

-vi Turn inline expansion ON

-wpro Error reporting: call to functions with no prototype

-Z Suppress redundant loads

Table - Table 15.1, Compiler options used to compile port and examples.

Table 15.2 shows the Borland Turbo Assembler V4.0 options (i.e., flags) supplied on the

command line. These settings were used to assemble .OS_CPU_A.ASM

µC/OS-II User's Manual

463Copyright 2015 Micrium Inc.

Option (i.e., setting) Description

/MX Case sensitive on globals

/ZI Full debug info

/O Generate overlay code

Table - Table 15.2, Assembler options used to assemble .ASM files.

Directories and Files

The installation program provided on the companion CD installs the port for the Intel 80x86

(real mode, large model with FPU support) on your hard disk. The port is found under the:

\SOFTWARE\uCOS-II\Ix86L-FP\BC45

directory. The directory name stands for ntel 80 real mode, arge model with hardware I x86 L F

loating- oint instructions and is placed in the orland ++ V . x directory. The source codeP B C 4 5

for the port is found in the following files: , , and .OS_CPU.H OS_CPU_C.C OS_CPU_A.ASM

INCLUDES.H

Listing 15.1 shows the contents of for this 80x86 port. It is identical to the one usedINCLUDES.H

in .80x86 Port with Emulated FP Support

INCLUDES.H is not really part of the port but is described here because it is needed to compile

the port files.

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include <math.h>
#include <setjmp.h>

#include "os_cpu.h"
#include "os_cfg.h"
#include "ucos_ii.h"
#include "pc.h"

Listing - Listing 15.1 INCLUDES.H.

µC/OS-II User's Manual

464Copyright 2015 Micrium Inc.

OS_CPU.H

OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and

typedefs. for the 80x86 port is shown in Listing 15.2. Most of is identical toOS_CPU.H OS_CPU.H

the of the section .OS_CPU.H 80x86 Port with Emulated FP Support

#ifdef OS_CPU_GLOBALS
#define OS_CPU_EXT
#else
#define OS_CPU_EXT extern
#endif

typedef unsigned char BOOLEAN; (1)
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned int INT16U;
typedef signed int INT16S;
typedef unsigned long INT32U;
typedef signed long INT32S;
typedef float FP32; (2)
typedef double FP64;

typedef unsigned int OS_STK; (3)
typedef unsigned short OS_CPU_SR; (4)

Listing - Listing 15.2 OS_CPU.H.

 If you were to consult the Borland compiler documentation, you would find that an int(1)

and a short are 16 bits and a long is 32 bits.

 Floating-point data types are included because itís assumed that you will be performing(2)

floating-point operations in your tasks. However, µC/OS-II itself doesnít make use of

floating-point numbers.

 A stack entry for the 80x86 processor running in real mode is 16 bits wide; thus, (3) OS_STK

is declared accordingly. The stack width doesnít change because of this port. All task

stacks must be declared using as its data type.OS_STK

 The status register (also called the processor flags) on the 80x86 processor running in(4)

real mode is 16 bits wide. The data type is used only if isOS_CPU_SR OS_CRITICAL_METHOD

set to 3 which it isnít for this port. I included the data type anyway, in caseOS_CPU_SR

you use a different compiler and need to used #3.OS_CRITICAL_METHOD

µC/OS-II User's Manual

465Copyright 2015 Micrium Inc.

OS_CPU.H, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

#define OS_CRITICAL_METHOD 2 (5)

#define OS_ENTER_CRITICAL() asm {PUSHF; CLI} (6)
#define OS_EXIT_CRITICAL() asm POPF

Listing - Listing 15.2 - OS_CPU.H.

 For this port, the prefered critical method #2 because itís directly supported by the(5)

compiler.

 is implemented by saving the interrupt disable status onto the stack(6) OS_ENTER_CRITICAL

and then disable interrupts. This is accomplished on the 80x86 by executing the PUSHF

instruction followed by the CLI instruction. simply needs to execute aOS_EXIT_CRITICAL

POPF instruction to restore the original contents of the processorís SW register.

OS_CPU.H, Stack Growth

#define OS_STK_GROWTH 1 (7)

Listing - Listing 15.2 - OS_CPU.H.

(7) The stack on an 80x86 processor grows from high to low memory, which means that

 must be set to 1.OS_STK_GROWTH

OS_CPU.H, OS_TASK_SW()

#define uCOS 0x80 (8)

#define OS_TASK_SW() asm INT uCOS (9)

Listing - Listing 15.2 - OS_CPU.H.

 To switch context, needs to simulate an interrupt. The 80x86 provides 256(9) OS_TASK_SW

software interrupts to accomplish this. The interrupt service routine (ISR) (also called the

µC/OS-II User's Manual

466Copyright 2015 Micrium Inc.

exception handler) must vector to the assembly language function (see OSCtxSw

). We thus need to ensure that the pointer at vector 0x80 points to .OS_CPU_A.ASM OSCtxSw

 I tested the code on a PC and I decided to use interrupt number 128 (0x80).(8)

OS_CPU.H, Tick Rate

I also decided (see for additional details) to change the80x86 Port with Emulated FP Support

tick rate of the PC from the standard 18.20648Hz to 200Hz (i.e., 5ms between ticks).

OS_CPU_EXT INT8U OSTickDOSCtr; (10)

Listing - Listing 15.2 - OS_CPU.H.

(10) This statement declares an 8-bit variable () that keeps track of theOSTickDOSCtr

number of times the ticker is called. Every 11th time, the DOS tick handler is called.

 is used in and really only applies to a PC environment.OSTickDOSCtr OS_CPU_A.ASM

OS_CPU.H, Floating-Point Functions

This port defines three special functions that are specific to the floating-point capabilities of

the 80x86. In other words, I had to add three new functions to the port to handle the

floating-point hardware.

void OSFPInit(void); (11)
void OSFPRestore(void *pblk); (12)
void OSFPSave(void *pblk); (13)

Listing - Listing 15.2 - OS_CPU.H.

 A function has been added to initialize the floating-point handling mechanism described(11)

in this port.

 will be called to retrieve the value of the floating-point registers when a task(12) OSFPRestore

is being switched-in. is actually written in assembly language and is thusOSFPRestore

found in .OS_CPU_A.ASM

µC/OS-II User's Manual

467Copyright 2015 Micrium Inc.

 will be called to save the current value of the floating-point registers when a(13) OSFPSave

task is being suspended. is also written in assembly language and found in OSFPSave

.OS_CPU_A.ASM

OS_CPU_C.C

As mentioned in and in , µC/OS-II portPorting µC/OS-II 80x86 Port with Emulated FP Support

requires that you write ten fairly simple C functions:

OSTaskStkInit()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskSwHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTimeTickHook()
OSInitHookBegin()
OSInitHookEnd()
OSTCBInitHook()

µC/OS-II only requires . The other nine functions must be declared but generallyOSTaskStkInit

donít need to contain any code. However, this port will make use of , OSTaskCreateHook

, and .OSTaskDelHook OSTaskSwHook OSInitHookEnd

The #define constant (see) should be set to 1.OS_CPU_HOOKS_EN OS_CFG.H

OSTaskStkInit()

This function is called by and and is identical to the OSTaskCreate OSTaskCreateExt

 presented in section 14.01.01. You may recall that is called toOSTaskStkInit OSTaskStkInit

initialize the stack frame of a task so that it looks as if an interrupt has just occurred and all of

the processor integer registers were pushed onto it. Figure 15.2 (identical to Figure 14.3) shows

what puts on the stack of the task being created. Note that the diagram doesnítOSTaskStkInit

show the stack frame of the code calling but rather, the stack frame of the taskOSTaskStkInit

being created. Also, the stack frame only contains the contents of the integer registers, nothing

about the floating point registers. Iíll discuss how we handle the FPU registers shortly.

µC/OS-II User's Manual

468Copyright 2015 Micrium Inc.

Figure - Figure 15.2 Stack frame initialization with pdata passed on the stack.

For reference, Listing 15.3 shows the code for which is identical to the oneOSTaskStkInit

shown in (Listing 14.3).80x86 Port with Emulated FP Support

µC/OS-II User's Manual

469Copyright 2015 Micrium Inc.

OS_STK *OSTaskStkInit (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT16U opt)
{
 INT16U *stk;

 opt = opt;
 stk = (INT16U *)ptos;
 *stk-- = (INT16U)FP_SEG(pdata);
 *stk-- = (INT16U)FP_OFF(pdata);
 *stk-- = (INT16U)FP_SEG(task);
 *stk-- = (INT16U)FP_OFF(task);
 *stk-- = (INT16U)0x0202;
 *stk-- = (INT16U)FP_SEG(task);
 *stk-- = (INT16U)FP_OFF(task);
 *stk-- = (INT16U)0xAAAA;
 *stk-- = (INT16U)0xCCCC;
 *stk-- = (INT16U)0xDDDD;
 *stk-- = (INT16U)0xBBBB;
 *stk-- = (INT16U)0x0000;
 *stk-- = (INT16U)0x1111;
 *stk-- = (INT16U)0x2222;
 *stk-- = (INT16U)0x3333;
 *stk-- = (INT16U)0x4444;
 *stk = _DS;
 return ((OS_STK *)stk);
}

Listing - Listing 15.3 - OS_CPU_C.C, OSTaskStkInit()

OSFPInit()

OSFPInit is called by when is done initializing µC/OS-IIís internalOSInitHookEnd OSInit

structures (I will discuss later). is basically used to initialize theOSInitHookEnd OSFPInit

floating-point context switching mechanism presented in this section. assumes thatOSFPInit

you enabled µC/OS-IIís memory management functions (i.e., you must set to 1 in OS_MEM_EN

). The code for is shown in Listing 15.4.OS_CFG.H OSFPInit

µC/OS-II User's Manual

470Copyright 2015 Micrium Inc.

#define OS_NTASKS_FP (OS_MAX_TASKS + OS_N_SYS_TASKS - 1) (1)
#define OS_FP_STORAGE_SIZE 128 (2)

static OS_MEM *OSFPPartPtr; (3)
static INT32U OSFPPart[OS_NTASKS_FP][OS_FP_STORAGE_SIZE / sizeof(INT32U)]; (4)

void OSFPInit (void)
{
 INT8U err;
#if OS_TASK_STAT_EN
 OS_TCB *ptcb;
 void *pblk;
#endif

 OSFPPartPtr = OSMemCreate(&OSFPPart[0][0], (5)
 OS_NTASKS_FP,
 OS_FP_STORAGE_SIZE,
 &err);

#if OS_TASK_STAT_EN && OS_TASK_CREATE_EXT_EN
 ptcb = OSTCBPrioTbl[OS_STAT_PRIO]; (6)
 ptcb->OSTCBOpt |= OS_TASK_OPT_SAVE_FP; (7)
 pblk = OSMemGet(OSFPPartPtr, &err); (8)
 if (pblk != (void *)0) { (9)
 ptcb->OSTCBExtPtr = pblk; (10)
 OSFPSave(pblk); (11)
 }
#endif
}

Listing - Listing 15.4

 Although not actually part of , I defined this constant that will be used to(1) OSFPInit

determine how many storage ëbuffersí will be needed to save FPU register values. In this

case, I decided to have as many buffers as I have tasks plus one for the statistic task as

described below.

 The 80x86 FPU requires 108 bytes of storage. I decided to allocate 128 bytes for future(2)

expansion. If you are tight on memory, you could save 20 bytes per task by setting this

value to 108.

 We will be using a µC/OS-II memory partition for the storage of all the FPU contexts. (3)

 is a pointer to the partition created for this purpose. Because isOSFPPartPtr OSFPPartPtr

declared static, your application will not know it exist.

 is the actual partition that will hold the storage for all the FPU registers of(4) OSFPPart[][]

all the tasks. As you can probably tell, you need to have at least:

µC/OS-II User's Manual

471Copyright 2015 Micrium Inc.

(OS_MAX_TASKS + 1) * 128

bytes of RAM (i.e., data space) for this partition. Because is declaredOSFPPart[][]

static, your application will not know it exist.

 tells µC/OS-II about this partition. You may recall that will break(5) OSFPInit OSMemCreate

the partition into memory blocks (each of 128 bytes) and links these blocks in a

singly-linked list. If an FPU storage block is needed, we simply need to call OSMemGet

(discussed in).OSTaskCreateHook

 I decided to change the attributes of to allow it to perform floating-point(6) OS_TaskStat

math. You may wonder why I do this since does not perform anyOS_TaskStat

floating-point operations. I did this because you may decide to extend the functionality

of through and, possibly perform floating-pointOS_TaskStat OSTaskStatHook

calculations. finds the pointer to the statistic taskís .OSFPInit OS_TCB

 The flag is set indicating that is a task that needs to save and(7) .OSTCBOpt OS_TaskStat

restore floating-point registers because µC/OS-II doesnít set this option by default.

 I get a storage buffer that will hold the contents of the floating-point registers for (8)

 when is switched-out.OS_TaskStat OS_TaskStat

 Always prudent to check for an invalid pointer.(9)

 The pointer to the FPU storage area is saved in the extension pointer, (10) OS_TCB

. This will allow the context switch code to know where floating-point.OSTCBExtPtr

registers are saved.

 The function (see) is called to store the current contents of the(11) OSFPSave OS_CPU_A.ASM

FPU registers at the location pointed to by pblk. It doesnít really matter what the FPU

registers contain when we do this. The important thing to realize is that the FPU registers

contain valid values, whatever they may be. is discussed in section 15.05.05.OSFPSave

You should be careful that your code doesnít generate any floating-point exception (e.g. divide

by zero) because µC/OS-II will not do anything about them. Run-time exceptions can,

however, be avoided by adding range testing code to your application. In fact, you should

make it a practice to check for possible divide by zero and the like.

µC/OS-II User's Manual

472Copyright 2015 Micrium Inc.

OSTaskCreateHook()

Listing 15.5 shows the code for . Recall that is called by OSTaskCreateHook OSTaskCreateHook

 (which in turn is called by or).OS_TCBInit OSTaskCreate OSTaskCreateExt

void OSTaskCreateHook (OS_TCB *ptcb)
{
 INT8U err;
 void *pblk;

 if (ptcb->OSTCBOpt & OS_TASK_OPT_SAVE_FP) { (1)
 pblk = OSMemGet(OSFPPartPtr, &err); (2)
 if (pblk != (void *)0) { (3)
 ptcb->OSTCBExtPtr = pblk; (4)
 OSFPSave(pblk); (5)
 }
 }
}

Listing - Listing 15.5

 If you create a task that will perform floating-point calculations, you must set the (1)

 bit in opt argument of . This option tells OS_TASK_OPT_SAVE_FP OSTaskCreateExt

 that the task will make use of the FPU and thus, we will need to saveOSTaskCreateHook

and restore the values of these registers during a context switch into or out of this task.

 Because we are creating a task that will use the FPU, we need to allocate storage for the(2)

FPU registers.

 Again, itís a good idea to validate the pointer.(3)

 The pointer to the storage area is saved in the of the task being created.(4) OS_TCB

 Again, the function (see) is called to store the current contents of(5) OSFPSave OS_CPU_A.ASM

the FPU registers at the location pointed to by pblk. It doesnít really matter what the

FPU registers contain when we do this. The important thing to realize is that the FPU

registers contain valid values, whatever they may be. is discussed in sectionOSFPSave

15.05.05.

µC/OS-II User's Manual

473Copyright 2015 Micrium Inc.

Figure 15.3 shows the relationship between some of the data structures after OSTaskCreateHook

has executed.

Figure - Figure 15.3 Initialized stack and FPU register storage.

µC/OS-II User's Manual

474Copyright 2015 Micrium Inc.

OSTaskDelHook()

You may recall that is called by to extend the functionality of OSTaskDelHook OSTaskDel

. Because we allocated a memory block to hold the contents of the floating-pointOSTaskDel

registers when the task was created, we need to deallocate the block when the task is deleted.

Listing 15.6 shows how this is accomplished by .OSTaskDelHook

void OSTaskDelHook (OS_TCB *ptcb)
{
 if (ptcb->OSTCBOpt & OS_TASK_OPT_SAVE_FP) { (1)
 if (ptcb->OSTCBExtPtr != (void *)0) { (2)
 OSMemPut(OSFPPartPtr, ptcb->OSTCBExtPtr); (3)
 }
 }
}

Listing - Listing 15.6 OS_CPU_C.C, OSTaskDelHook

(1)

 We first need to confirm that we allocated a memory block that was used for(2)

floating-point context storage.

 The memory block is returned to the its proper memory partition.(3)

OSTaskSwHook()

OSTaskSwHook is used to extend the functionality of the context switch code. You may recall

that is called by , the task-level context switch function OSTaskSwHook OSStartHighRdy OSCtxSw

and, the ISR context switch function . Listing 15.7 shows how isOSIntCtxSw OSTaskSwHook

implemented.

µC/OS-II User's Manual

475Copyright 2015 Micrium Inc.

void OSTaskSwHook (void)
{
 INT8U err;
 void *pblk;

 if (OSRunning == TRUE) { (1)
 if (OSTCBCur->OSTCBOpt & OS_TASK_OPT_SAVE_FP) { (2)
 pblk = OSTCBCur->OSTCBExtPtr;
 if (pblk != (void *)0) { (3)
 OSFPSave(pblk); (4)
 }
 }
 }

 if (OSTCBHighRdy->OSTCBOpt & OS_TASK_OPT_SAVE_FP) { (5)
 pblk = OSTCBHighRdy->OSTCBExtPtr;
 if (pblk != (void *)0) { (6)
 OSFPRestore(pblk); (7)
 }
 }
}

Listing - Listing 15.7

 When calls , it is trying to ërestoreí the contents of the(1) OSStartHighRdy OSTaskSwHook

floating-point registers of the highest priority task. When is called, OSStartHighRdy

 is FALSE indicating that we havenít started multitasking yet and thus, OSRunning

 must not ësaveí the floating-point registers.OSTaskSwHook

 If is called by either or , then we are ëswitching-outí a(2) OSTaskSwHook OSCtxSw OSIntCtxSw

task (i.e., suspending a lower priority task) and thus, we check to see if this task was

created with the floating-point option.

 Just to be sure, we also check the contents of the to make sure itís not a(3) .OSTCBExtPtr

NULL pointer, it shoudnít.

 As usual, we call to save the current contents of the floating-point registers to(4) OSFPSave

the memory block allocated for that purpose.

 We then check to see if the task to be ëswitched-iní (i.e., the higher priority task) was(5)

created with the floating-point option. In other words, it checks whether you told

 that this task will be doing floating-point operations.OSTaskCreateExt

 Just to be sure, we also check the contents of the in case itís a NULL(6) .OSTCBExtPtr

pointer.

µC/OS-II User's Manual

476Copyright 2015 Micrium Inc.

 The function (see) is called to restore the current contents of(7) OSFPRestore OS_CPU_A.ASM

the FPU registers from the location pointed to by pblk. is discussed inOSFPRestore

section 15.05.06.

OSTaskIdleHook()

OS_CPU_C.C doesnít do anything in this function.

void OSTaskIdleHook (void)
{
}

Listing - Listing 15.8

OSTaskStatHook()

OS_CPU_C.C doesnít do anything in this function. See Example 3 in Getting Started with

 for an example on what you can do with .µC/OS-II OSTaskStatHook

void OSTaskStatHook (void)
{
}

Listing - Listing 15.9

OSTimeTickHook()

OS_CPU_C.C doesnít do anything in this function either.

void OSTimeTickHook (void)
{
}

Listing - Listing 15.10

µC/OS-II User's Manual

477Copyright 2015 Micrium Inc.

OSInitHookBegin()

OS_CPU_C.C doesnít do anything in this function.

void OSInitHookBegin (void)
{
}

Listing - Listing 15.11

OSInitHookEnd()

OSInitHookEnd is called just before returns. This means that initializedOSInit OSInit

µC/OS-IIís memory partition services (which you should have to use this port by setting

 to 1 in). simply calls (see section 15.04.02) which isOS_MEM_EN OS_CFG.H OSInitHook OSFPInit

responsible for setting up the memory partition reserved to hold the contents of floating-point

registers for each task. The code for is shown in Listing 15.12.OSInitHookEnd

void OSInitHookEnd (void)
{
 OSFPInit();
}

Listing - Listing 15.12

OSTCBInitHook()

OS_CPU_C.C doesnít do anything in this function.

void OSTCBInitHook (void)
{
}

Listing - Listing 15.13

OS_CPU_A.ASM

A µC/OS-II port requires that you write four assembly language functions:

µC/OS-II User's Manual

478Copyright 2015 Micrium Inc.

OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()
OSTickISR()

This port adds two functions called and and are found in .OSFPSave OSFPRestore OS_CPU_A.ASM

These functions are responsible for saving and restoring the contents of floating-point registers

during a context switch, respectively.

OSStartHighRdy()

This function is called by to start the highest priority task ready to run. It is identical toOSStart

the presented in . The code is shownOSStartHighRdy 80x86 Port with Emulated FP Support

again in Listing 15.14 for your convenience but will not be discussed since you can review it

from the section .80x86 Port with Emulated FP Support

_OSStartHighRdy PROC FAR

 MOV AX, SEG _OSTCBHighRdy
 MOV DS, AX
;
 CALL FAR PTR _OSTaskSwHook
;
 MOV AL, 1
 MOV BYTE PTR DS:_OSRunning, AL
;
 LES BX, DWORD PTR DS:_OSTCBHighRdy
 MOV SS, ES:[BX+2]
 MOV SP, ES:[BX+0]
;
 POP DS
 POP ES
 POPA
;
 IRET

_OSStartHighRdy ENDP

Listing - Listing 15.14 - OSStartHighRdy()

µC/OS-II User's Manual

479Copyright 2015 Micrium Inc.

OSCtxSw()

A task-level context switch is accomplished on the 80x86 processor by executing a software

interrupt instruction. The interrupt service routine must vector to . The sequence ofOSCtxSw

events that leads µC/OS-II to vector to begins when the current task calls a serviceOSCtxSw

provided by µC/OS-II, which causes a higher priority task to be ready to run. At the end of the

service call, µC/OS-II calls the function , which concludes that the current task is noOS_Sched

longer the most important task to run. loads the address of the of the highestOS_Sched OS_TCB

priority task into , then executes the software interrupt instruction by invoking theOSTCBHighRdy

macro . Note that the variable already contains a pointer to the currentOS_TASK_SW OSTCBCur

taskís task control block, . The code for which is identical to the one presentedOS_TCB OSCtxSw

in is shown in Listing 15.15. will be discussed80x86 Port with Emulated FP Support OSCtxSw

again because of the added complexity of the floating-point context switch.

_OSCtxSw PROC FAR (1)
;
 PUSHA (2)
 PUSH ES
 PUSH DS
;
 MOV AX, SEG _OSTCBCur
 MOV DS, AX
;
 LES BX, DWORD PTR DS:_OSTCBCur (3)
 MOV ES:[BX+2], SS
 MOV ES:[BX+0], SP
;
 CALL FAR PTR _OSTaskSwHook (4)
;
 MOV AX, WORD PTR DS:_OSTCBHighRdy+2 (5)
 MOV DX, WORD PTR DS:_OSTCBHighRdy
 MOV WORD PTR DS:_OSTCBCur+2, AX
 MOV WORD PTR DS:_OSTCBCur, DX
;
 MOV AL, BYTE PTR DS:_OSPrioHighRdy (6)
 MOV BYTE PTR DS:_OSPrioCur, AL
;
 LES BX, DWORD PTR DS:_OSTCBHighRdy (7)
 MOV SS, ES:[BX+2]
 MOV SP, ES:[BX]
;
 POP DS (8)
 POP ES
 POPA
;
 IRET (9)
;
_OSCtxSw ENDP

Listing - Listing 15.15 - OSCtxSw()

µC/OS-II User's Manual

480Copyright 2015 Micrium Inc.

Figure 15.4 shows the stack frames as well as the FPU storage areas of the task being

suspended and the task being resumed.

Figure - Figure 15.4 80x86 stack frames and FPU storage during a task-level context switch.

The notes below apply both and simultaneously to Listing 15.15 and Figure 15.4.

When reading each numbered note, refer to both the listing and the figure.

 F15.4(1)

 L15.15() - On the 80x86 processor, the software interrupt instruction forces the SW(1)

register to be pushed onto the current taskís stack followed by the return address

(segment and then offset) of the task that executed the INT instruction [i.e., the task that

invoked].OS_TASK_SW

 F15.4(2)

 The remaining CPU registers of the task to suspend are saved onto the current(2) L15.15() -

µC/OS-II User's Manual

481Copyright 2015 Micrium Inc.

taskís stack.

 F15.4(3)

 The pointer to the new stack frame is saved into the taskís . This(3) L15.15() - OS_TCB

pointer is composed of the stack segment (SS register) and the stack pointer (SS

register). The in µC/OS-II is organized such that the stack pointer is placed at theOS_TCB

beginning of the structure to make it easier to save and restore the stack pointerOS_TCB

using assembly language.

 F15.4(4)

 F15.4(5)

 The task switch hook is then called. Note that when (4) L15.15() - OSTaskSwHook

 is called, points to the current taskís , while OSTaskSwHook OSTCBCur OS_TCB OSTCBHighRdy

points to the new taskís . You can thus access each taskís from OS_TCB OS_TCB

. first saves the current contents of the FPU registers into theOSTaskSwHook OSTaskSwHook

storage area allocated to the current task. This storage is pointed to by the .OSTCBExtPtr

field of the current taskís . The FPU registers are then loaded with the valuesOS_TCB

stored in the new taskís storage area. Again, the field of the new task.OSTCBExtPtr

points to the storage area of the floating-point registers. Of course, the storage and

retrieval is contingent on the of each task being non-NULL. However, it is.OSTCBExtPtr

quite possible for the new task to not require floating-point and thus not have any storage

area for it. In this case, would not change the contents of the FPU.OSTaskSwHook

 Upon return from , is copied to because(5) L15.15() - OSTaskSwHook OSTCBHighRdy OSTCBCur

the new task will now also be the current task.

 Also, is copied to for the same reason.(6) L15.15() - OSPrioHighRdy OSPrioCur

 F15.4(6)

 At this point, can load the processorís registers with the new taskís(7) L15.15() - OSCtxSw

context. This is done by retrieving the SS and SP registers from the new taskís .OS_TCB

 F15.4(7)

µC/OS-II User's Manual

482Copyright 2015 Micrium Inc.

 The remaining CPU registers are pulled from the new taskís stack.(8) L15.15() -

 F15.4(8)

 An IRET instruction is executed to load the new taskís program counter and(9) L15.15() -

status word. After this instruction, the processor resumes execution of the new task.

Note that interrupts are disabled during and also during execution of .OSCtxSw OSTaskSwHook

OSIntCtxSw()

OSIntCtxSw is called by to perform a context switch from an ISR (Interrupt ServiceOSIntExit

Routine). Because is called from an ISR, it is assumed that all the processorísOSIntCtxSw

integer registers are already properly saved onto the interrupted taskís stack.

The code is shown in Listing 15.16 and is identical to the presented in OSIntCtxSw 80x86 Port

. The floating-point registers are handled by . Figurewith Emulated FP Support OSTaskSwHook

15.5 shows the context switch process from í s point of view.OSIntCtxSw

As in , let's assume that the processor receives an80x86 Port with Emulated FP Support

interrupt. Letís also supposed that interrupts are enabled. The processor completes the current

instruction and initiates an interrupt handling procedure.

µC/OS-II User's Manual

483Copyright 2015 Micrium Inc.

Figure - Figure 15.5 80x86 stack frames and FPU storage during an interrupt-level context switch.

(1) The 80x86 automatically pushes the processorís SW register followed by the return

address of the interrupted task onto the stack. The CPU then vectors to the proper ISR.

µC/OS-II requires that your ISR begins by saving the rest of the processorís integer

registers. Once the registers are saved, µC/OS-II requires that you also save the contents

of the stack pointer in the taskís .OS_TCB

Your ISR then needs to either call or, increment the global variable OSIntEnter OSIntNesting

by one. At this point, we can assume that the task is suspended and we could, if needed, switch

to a different task.

The ISR can now start servicing the interrupting device and possibly, make a higher priority

task ready. This occurs if the ISR sends a message to a task by calling either , OSFlagPost

, , , or . A higher priority task canOSMboxPost OSMboxPostOpt OSQPostFront OSQPost OSQPostOpt

also be resumed if the ISR calls , or .OSTaskResume OSTimeTick OSTimeDlyResume

Assume that a higher priority task is made ready to run by the ISR. µC/OS-II requires that an

µC/OS-II User's Manual

484Copyright 2015 Micrium Inc.

ISR calls when it has finished servicing the interrupting device. OSIntExit() OSIntExit

basically tell µC/OS-II that itís time to return back to task-level code if all nested interrupts

have completed. In other words, when OSIntNesting is decremented to 0 by , OSIntExit

 would return to task level code.OSIntExit

When executes, it notices that the interrupted task is no longer the task that needs toOSIntExit

run because a higher priority task is now ready. In this case, the pointer is madeOSTCBHighRdy

to point to the new taskís OS_TCB, and calls to perform the contextOSIntExit OSIntCtxSw

switch.

_OSIntCtxSw PROC FAR
;
 CALL FAR PTR _OSTaskSwHook (1)
;
 MOV AX, SEG _OSTCBCur
 MOV DS, AX
;
 MOV AX, WORD PTR DS:_OSTCBHighRdy+2 (2)
 MOV DX, WORD PTR DS:_OSTCBHighRdy
 MOV WORD PTR DS:_OSTCBCur+2, AX
 MOV WORD PTR DS:_OSTCBCur, DX
;
 MOV AL, BYTE PTR DS:_OSPrioHighRdy (3)
 MOV BYTE PTR DS:_OSPrioCur, AL
;
 LES BX, DWORD PTR DS:_OSTCBHighRdy (4)
 MOV SS, ES:[BX+2]
 MOV SP, ES:[BX]
;
 POP DS (5)
 POP ES
 POPA
;
 IRET (6)
;
_OSIntCtxSw ENDP

Listing - Listing 15.16

The notes below apply both and simultaneously to Listing 15.16 and Figure 15.5.

When reading each numbered note, refer to both the listing and the figure.

(2)

(3)

 The first thing does is call . Note that when is(1) OSIntCtxSw OSTaskSwHook OSTaskSwHook

called, points to the current taskís , while points to the newOSTCBCur OS_TCB OSTCBHighRdy

taskís . You can thus access each taskís from . As previouslyOS_TCB OS_TCB OSTaskSwHook

µC/OS-II User's Manual

485Copyright 2015 Micrium Inc.

discussed, first saves the current contents of the FPU registers into theOSTaskSwHook

storage area allocated to the current task. This storage is pointed to by the .OSTCBExtPtr

field of the current taskís . The FPU registers are then loaded with the valuesOS_TCB

stored in the new taskís storage area. Again, the field of the new task.OSTCBExtPtr

points to the storage area of the floating-point registers.

 Upon return from , is copied to because the new(2) OSTaskSwHook OSTCBHighRdy OSTCBCur

task will now also be the current task.

 is also copied to for the same reason.(3) OSPrioHighRdy OSPrioCur

(4)

 At this point, can load the processorís registers with the new taskís context. This(4) OSCtxSw

is done by retrieving the SS and SP registers from the new taskís .OS_TCB

(5)

 The remaining CPU registers are pulled from the stack.(5)

(6)

 An IRET instruction is executed to load the new taskís program counter and status word.(6)

After this instruction, the processor resumes execution of the new task.

Note that interrupts are disabled during and also during execution of .OSIntCtxSw OSTaskSwHook

µC/OS-II User's Manual

486Copyright 2015 Micrium Inc.

OSTickISR()

As mentioned in section 15.03.05, Tick Rate, the tick rate of an RTOS should be set between

10 and 100Hz. On the PC, however, the ticker occurs every 54.93ms (18.20648Hz) and is

obtained by a hardware timer that interrupts the CPU. Recall that I reprogrammed the tick rate

to 200Hz because it was a multiple of 18.20648Hz. The ticker on the PC is assigned to vector

0x08 but µC/OS-II redefined it so that it vectors to instead. Because of this, the PCísOSTickISR

tick handler is saved [see PC.C,] in vector 129 (0x81). To satisfy DOS,PC_DOSSaveReturn

however, the PCís handler is called every 54.93ms. for this port is identical to the OSTickISR

 presented in section 14.05.04 and thus, there is no need to repeat the descriptionOSTickISR

here. I did, however, include the code in Listing 15.17 for your convenience.

µC/OS-II User's Manual

487Copyright 2015 Micrium Inc.

_OSTickISR PROC FAR
;
 PUSHA
 PUSH ES
 PUSH DS
;
 MOV AX, SEG(_OSIntNesting)
 MOV DS, AX
 INC BYTE PTR DS:_OSIntNesting
;
 CMP BYTE PTR DS:_OSIntNesting, 1
 JNE SHORT _OSTickISR1
 MOV AX, SEG(_OSTCBCur)
 MOV DS, AX
 LES BX, DWORD PTR DS:_OSTCBCur
 MOV ES:[BX+2], SS
 MOV ES:[BX+0], SP
;
_OSTickISR1:
 MOV AX, SEG(_OSTickDOSCtr)
 MOV DS, AX
 DEC BYTE PTR DS:_OSTickDOSCtr
 CMP BYTE PTR DS:_OSTickDOSCtr, 0
 JNE SHORT _OSTickISR2
;
 MOV BYTE PTR DS:_OSTickDOSCtr, 11
 INT 081H
 JMP SHORT _OSTickISR3

_OSTickISR2:
 MOV AL, 20H
 MOV DX, 20H
 OUT DX, AL
;
_OSTickISR3:
 CALL FAR PTR _OSTimeTick
;
 CALL FAR PTR _OSIntExit
;
 POP DS
 POP ES
 POPA
;
 IRET
;
_OSTickISR ENDP

Listing - Listing 15.17

OSFPSave()

OSFPSave is not normally part of a µC/OS-II port. basically takes the contents of theOSFPSave

floating-point registers and saves them at the address passed to . is calledOSFPSave OSFPSave

from C but is written in assembly language because it must execute an FPU instruction which

is not available from C. is called by the C functions , and OSFPSave OSFPInit OSTaskCreateHook

 as follows:OSTaskSwHook

µC/OS-II User's Manual

488Copyright 2015 Micrium Inc.

OSFPSave((void *pblk);

Where is the address of a storage area large enough to hold the FPU context and, must bepblk

at least 108 bytes.

Listing 15.18 shows the code for .OSFPSave

_OSFPSave PROC FAR
;
 PUSH BP (1)
 MOV BP,SP
 PUSH ES
 PUSH BX
;
 LES BX, DWORD PTR [BP+6] (2)
;
 FSAVE ES:[BX] (3)
;
 POP BX (4)
 POP ES
 POP BP
;
 RET (5)
;
_OSFPSave ENDP

Listing - Listing 15.18

 saves integer registers onto the current taskís stack because they are needed by(1) OSFPSave

this function.

 The pointer passed to as an argument is loaded into .(2) OSFPSave ES:BX

 The FPU instruction is executed. This instruction saves the whole context of the(3) FSAVE

FPU (108 bytes worth) at the address found in .ES:BX

 The temporary registers are retrieved from the stack.(4)

 returns to its caller.(5) OSFPSave

µC/OS-II User's Manual

489Copyright 2015 Micrium Inc.

OSFPRestore()

OSFPRestore is also not normally part of a µC/OS-II port. basically loads the FPUOSFPRestore

registers with the contents of a memory buffer pointed to by the address passed to .OSFPRestore

 is called from C but is written in assembly language because it must execute anOSFPRestore

FPU instruction which is not available from C. is only called by asOSFPRestore OSTaskSwHook

follows:

OSFPRestore((void *pblk);

Where is the address of a storage area large enough to hold the FPU context and, must bepblk

at least 108 bytes.

Listing 15.19 shows the code for .OSFPRestore

_OSFPRestore PROC FAR
;
 PUSH BP (1)
 MOV BP,SP
 PUSH ES
 PUSH BX
;
 LES BX, DWORD PTR [BP+6] (2)
;
 FRSTOR ES:[BX] (3)
;
 POP BX (4)
 POP ES
 POP BP
;
 RET (5)
;
_OSFPRestore ENDP

Listing - Listing 15.19

 saves integer registers onto the current taskís stack because they are needed(1) OSFPRestore

by this function.

 The pointer passed to as an argument is loaded into ES:BX.(2) OSFPRestore

 The FPU instruction is executed. This instruction loads the FPU with the contents(3) FRSTOR

of the memory location pointed to by .ES:BX

µC/OS-II User's Manual

490Copyright 2015 Micrium Inc.

 The temporary registers are retrieved from the stack.(4)

 returns to its caller.(5) OSFPRestore

Memory Usage

The only code that changed in from the code provided80x86 Port with Hardware FP Support

in was , and . These80x86 Port with Emulated FP Support OS_CPU_A.ASM OS_CPU_C.C OS_CPU.H

files add only an additional 164 of code space (ROM).

You MUST include the code for (set to 1 in)OSTaskCreateExt OS_TASK_CREATE_EXT OS_CFG.H

and the memory management services (set to 1 in) because this port wouldOS_MEM_EN OS_CFG.H

not work without them.

With respect to data space, this port requires a memory buffer of 128 bytes (although we only

need 108 bytes) for each task that will perform floating-point operations.

The spreadsheet for this port is found on the companion CD (

). You need Microsoft Excel\SOFTWARE\uCOS-II\Ix86L-FP\BC45\DOC\80x86L-FP-ROM-RAM.XLS

for Office 2000 (or higher) to use this file. The spreadsheet allows you to do ìwhat-ifî scenarios

based on the options you select. You can change the configuration values (in RED) and see

how they affects µC/OS-IIís ROM and RAM usage on the 80x86. For the values, you???_EN

MUST use either 0 or 1.

As with , I setup the Borland compiler to generate the80x86 Port with Emulated FP Support

fastest code. The number of bytes shown are not meant to be accurate but are simply provided

to give you a relative idea of how much code space each of the µC/OS-II group of services

require.

The spreadsheet also shows you the difference in code size based on the value of

 in your . You donít need to change the value of to seeOS_ARG_CHK_EN OS_CFG.H OS_ARG_CHK_EN

the difference.

The Data column is not as straightforward. Notice that the stacks for both the idle task and the

statistics task have been set to 1,024 bytes (1Kb) each. Based on your own requirements, these

number may be higher or lower. As a minimum, µC/OS-II requires about 3,500 bytes of RAM

µC/OS-II User's Manual

491Copyright 2015 Micrium Inc.

for µC/OS-II internal data structures if you configure the maximum number of tasks (62

application tasks). I added an entry that specifies the number of tasks that will be doing

floating-point operations. Remember that each such task requires a buffer of 128 bytes. One

buffer is always allocated because I changed the statistic task to allow floating-point.

If you use an 80x86 processor, you will most likely not be too restricted with memory and

thus, µC/OS-II will most likely not be the largest user of memory.

µC/OS-II User's Manual

492Copyright 2015 Micrium Inc.

Thread Safety of the Compiler’s Run-Time
Library

As of V2.92.08, µC/OS-II provides built-in support for run-time library thread safety through

the use of Task Local Storage (TLS) for storage of task-specific run-time library static data and

mutual exclusion semaphores to protect accesses to shared resources.

The run-time environment consists of the run-time library, which contains the functions

defined by the C and the C++ standards, and includes files that define the library interface (the

system header files). Compilers provide complete libraries that are compliant with Standard C

and C++. These libraries also supports floating-point numbers in IEEE 754 format and can be

configured to include different levels of support for locale, file descriptors, multi-byte

characters, etc. Most parts of the libraries are reentrant, but some functionality and parts are

not reentrant because they require the use of static data. Different compilers provide different

methods to add reentrancy to their libraries through an API defined by the tool chain supplier.

In a multi-threaded environment the C/C++ library has to handle all library objects with a

global state differently. Either an object is a true global object, then any updates of its state has

to be guarded by some locking mechanism to make sure that only one task can update it at any

one time, or an object is local to each task, then the static variables containing the objects state

must reside in a variable area local for the task. This area is commonly named thread local

storage or, TLS.

The run-time library may also need to use multiple types of locks. For example, a lock could

be necessary to ensure exclusive access to the file stream, another one to the heap, etc. It is

thus common to protect the following functions through one or more semaphores:

The heap through the usage of , , , and .malloc() free() realloc() calloc()

The file system through the usage of , , , , and fopen() fclose() fdopen() fflush()

.freopen()

The signal system through the usage of .signal()

The tempfile system through the usage of .tmpnam()

µC/OS-II User's Manual

493Copyright 2015 Micrium Inc.

Initialization of static function objects.

Thread-local storage is typically needed for the following library objects:

Error functions through errno and strerror

Locale functions through the usage of and localeconv() setlocale()

Time functions through the usage of , , , and asctime() localtime() gmtime() mktime()

Multibyte functions through the usage of , , , , mbrlen() mbrtowc() mbsrtowc() mbtowc()

, , and wcrtomb() wcsrtomb() wctomb()

Random functions through the usage of and rand() srand()

Other functions through the usage of and atexit() strtok()

C++ exception engine

Different compilers require different implementations and those implementation details are

encapsulated into a single file called . There is thus one file associated withos_tls.c os_tls.c

each compiler supported by Micrium and each implementation is placed in its own directory as

follows:

\Micrium\Software\uCOS-II\TLS\<compiler manufacturer>\os_tls.c

Where ‘compiler manufacturer’ is the name of the compiler manufacturer or the code name for

the compiler for which thread safety has been implemented. Refer to the code distribution to

see if your compiler is supported.

Enabling Thread Safety

In order to enable thread safety, you need to do the following:

Set in to a value greater than 1. The actual value depends onOS_TLS_TBL_SIZE os_cfg.h

the number of entries needed by the compiler used. In most cases you would set this to 5

but you should consult the that you plan to use for additional information.os_tls.c

µC/OS-II User's Manual

494Copyright 2015 Micrium Inc.

Add to your build, the file that corresponds to the compiler you are using.os_tls.c

Depending on the compiler and how TLS is allocated, you may also need to make sure

that you have a heap. Consult your compiler documentation on how you can enable the

heap and determine its size.

Most likely, os_tls.c will make use of semaphores to guard access to shared resources

(such as the heap or files) then you need to make sure OS_SEM_EN is set to 1 in

os_cfg.h. Also, the run-time library may already define APIs to lock and unlock sections

of code. The implementation of these functions should also be part of os_tls.c.

Task Specific Storage

When is set to 1 or greater, each task’s will contain a new array calledOS_TLS_TBL_SIZE OS_TCB

 as shown below. Each array element is of type which is actually a.OSTCBTLSTbl[] OS_TLS

pointer to void. This allows an to be extended so that it can have as many TLS areas asOS_TCB

needed.

Figure - Each OS_TCB contains an array of OS_TLS when OS_TLS_TBL_SIZE is greater than 0 in

os_cfg.h

µC/OS-II User's Manual

495Copyright 2015 Micrium Inc.

The number of entries (i.e., the value to set to) depends on the compiler beingOS_TLS_TBL_SIZE

supported as well as whether TLS storage is needed for other purposes.

OS_TLS_GetID()

The index into is called the TLS ID and TLS IDs are assigned through an API.OSTCBTLSTbl[]

function. In other words, TLS IDs are assigned dynamically as needed. Once a TLS ID is

assigned for a specific purpose, it cannot be ‘unassigned’. The function used to assign a TLS

ID is called .OS_TLS_GetID()

OS_TLS_SetValue()

µC/OS-II sets the value of a entry by calling . Because TLS.OSTCBTLSTbl[] OS_TLS_SetValue()

is specific to a given task then you will need to specify the address of the of the task,OS_TCB

the TLS ID that you want to set and the value to store into the table entry. Shown below is

 containing two entries (i.e., pointers) assigned by ..OSTCBTLSTbl[] OS_TLS_SetValue()

OS_TLS_SetValue() assigns a pointer to a entry.OSTCBTLSTbl[]

OS_TLS_GetValue()

The value stored into a entry can be retrieved by calling ..OSTCBTLSTbl[] OS_TLS_GetValue()

The address of the of the task you are interested has to be specified as part of the call asOS_TCB

well as the desired TLS ID. returns the value stored in that task’s OS_TLS_GetValue()

 entry indexed by the TLS ID..TLS_Tbl[]

OS_TLS_SetDestruct()

Finally, each entry can have a ‘destructor’ associated with it. A destructor is a.OSTCBTLSTbl[]

function that is called when the task is deleted. Destructors are common to all tasks. This

means that if a destructor is assigned for a TLS ID, the same destructor will be called for all

the tasks for that entry. Also, when a task is deleted, the destructor for all of the TLS IDs will

be called – assuming, of course, that a destructor was assigned to the corresponding TLS ID.

You set a destructor function by calling and specify the TLS IDOS_TLS_SetDestruct()

associated with the destructor as well as a pointer to the function that will be called. Note that a

destructor function must be declared as follows:

void MyDestructFunction (OS_TCB *p_tcb,

µC/OS-II User's Manual

496Copyright 2015 Micrium Inc.

 OS_TLS_ID id,
 OS_TLS value);

The drawing below shows the global destructor table. Note that not all implementations of

 will have destructors for the TLS.os_tls.c

Array of pointers to destructor functions (global to all tasks)

OS_TLS.C Internal Functions

There are four mandatory internal functions that needs to be implemented in if os_tls.c

 is set to a non-zero value.OS_CFG_TLS_TBL_SIZE

void OS_TLS_Init (void)

This function is called by and in fact, is called after creating the kernel objects butOSInit()

before creating any of the internal µC/OS-III tasks. This means that is allowedOS_TLS_Init()

to create event flags, semaphores, mutexes and message queues. wouldOS_TLS_Init()

typically create mutexes to protect access to shared resources such as the heap or streams.

void OS_TLS_TaskCreate (OS_TCB *p_tcb)

This function is called by allowing each task to allocate TLS storage as neededOSTaskCreate()

at task creation time. If a task needs to use a specific TLS ID, the TLS ID must have been

previously assigned, most likely by the startup code in or in one of the first task thatmain()

runs.

OS_TLS_TaskCreate() is called immediately after calling .OSTaskCreateHook()

You should note that you cannot call or for theOS_TLS_GetValue() OS_TLS_SetValue()

specified task, unless the task has been created.

OS_TLS_TaskCreate() should check that TLS is a feature enabled for the task being created.

This is done by examining the ’s option field (i.e.,) as follows:OS_TCB p_tcb->Opt

void OS_TLS_TaskCreate (OS_TCB *p_tcb)
{
 OS_TLS p_tls;

 if ((p_tcb->Opt & OS_OPT_TASK_NO_TLS) == OS_OPT_NONE) {

µC/OS-II User's Manual

497Copyright 2015 Micrium Inc.

 if ((p_tcb->Opt & OS_OPT_TASK_NO_TLS) == OS_OPT_NONE) {
 p_tls = /* Allocate storage for TLS */
 p_tcb->TLS_Tbl[MyTLS_ID] = p_tls;
 }
}

void OS_TLS_TaskDel (OS_TCB *p_tcb)

This function is called by allowing each task to deallocate TLS storage that wasOSTaskDel()

allocated by . If the os_tls.c file implements destructor functions then OS_TLS_TaskCreate()

 should call all the destructors for the TLS IDs that have been assigned.OS_TLS_Del()

OS_TLS_TaskDel() is called by , immediately after calling .OSTaskDel() OSTaskDelHook()

The code below shows how can be implemented.OS_TLS_TaskDel()

void OS_TLS_TaskDel (OS_TCB *p_tcb)
{
 OS_TLS_ID id;
 OS_TLS_DESTRUCT_PTR *p_tbl;

 for (id = 0; id < OS_TLS_NextAvailID; id++) {
 p_tbl = &OS_TLS_DestructPtrTbl[id];
 if (*p_tbl != (OS_TLS_DESTRUCT_PTR)0) {
 (*p_tbl)(p_tcb, id, p_tcb->TLS_Tbl[id]);
 }
 }
}

OS_TLS_TaskDel() should actually check that TLS was used by the task being deleted. This is

done by examining the ’s option field (i.e.,) as follows:OS_TCB p_tcb->Opt

void OS_TLS_TaskDel (OS_TCB *p_tcb)
{
 OS_TLS_ID id;
 OS_TLS_DESTRUCT_PTR *p_tbl;

 for (id = 0; id < OS_TLS_NextAvailID; id++) {
 p_tbl = &OS_TLS_DestructPtrTbl[id];
 if (*p_tbl != (OS_TLS_DESTRUCT_PTR)0) {
 (*p_tbl)(p_tcb, id, p_tcb->TLS_Tbl[id]);
 }
 }
}

An alternate implementation is shown below where needs to deallocateOS_TLS_TaskDel()

storage for the task is shown below.

µC/OS-II User's Manual

498Copyright 2015 Micrium Inc.

void OS_TLS_TaskSw (void)

This function is called by before invoking and also, by OSSched() OS_TASK_SW() OSIntExit()

before calling . When is called, OSTCBCurPtr will point to theOSIntCtxSw() OS_TLS_TaskSw()

task being switched out and OSTCBHighRdyPtr will point to the task being switched in.

OS_TLS_TaskSw() allows you to change the “current TLS” during a context switch. For

example, if a compiler uses a global pointer that points to the current TLS then,

 could set this pointer to point to the new task’s TLS.OS_TLS_TaskSw()

OS_TLS_TaskSw() should check that TLS is desired for the task being switched in. This is done

by examining the OS_TCB’s option field (i.e. p_tcb->Opt) as follows:

if ((p_tcb->Opt & OS_OPT_TASK_NO_TLS) == OS_OPT_NONE) {
 /* TLS option enabled for this task */
}

Compiler-Specific Lock APIs

As previously mentioned, some compilers may already have declared API functions that are

called to ensure exclusive access to shared resources. For example, APIs such as

 and could be required by the_mutex_lock_file_system() _mutex_unlock_file_system()

compiler to ensure exclusive access to the file system. os_tls.c might then implement these

using µC/OS-III as shown below. Note that we also included the code to initialize the mutex in

.OS_TLS_Init()

OS_EVENT *OS_TLS_FS_Sem; /* Needed to ensure exclusive access to the FS */

void OS_TLS_Init (INT8U *p_err)
{
 OS_TLS_NextAvailID = 0u;
 OS_TLS_NewLibID = OS_TLS_GetID(p_err);
 if (*p_err != OS_ERR_NONE) {
 return;
 }
 OS_TLS_FS_Sem = OSSemCreate(1);
}

void _mutex_lock_file_system (void)
{
 INT8U os_err;

 if (OSRunning == 0) {

µC/OS-II User's Manual

499Copyright 2015 Micrium Inc.

 return;
 }
 OSSemPend((OS_EVENT *)OS_TLS_FS_Sem,
 (INT32U)0u,
 (INT8U *)&os_err);
}

void _mutex_unlock_file_system (void)
{
 INT8U err;

 if (OSRunning == 0) {
 return;
 }
 OSSemPost((OS_SEM *)OS_TLS_FS_Sem);
}

The compiler may require the implementation of many such API functions to ensure exclusive

access to the heap, environment variables, etc. These would all be found in .os_tls.c

µC/OS-II User's Manual

500Copyright 2015 Micrium Inc.

µC/OS-II API Reference
This section provides a user’s guide to µC/OS-II services. Each of the user-accessible kernel

services is presented in alphabetical order and the following information is provided for each

of the services.

A brief description

The function prototype

The filename of the source code

The constant needed to enable the code for the service#define

A description of the arguments passed to the function

A description of the return value(s)

Specific notes and warnings on using the service

One or two examples of how to use the function

µC/OS-II User's Manual

501Copyright 2015 Micrium Inc.

OS_ENTER_CRITICAL()

File Called From Code Enabled By

OS_CPU.H Task or ISR N/A

OS_ENTER_CRITICAL() and are macros used to disable and enable,OS_EXIT_CRITICAL()

respectively, the processor’s interrupts.

Arguments

None

Returned Value

None

Notes/Warnings

These macros must be used in pairs.

If is set to 3, your code is assumed to have allocated local storage for aOS_CRITICAL_METHOD

variable of type called as follows:OS_CPU_SR cpu_sr

#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif

µC/OS-II User's Manual

502Copyright 2015 Micrium Inc.

Example

void TaskX(void *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
 #endif
 for (;;) {
 .
 .
 OS_ENTER_CRITICAL(); /* Disable interrupts */
 .
 . /* Access critical code */
 .
 OS_EXIT_CRITICAL(); /* Enable interrupts */
 .
 .
 }
}

µC/OS-II User's Manual

503Copyright 2015 Micrium Inc.

OS_EXIT_CRITICAL()

File Called From Code Enabled By

OS_CPU.H Task or ISR N/A

OS_ENTER_CRITICAL() and are macros used to disable and enable,OS_EXIT_CRITICAL()

respectively, the processor’s interrupts.

Arguments

None

Returned Value

None

Notes/Warnings

These macros must be used in pairs.

If is set to 3, your code is assumed to have allocated local storage for aOS_CRITICAL_METHOD

variable of type called as follows:OS_CPU_SR cpu_sr

#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
 OS_CPU_SR cpu_sr;
#endif

µC/OS-II User's Manual

504Copyright 2015 Micrium Inc.

Example

void TaskX(void *pdata)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr;
 #endif
 for (;;) {
 .
 .
 OS_ENTER_CRITICAL(); /* Disable interrupts */
 .
 . /* Access critical code */
 .
 OS_EXIT_CRITICAL(); /* Enable interrupts */
 .
 .
 }
}

µC/OS-II User's Manual

505Copyright 2015 Micrium Inc.

OSFlagAccept()

OS_FLAGS OSFlagAccept(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U wait_type,
 INT8U *err);

File Called From Code Enabled By

OS_FLAG.C Task OS_FLAG_EN and OS_FLAG_ACCEPT_EN

OSFlagAccept() allows you to check the status of a combination of bits to be either set or

cleared in an event flag group. Your application can check for ANY bit to be set/cleared or

ALL bits to be set/cleared. This function behaves exactly as except that the callerOSFlagPend()

will NOT block if the desired event flags are not present.

Arguments

pgrp

is a pointer to the event flag group. This pointer is returned to your application when the

event flag group is created (see).OSFlagCreate()

flags

is a bit pattern indicating which bit(s) (i.e.,) you wish to check. The bits you wantflags

are specified by setting the corresponding bits in . wordflags

wait_type

specifies whether you want ALL bits to be set/cleared or ANY of the bits to be

set/cleared. You can specify the following argument:

OS_FLAG_WAIT_CLR_ALL

You will check ALL bits in ' ' to be clear (0)flags

OS_FLAG_WAIT_CLR_ANY

µC/OS-II User's Manual

506Copyright 2015 Micrium Inc.

You will check ANY bit in ' ' to be clear (0)flags

OS_FLAG_WAIT_SET_ALL

You will check ALL bits in ' ' to be set (1)flags

OS_FLAG_WAIT_SET_ANY

You will check ANY bit in ' ' to be set (1)flags

You can add if you want the event flag(s) to be ‘consumed’ by theOS_FLAG_CONSUME

call. For example, to wait for ANY flag in a group and then clear the that areflags

present, set to:wait_type

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err

is a pointer to an error code and can be:

OS_NO_ERR

No error

OS_ERR_EVENT_TYPE

You are not pointing to an event flag group

OS_FLAG_ERR_WAIT_TYPE

You didn't specify a proper ' ' argument.wait_type

OS_FLAG_INVALID_pgrp

You passed a NULL pointer instead of the event flag handle.

OS_FLAG_ERR_NOT_RDY

µC/OS-II User's Manual

507Copyright 2015 Micrium Inc.

The desired you are waiting for are not available.flags

Returned Value

The state of the in the event flag group.flags

Notes/Warnings

The event flag group must be created before it is used.

This function does NOT block if the desired are not present.flags

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAGS value;
 pdata = pdata;
 for (;;) {
 value = OSFlagAccept(EngineStatus,
 ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK,
 OS_FLAG_WAIT_SET_ALL,
 &err);
 switch (err) {
 case OS_NO_ERR:
 /* Desired flags are available */
 break;
 case OS_FLAG_ERR_NOT_RDY:
 /* The desired flags are NOT available */
 break;
 }
 .
 .
 }
}

µC/OS-II User's Manual

508Copyright 2015 Micrium Inc.

OSFlagCreate()

OS_FLAG_GRP *OSFlagCreate (OS_FLAGS flags, INT8U *err);

File Called From Code Enabled By

OS_FLAG.C Task or startup code OS_FLAG_EN

OSFlagCreate() is used to create and initialize an event flag group.

Arguments

flags

contains the initial value to store in the event flag group.

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the event flag group was created.

OS_ERR_CREATE_ISR

if you attempted to create an event flag group from an ISR.

OS_FLAG_GRP_DEPLETED

if there are no more event flag groups available. You will need to increase the value

of in .OS_MAX_FLAGS OS_CFG.H

µC/OS-II User's Manual

509Copyright 2015 Micrium Inc.

Returned Value

A pointer to the event flag group if a free one is available. If no event flag group is available,

 will return a NULL pointer.OSFlagCreate()

Notes/Warnings

Event flag groups must be created by this function before they can be used by the other

services.

Example

OS_FLAG_GRP *EngineStatus;

void main (void)
{
 INT8U err;
 .
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 /* Create a flag group containing the engine’s status */
 EngineStatus = OSFlagCreate(0x00, &err); .
 .
 OSStart(); /* Start Multitasking */
}

µC/OS-II User's Manual

510Copyright 2015 Micrium Inc.

OSFlagDel()

OS_FLAG_GRP *OSFlagDel(OS_FLAG_GRP *pgrp,
 INT8U opt,
 INT8U *err);

File Called From Code Enabled By

OS_FLAG.C Task OS_FLAG_EN and OS_FLAG_DEL_EN

OSFlagDel() is used to delete an event flag group. This is a dangerous function to use because

multiple tasks could be relying on the presence of the event flag group. You should always use

this function with great care. Generally speaking, before you would delete an event flag group,

you would first delete all the tasks that access the event flag group.

Arguments

pgrp

is a pointer to the event flag group. This pointer is returned to your application when the

event flag group is created (see).OSFlagCreate()

opt

specifies whether you want to delete the event flag group only if there are no pending

tasks () or whether you always want to delete the event flag groupOS_DEL_NO_PEND

regardless of whether tasks are pending or not (). In this case, all pendingOS_DEL_ALWAYS

task will be readied.

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the event flag group was deleted.

µC/OS-II User's Manual

511Copyright 2015 Micrium Inc.

OS_ERR_DEL_ISR

if you attempted to delete an event flag group from an ISR.

OS_FLAG_INVALID_pgrp

if you passed a NULL pointer in .pgrp

OS_ERR_EVENT_TYPE

if is not pointing to an event flag group.pgrp

OS_ERR_INVALID_OPT

if you didn’t specify one of the two options mentioned above.

OS_ERR_TASK_WAITING

if one or more task were waiting on the event flag group and you specified

 .OS_DEL_NO_PEND

Returned Value

A NULL pointer if the event flag group is deleted, or if the event flag group was notpgrp

deleted. In the latter case, you would need to examine the error code to determine the reason.

Notes/Warnings

You should use this call with care because other tasks may expect the presence of the

event flag group.

This call can potentially disable interrupts for a long time. The interrupt disable time is

directly proportional to the number of tasks waiting on the event flag group.

µC/OS-II User's Manual

512Copyright 2015 Micrium Inc.

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAG_GRP *pgrp
;
 pdata = pdata;
 while (1) {
 .
 .
 pgrp = OSFlagDel(EngineStatusFlags, OS_DEL_ALWAYS, &err);
 if (pgrp == (OS_FLAG_GRP *)0) {
 /* The event flag group was deleted */
 }
 .
 .
 }
}

µC/OS-II User's Manual

513Copyright 2015 Micrium Inc.

OSFlagPend()

OS_FLAGS OSFlagPend(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U wait_type,
 INT16U timeout,
 INT8U *err);

File Called From Code Enabled By

OS_FLAG.C Task only OS_FLAG_EN

OSFlagPend() is used to have a task wait for a combination of conditions (i.e., events or bits) to

be set (or cleared) in an event flag group. You application can wait for ANY condition to be set

(or cleared) or, ALL conditions to be either set or cleared. If the events that the calling task

desires are not available then, the calling task will be blocked until the desired conditions are

satisfied or, the specified timeout expires.

Arguments

pgrp

is a pointer to the event flag group. This pointer is returned to your application when the

event flag group is created (see).OSFlagCreate()

flags

is a bit pattern indicating which bit(s) (i.e.,) you wish to check. The bits you wantflags

are specified by setting the corresponding bits in .flags

wait_type

specifies whether you want ALL bits to be set/cleared or ANY of the bits to be

set/cleared. You can specify the following argument:

OS_FLAG_WAIT_CLR_ALL

You will check ALL bits in ' ' to be clear (0)flags

µC/OS-II User's Manual

514Copyright 2015 Micrium Inc.

OS_FLAG_WAIT_CLR_ANY

You will check ANY bit in ' ' to be clear (0)flags

OS_FLAG_WAIT_SET_ALL

You will check ALL bits in ' ' to be set (1)flags

OS_FLAG_WAIT_SET_ANY

You will check ANY bit in ' ' to be set (1)flags

You can also specify whether the will be ‘consumed’ by adding flags

 to the . For example, to wait for ANY flag in a groupOS_FLAG_CONSUME wait_type

and then CLEAR the that satisfy the condition, set to:flags wait_type

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

err

is a pointer to an error code and can be:

OS_NO_ERR

No error

OS_ERR_PEND_ISR

You tried to call OSFlagPend from an ISR which is not allowed.

OS_FLAG_INVALID_pgrp

You passed a NULL pointer instead of the event flag handle.

OS_ERR_EVENT_TYPE

You are not pointing to an event flag group

µC/OS-II User's Manual

515Copyright 2015 Micrium Inc.

OS_TIMEOUT

The were not available within the specified amount of time.flags

OS_FLAG_ERR_WAIT_TYPE

You didn't specify a proper ' ' argument.wait_type

Returned Value

The value of the in the event flag group after they are consumed (if isflags OS_FLAG_CONSUME

specified) or, the state of the just before returns. returns 0 ifflags OSFlagPend() OSFlagPend()

a timeout occurs.

Notes/Warnings

The event flag group must be created before it’s used.

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *pdata)
{
 INT8U err;
 OS_FLAGS value;
 pdata = pdata;
 for (;;) {
 value = OSFlagPend(EngineStatus,
 ENGINE_OIL_PRES_OK + ENGINE_OIL_TEMP_OK,
 OS_FLAG_WAIT_SET_ALL + OS_FLAG_CONSUME,
 10,
 &err);
 switch (err) {
 case OS_NO_ERR:
 /* Desired flags are available */
 break;
 case OS_TIMEOUT:
 /* The desired flags were NOT available before 10 ticks occurred */
 break;
 }
 .
 .
 }
}

µC/OS-II User's Manual

516Copyright 2015 Micrium Inc.

OSFlagPost()

OS_FLAGS OSFlagPost(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U opt,
 INT8U *err);

File Called From Code Enabled By

OS_FLAG.C Task or ISR OS_FLAG_EN

You set or clear event flag bits by calling . The bits set or cleared are specified inOSFlagPost()

a ‘bit mask’. will ready each task that has it’s desired bits satisfied by this call.OSFlagPost()

You can set or clear bits that are already set or cleared.

Arguments

pgrp

is a pointer to the event flag group. This pointer is returned to your application when the

event flag group is created (see).OSFlagCreate()

flags

specifies which bits you want set or cleared. If opt (see below) is , each bitOS_FLAG_SET

that is set in ' ' will set the corresponding bit in the event flag group. For example, toflags

set bits 0, 4 and 5 you would set to 0x31 (note, bit 0 is least significant bit). If optflags

(see below) is , each bit that is set in will CLEAR the correspondingOS_FLAG_CLR flags

bit in the event flag group. For example, to clear bits 0, 4 and 5 you would specify ' 'flags

as 0x31 (note, bit 0 is least significant bit).

opt

indicates whether the will be set () or cleared ().flags OS_FLAG_SET OS_FLAG_CLR

err

is a pointer to an error code and can be:

µC/OS-II User's Manual

517Copyright 2015 Micrium Inc.

OS_NO_ERR

The call was successful

OS_FLAG_INVALID_pgrp

You passed a NULL pointer

OS_ERR_EVENT_TYPE

You are not pointing to an event flag group

OS_FLAG_INVALID_OPT

You specified an invalid option

Returned Value

The new value of the event flags.

Notes/Warnings

Event flag groups must be created before they are used.

The execution time of this function depends on the number of tasks waiting on the event

flag group. However, the execution time is deterministic.

The amount of time interrupts are DISABLED also depends on the number of tasks

waiting on the event flag group.

µC/OS-II User's Manual

518Copyright 2015 Micrium Inc.

Example

#define ENGINE_OIL_PRES_OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatusFlags;

void TaskX (void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSFlagPost(EngineStatusFlags, ENGINE_START, OS_FLAG_SET, &err);
 .
 .
 }
}

µC/OS-II User's Manual

519Copyright 2015 Micrium Inc.

OSFlagQuery()

OS_FLAGS OSFlagQuery (OS_FLAG_GRP *pgrp,
 INT8U *err);

File Called From Code Enabled By

OS_FLAG.C Task or ISR OS_FLAG_EN and OS_FLAG_QUERY_EN

OSFlagQuery() is used to obtain the current value of the event flags in a group. At this time,

this function does NOT return the list of tasks waiting for the event flag group.

Arguments

pgrp

is a pointer to the event flag group. This pointer is returned to your application when the

event flag group is created (see).OSFlagCreate()

err

is a pointer to an error code and can be:

OS_NO_ERR

The call was successful

OS_FLAG_INVALID_pgrp

You passed a NULL pointer

OS_ERR_EVENT_TYPE

You are not pointing to an event flag group

Returned Value

The state of the in the event group.flags flag

µC/OS-II User's Manual

520Copyright 2015 Micrium Inc.

Notes/Warnings

The event flag group to query must be created.

You can call this function from an ISR.

Example

OS_FLAG_GRP *EngineStatusFlags;

void Task (void *pdata)
{
 OS_FLAGS flags;
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 flags = OSFlagQuery(EngineStatusFlags, &err);
 .
 .
 }
}

µC/OS-II User's Manual

521Copyright 2015 Micrium Inc.

OSInit()

void OSInit (void);

File Called From Code Enabled By

OS_CORE.C Startup code only N/A

OSInit() initializes µC/OS-II and must be called prior to calling , which actuallyOSStart()

starts multitasking.

Arguments

None

Returned Value

None

Notes/Warnings

OSInit() must be called before .OSStart()

Example

void main (void)
{
 .
 .
 OSInit(); /* Initialize uC/OS-II */
 .
 .
 OSStart(); /* Start Multitasking */
}

µC/OS-II User's Manual

522Copyright 2015 Micrium Inc.

OSIntEnter()

void OSIntEnter (void);

File Called From Code Enabled By

OS_CORE.C ISR only N/A

OSIntEnter() notifies µC/OS-II that an ISR is being processed. This allows µC/OS-II to keep

track of interrupt nesting. is used in conjunction with .OSIntEnter() OSIntExit()

Arguments

None

Returned Value

None

Notes/Warnings

This function must not be called by task-level code.

You can increment the interrupt nesting counter () directly in your ISR to avoidOSIntNesting

the overhead of the function call/return. It’s save to increment in your ISROSIntNesting

because interrupts are assumed to be disabled when needs to be incremented.OSIntNesting

You are allowed to nest interrupts up to 255 levels deep.

Example 1

(Intel 80x86, real mode, large model)

Use for backward compatibility with µC/OS.OSIntEnter()

ISRx PROC FAR
 PUSHA ; Save interrupted task's context
 PUSH ES
 PUSH DS

µC/OS-II User's Manual

523Copyright 2015 Micrium Inc.

;
 MOV AX, SEG(_OSIntNesting) ; Reload DS
 MOV DS, AX
;
 CALL FAR PTR _OSIntEnter ; Notify µC/OS-II of start of ISR
 .
 .
 POP DS ; Restore processor registers
 POP ES
 POPA
 IRET ; Return from interrupt
 ISRx ENDP

Example 2

(Intel 80x86, real mode, large model)

ISRx PROC FAR
 PUSHA ; Save interrupted task's context
 PUSH ES
 PUSH DS
;
 MOV AX, SEG(_OSIntNesting) ; Reload DS
 MOV DS, AX
;
 INC BYTE PTR _OSIntNesting ; Notify ?C/OS-II of start of ISR
 .
 .
 .
 POP DS ; Restore processor registers
 POP ES
 POPA
 IRET ; Return from interrupt
 ISRx ENDP

µC/OS-II User's Manual

524Copyright 2015 Micrium Inc.

OSIntExit()

void OSIntExit (void);

File Called From Code Enabled By

OS_CORE.C ISR only N/A

OSIntExit() notifies µC/OS-II that an ISR has completed. This allows µC/OS-II to keep track

of interrupt nesting. is used in conjunction with . When the lastOSIntExit() OSIntEnter()

nested interrupt completes, determines if a higher priority task has been madeOSIntExit()

ready to run, in which case, the interrupt returns to the higher priority task instead of the

interrupted task.

Arguments

None

Returned Value

None

Notes/Warnings

This function must not be called by task-level code. Also, if you decided to increment

OSIntNesting, you still need to call .OSIntExit()

Example

(Intel 80x86, real mode, large model)
 ISRx PROC FAR
 PUSHA ; Save processor registers
 PUSH ES
 PUSH DS
 .
 .
 CALL FAR PTR _OSIntExit ; Notify µC/OS-II of end of ISR
 POP DS ; Restore processor registers
 POP ES
 POPA
 IRET ; Return to interrupted task
 ISRx ENDP

µC/OS-II User's Manual

525Copyright 2015 Micrium Inc.

OSMboxAccept()

void *OSMboxAccept (OS_EVENT *pevent);

File Called From Code Enabled By

OS_MBOX.C Task or ISR OS_MBOX_EN and OS_MBOX_ACCEPT_EN

OSMboxAccept() allows you to see if a message is available from the desired mailbox. Unlike

 , does not suspend the calling task if a message is not available.OSMboxPend() OSMboxAccept()

In other words, is non-blocking. If a message is available, the message isOSMboxAccept()

returned to your application and the content of the mailbox is cleared. This call is typically

used by ISRs because an ISR is not allowed to wait for a message at a mailbox.

Arguments

pevent

is a pointer to the mailbox from which the message is received. This pointer is returned to

your application when the mailbox is created [see].OSMboxCreate()

Returned Value

A pointer to the message if one is available; NULL if the mailbox does not contain a message.

Notes/Warnings

Mailboxes must be created before they are used.

µC/OS-II User's Manual

526Copyright 2015 Micrium Inc.

Example

OS_EVENT *CommMbox;

void Task (void *pdata)
{
 void *msg;
 pdata = pdata;
 for (;;) {
 msg = OSMboxAccept(CommMbox); /* Check mailbox for a message
*/
 if (msg != (void *)0) {
 . /* Message received, process
*/
 .
 } else {
 . /* Message not received, do ..
*/
 . /* .. something else
*/
 }
 .
 .
 }
}

µC/OS-II User's Manual

527Copyright 2015 Micrium Inc.

OSMboxCreate()

OS_EVENT *OSMboxCreate (void *msg);

File Called From Code Enabled By

OS_MBOX.C Task or startup code OS_MBOX_EN

OSMboxCreate() creates and initializes a mailbox. A mailbox allows tasks or ISRs to send a

pointer-sized variable (message) to one or more tasks.

Arguments

msg

is used to initialize the contents of the mailbox. The mailbox is empty when msg is a

NULL pointer. The mailbox initially contains a message when msg is non-NULL.

Returned Value

A pointer to the event control block allocated to the mailbox. If no event control block is

available, returns a NULL pointer.OSMboxCreate()

Notes/Warnings

Mailboxes must be created before they are used.

Example

OS_EVENT *CommMbox;

 void main(void)
 {
 .
 .
 OSInit(); /* Initialize ?C/OS-II */
 .
 .
 CommMbox = OSMboxCreate((void *)0); /* Create COMM mailbox */
 OSStart(); /* Start Multitasking */
}

µC/OS-II User's Manual

528Copyright 2015 Micrium Inc.

OSMboxDel()

OS_EVENT *OSMboxDel (OS_EVENT *pevent,
 INT8U opt,
 INT8U *err);

File Called From Code Enabled By

OS_MBOX.C Task OS_MBOX_EN and OS_MBOX_DEL_EN

OSMboxDel() is used to delete a message mailbox. This is a dangerous function to use because

multiple tasks could attempt to access a deleted mailbox. You should always use this function

with great care. Generally speaking, before you would delete a mailbox, you would first delete

all the tasks that can access the mailbox.

Arguments

pevent

is a pointer to the mailbox. This pointer is returned to your application when the mailbox

is created (see).OSMboxCreate()

opt

specifies whether you want to delete the mailbox only if there are no pending tasks (

) or whether you always want to delete the mailbox regardless of whetherOS_DEL_NO_PEND

tasks are pending or not (). In this case, all pending task will be readied.OS_DEL_ALWAYS

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the mailbox was deleted.

OS_ERR_DEL_ISR

µC/OS-II User's Manual

529Copyright 2015 Micrium Inc.

if you attempted to delete the mailbox from an ISR

OS_ERR_INVALID_OPT

if you didn’t specify one of the two options mentioned above.

OS_ERR_TASK_WAITING

One or more tasks were waiting on the mailbox

OS_ERR_EVENT_TYPE

if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL

if there are no more structures available.OS_EVENT

Returned Value

A NULL pointer if the mailbox is deleted or, pevent if the mailbox was not deleted. In the

latter case, you would need to examine the error code to determine the reason.

Notes/Warnings

You should use this call with care because other tasks may expect the presence of the mailbox.

Interrupts are disabled when pended tasks are readied. This means that interrupt latency

depends on the number of tasks that were waiting on the mailbox.

OSMboxAccept() callers will not know that the mailbox has been deleted.

µC/OS-II User's Manual

530Copyright 2015 Micrium Inc.

Example

OS_EVENT *DispMbox;

void Task (void *pdata)
{
 INT8U err;
 pdata = pdata;
 while (1) {
 .
 .
 DispMbox = OSMboxDel(DispMbox, OS_DEL_ALWAYS, &err);
 if (DispMbox == (OS_EVENT *)0) {
 /* Mailbox has been deleted */
 }
 .
 .
 }
}

µC/OS-II User's Manual

531Copyright 2015 Micrium Inc.

OSMboxPend()

void *OSMboxPend (OS_EVENT *pevent,
 INT16U timeout,
 INT8U *err);

File Called From Code Enabled By

OS_MBOX.C Task only OS_MBOX_EN

OSMboxPend() is used when a task expects to receive a message. The message is sent to the task

either by an ISR or by another task. The message received is a pointer-sized variable and its

use is application specific. If a message is present in the mailbox when is called,OSMboxPend()

the message is retrieved, the mailbox is emptied, and the retrieved message is returned to the

caller. If no message is present in the mailbox, suspends the current task untilOSMboxPend()

either a message is received or a user-specified timeout expires. If a message is sent to the

mailbox and multiple tasks are waiting for the message, µC/OS-II resumes the highest priority

task waiting to run. A pended task that has been suspended with can receive aOSTaskSuspend()

message. However, the task remains suspended until it is resumed by calling .OSTaskResume()

Arguments

pevent

is a pointer to the mailbox from which the message is received. This pointer is returned to

your application when the mailbox is created [see].OSMboxCreate()

timeout

allows the task to resume execution if a message is not received from the mailbox within

the specified number of clock ticks. A timeout value of 0 indicates that the task wants to

wait forever for the message. The maximum timeout is 65,535 clock ticks. The timeout

value is not synchronized with the clock tick. The timeout count begins decrementing on

the next clock tick, which could potentially occur immediately.

err

is a pointer to a variable that holds an error code. sets *err to one of theOSMboxPend()

µC/OS-II User's Manual

532Copyright 2015 Micrium Inc.

following:

OS_NO_ERR

if a message was received.

OS_TIMEOUT

if a message was not received within the specified timeout period.

OS_ERR_EVENT_TYPE

pevent is not pointing to a mailbox.

OS_ERR_PEND_ISR

if you called this function from an ISR and µC/OS-II has to suspend it. In general,

you should not call from an ISR, but µC/OS-II checks for this situationOSMboxPend()

anyway.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

Returned Value

OSMboxPend() returns the message sent by either a task or an ISR and *err is set to .OS_NO_ERR

If a message is not received within the specified timeout period, the returned message is a

NULL pointer and *err is set to .OS_TIMEOUT

Notes/Warnings

Mailboxes must be created before they are used.

You should not call from an ISR.OSMboxPend()

µC/OS-II User's Manual

533Copyright 2015 Micrium Inc.

Example

OS_EVENT *CommMbox;

void CommTask(void *pdata)
{
 INT8U err;
 void *msg;
 pdata = pdata;
 for (;;) {
 .
 .
 msg = OSMboxPend(CommMbox, 10, &err);
 if (err == OS_NO_ERR) {
 .
 . /* Code for received message */
 .
 } else {
 .
 . /* Code for message not received within timeout */
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

534Copyright 2015 Micrium Inc.

OSMboxPost()

INT8U OSMboxPost (OS_EVENT *pevent,
 void *msg);

File Called From Code Enabled By

OS_MBOX.C Task or ISR OS_MBOX_EN and OS_MBOX_POST_EN

OSMboxPost() sends a message to a task through a mailbox. A message is a pointer-sized

variable and its use is application specific. If a message is already in the mailbox, an error code

is returned indicating that the mailbox is full. then immediately returns to itsOSMboxPost()

caller and the message is not placed in the mailbox. If any task is waiting for a message at the

mailbox, the highest priority task waiting receives the message. If the task waiting for the

message has a higher priority than the task sending the message, the higher priority task is

resumed and the task sending the message is suspended. In other words, a context switch

occurs.

Arguments

pevent

is a pointer to the mailbox into which the message is deposited. This pointer is returned to

your application when the mailbox is created [see].OSMboxCreate()

msg

is the actual message sent to the task. msg is a pointer-sized variable and is application

specific. You must never post a NULL pointer because this indicates that the mailbox is

empty.

Returned Value

OSMboxPost() returns one of two error codes:

OS_NO_ERR

if the message was deposited in the mailbox.

µC/OS-II User's Manual

535Copyright 2015 Micrium Inc.

OS_MBOX_FULL

if the mailbox already contained a message.

OS_ERR_EVENT_TYPE

if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL

if pevent is a pointer to NULL.

OS_ERR_POST_NULL_PTR

if you are attempting to post a NULL pointer. By convention a NULL pointer is not

supposed to point to anything.

Notes/Warnings

Mailboxes must be created before they are used.

You must never post a NULL pointer because this indicates that the mailbox is empty.

Example

OS_EVENT *CommMbox;
INT8U CommRxBuf[100];
void CommTaskRx(void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMboxPost(CommMbox, (void *)&CommRxBuf[0]);
 .
 .
 }
}

µC/OS-II User's Manual

536Copyright 2015 Micrium Inc.

OSMboxPostOpt()

INT8U OSMboxPostOpt (OS_EVENT *pevent,
 void *msg,
 INT8U opt);

File Called From Code Enabled By

OS_MBOX.C Task or ISR OS_MBOX_EN and OS_MBOX_POST_OPT_EN

OSMboxPostOpt() works just like except that it allows you to post a message to OSMboxPost()

 tasks. In other words, allows the message posted to be broadcast tomultiple OSMboxPostOpt()

ALL tasks waiting on the mailbox. can actually replace becauseOSMboxPostOpt() OSMboxPost()

it can emulate .OSMboxPost()

OSMboxPostOpt() is used to send a message to a task through a mailbox. A message is a

pointer-sized variable and its use is application specific. If a message is already in the mailbox,

an error code is returned indicating that the mailbox is full. then immediatelyOSMboxPostOpt()

returns to its caller and the message is not placed in the mailbox. If any task is waiting for a

message at the mailbox, allows you to either post the message to the highestOSMboxPostOpt()

priority task waiting at the mailbox (opt set to) or, to all tasks waiting at theOS_POST_OPT_NONE

mailbox (opt is set to). In either case, scheduling will occur and if anyOS_POST_OPT_BROADCAST

of the task that receives the message has a higher priority than the task that is posting the

message then, the higher priority task will be resumed and the sending task will be suspended.

In other words, a context switch will occur.

Arguments

pevent

is a pointer to the mailbox. This pointer is returned to your application when the mailbox

is created (see).OSMboxCreate()

msg

is the actual message sent to the task(s) msg is a pointer-sized variable and what msg

points to is application specific. You must never post a NULL pointer because this

indicates that the mailbox is empty.

µC/OS-II User's Manual

537Copyright 2015 Micrium Inc.

opt

specifies whether you want to send the message to the highest priority task waiting at the

mailbox (when opt is set to) or, to ALL tasks waiting at the mailboxOS_POST_OPT_NONE

(when opt is set to).OS_POST_OPT_BROADCAST

Returned Value

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the message was sent.

OS_MBOX_FULL

if the mailbox already contains a message. You can only send ONE message at a

time to a mailbox and thus, the message MUST be consumed before you are allowed

to send another one.

OS_ERR_EVENT_TYPE

if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR

if you are attempting to post a NULL pointer. By convention, a NULL pointer is not

supposed to point to anything.

µC/OS-II User's Manual

538Copyright 2015 Micrium Inc.

Notes/Warnings

Mailboxes must be created before they are used.

You must NEVER post a NULL pointer to a mailbox because this indicates that the mailbox is

empty.

If you need to use this function and want to reduce code space, you may disable code

generation of since can emulate .OSMboxPost() OSMboxPostOpt() OSMboxPost()

The execution time of depends on the number of tasks waiting on the mailboxOSMboxPostOpt()

if you set opt to .OS_POST_OPT_BROADCAST

Example

OS_EVENT *CommMbox;

INT8U CommRxBuf[100];

void CommRxTask (void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMboxPostOpt(CommMbox, (void *)&CommRxBuf[0], OS_POST_OPT_BROADCAST);
 .
 .
 }
}

µC/OS-II User's Manual

539Copyright 2015 Micrium Inc.

OSMboxQuery()

INT8U OSMboxQuery (OS_EVENT *pevent,
 OS_MBOX_DATA *pdata);

File Called From Code Enabled By

OS_MBOX.C Task or ISR OS_MBOX_EN and OS_MBOX_QUERY_EN

OSMboxQuery() obtains information about a message mailbox. Your application must allocate

an data structure, which is used to receive data from the event control block ofOS_MBOX_DATA

the message mailbox. allows you to determine whether any tasks are waiting forOSMboxQuery()

a message at the mailbox and how many tasks are waiting (by counting the number of 1s in the

 field). You can also examine the content of the mailbox. Note that the size of .OSEventTbl[]

 is established by the constant (see)..OSEventTbl[] #define OS_EVENT_TBL_SIZE uCOS_II.H

Arguments

pevent

is a pointer to the mailbox. This pointer is returned to your application when the mailbox

is created [see].OSMboxCreate()

pdata

is a pointer to a data structure of type , which contains the following fields:OS_MBOX_DATA

void *OSMsg; /* Copy of the message stored in the mailbox */
INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Copy of the mailbox wait list */
INT8U OSEventGrp;

Returned Value

OSMboxQuery() returns one of two error codes:

OS_NO_ERR

if the call was successful.

µC/OS-II User's Manual

540Copyright 2015 Micrium Inc.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

OS_ERR_EVENT_TYPE

if you didn’t pass a pointer to a message mailbox.

Notes/Warnings

Message mailboxes must be created before they are used.

Example

OS_EVENT *CommMbox;
void Task (void *pdata)
{
 OS_MBOXDATA mbox_data;
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMboxQuery(CommMbox, &mbox_data);
 if (err == OS_NO_ERR) {
 . /* Mailbox contains a message if mbox_data.OSMsg is not NULL */
 }
 .
 .
 }
}

µC/OS-II User's Manual

541Copyright 2015 Micrium Inc.

OSMemCreate()

OS_MEM *OSMemCreate (void *addr,
 INT32U nblks,
 INT32U blksize,
 INT8U *err);

File Called From Code Enabled By

OS_MEM.C Task or startup code OS_MEM_EN

OSMemCreate() creates and initializes a memory partition. A memory partition contains a

user-specified number of fixed-size memory blocks. Your application can obtain one of these

memory blocks and, when done, release the block back to the partition.

Arguments

addr

is the address of the start of a memory area that is used to create fixed-size memory

blocks. Memory partitions can be created either using static arrays or duringmalloc()

startup.

nblks

contains the number of memory blocks available from the specified partition. You must

specify at least two memory blocks per partition.

blksize

specifies the size (in bytes) of each memory block within a partition. A memory block

must be large enough to hold at least a pointer.

err

is a pointer to a variable that holds an error code. sets toOSMemCreate() *err

OS_NO_ERR

µC/OS-II User's Manual

542Copyright 2015 Micrium Inc.

if the memory partition was created successfully,

OS_MEM_INVALID_ADDR

if your are specifying an invalid address (i.e., addr is a NULL pointer),

OS_MEM_INVALID_PART

if a free memory partition was not available,

OS_MEM_INVALID_BLKS

if you didn’t specify at least two memory blocks per partition, or

OS_MEM_INVALID_SIZE

if you didn’t specify a block size that can contain at least a pointer variable.

Returned Value

OSMemCreate() returns a pointer to the created memory partition control block if one is

available. If no memory partition control block is available, returns a NULLOSMemCreate()

pointer.

Notes/Warnings

Memory partitions must be created before they are used.

µC/OS-II User's Manual

543Copyright 2015 Micrium Inc.

Example

OS_MEM *CommMem;

INT8U CommBuf[16][128];

void main(void)
{
 INT8U err;
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 CommMem = OSMemCreate(&CommBuf[0][0], 16, 128, &err);
 .
 .
 OSStart(); /* Start Multitasking */
}

µC/OS-II User's Manual

544Copyright 2015 Micrium Inc.

OSMemGet()

void *OSMemGet (OS_MEM *pmem,
 INT8U *err);

File Called From Code Enabled By

OS_MEM.C Task or ISR OS_MEM_EN

OSMemGet obtains a memory block from a memory partition. It is assumed that your

application knows the size of each memory block obtained. Also, your application must return

the memory block [using] when it no longer needs it. You can call OSMemPut() OSMemGet()

more than once until all memory blocks are allocated.

Arguments

pmem

is a pointer to the memory partition control block that is returned to your application from

the call.OSMemCreate()

err

is a pointer to a variable that holds an error code. sets to one of theOSMemGet() *err

following:

OS_NO_ERR

if a memory block was available and returned to your application.

OS_MEM_NO_FREE_BLKS

if the memory partition didn’t contain any more memory blocks to allocate.

OS_MEM_INVALID_PMEM

if pmem is a NULL pointer.

µC/OS-II User's Manual

545Copyright 2015 Micrium Inc.

Returned Value

OSMemGet() returns a pointer to the allocated memory block if one is available. If no memory

block is available from the memory partition, returns a NULL pointer.OSMemGet()

Notes/Warnings

Memory partitions must be created before they are used.

Example

OS_MEM *CommMem;

void Task (void *pdata)
{
 INT8U *msg;
 pdata = pdata;
 for (;;) {
 msg = OSMemGet(CommMem, &err);
 if (msg != (INT8U *)0) {
 . /* Memory block allocated, use it. */
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

546Copyright 2015 Micrium Inc.

OSMemPut()

INT8U OSMemPut (OS_MEM *pmem,
 void *pblk);

File Called From Code Enabled By

OS_MEM.C Task or ISR OS_MEM_EN

OSMemPut() returns a memory block to a memory partition. It is assumed that you will return

the memory block to the appropriate memory partition.

Arguments

pmem

is a pointer to the memory partition control block that is returned to your application from

the call.OSMemCreate()

pblk

is a pointer to the memory block to be returned to the memory partition.

Returned Value

OSMemPut() returns one of the following error codes:

OS_NO_ERR

if a memory block was available and returned to your application.

OS_MEM_FULL

if the memory partition could not accept more memory blocks. This is surely an

indication that something is wrong because you are returning more memory blocks

than you obtained using .OSMemGet()

OS_MEM_INVALID_PMEM

µC/OS-II User's Manual

547Copyright 2015 Micrium Inc.

if pmem is a NULL pointer.

OS_MEM_INVALID_PBLK

if pblk is a NULL pointer.

Notes/Warnings

Memory partitions must be created before they are used.

You must return a memory block to the proper memory partition.

Example

OS_MEM *CommMem;

INT8U *CommMsg;

void Task (void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 err = OSMemPut(CommMem, (void *)CommMsg);
 if (err == OS_NO_ERR) {
 . /* Memory block released */
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

548Copyright 2015 Micrium Inc.

OSMemQuery()

INT8U OSMemQuery (OS_MEM *pmem,
 OS_MEM_DATA *pdata);

File Called From Code Enabled By

OS_MEM.C Task or ISR OS_MEM_EN and OS_MEM_QUERY_EN

OSMemQuery() obtains information about a memory partition. Basically, this function returns the

same information found in the data structure, but in a new data structure called OS_MEM

 . also contains an additional field that indicates the number ofOS_MEM_DATA OS_MEM_DATA

memory blocks in use.

Arguments

pmem

is a pointer to the memory partition control block that is returned to your application from

the call.OSMemCreate()

pdata

is a pointer to a data structure of type , which contains the following fields:OS_MEM_DATA

void *OSAddr; /* Points to beginning address of the memory partition */
void *OSFreeList; /* Points to beginning of the free list of memory blocks */
INT32U OSBlkSize; /* Size (in bytes) of each memory block */
INT32U OSNBlks; /* Total number of blocks in the partition */
INT32U OSNFree; /* Number of memory blocks free */
INT32U OSNUsed; /* Number of memory blocks used */

Returned Value

OSMemQuery() returns one of the following error codes:

OS_NO_ERR

if a memory block was available and returned to your application.

µC/OS-II User's Manual

549Copyright 2015 Micrium Inc.

OS_MEM_INVALID_PMEM

if pmem is a NULL pointer.

OS_MEM_INVALID_PDATA

if pdata is a NULL pointer.

Notes/Warnings

Memory partitions must be created before they are used.

Example

OS_MEM *CommMem;

void Task (void *pdata)
{
 INT8U err;
 OS_MEM_DATA mem_data;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMemQuery(CommMem, &mem_data);
 .
 .
 }
}

µC/OS-II User's Manual

550Copyright 2015 Micrium Inc.

OSMutexAccept()

INT8U OSMutexAccept (OS_EVENT *pevent,
 INT8U *err);

File Called From Code Enabled By

OS_MUTEX.C Task OS_MUTEX_EN

OSMutexAccept() allows you to check to see if a resource is available. Unlike , OSMutexPend()

 does not suspend the calling task if the resource is not available. In otherOSMutexAccept()

words, is non-blocking.OSMutexAccept()

Arguments

pevent

is a pointer to the mutex that guards the resource. This pointer is returned to your

application when the mutex is created (see).OSMutexCreate()

err

is a pointer to a variable used to hold an error code. sets *err to one ofOSMutexAccept()

the following:

OS_NO_ERR

if the call was successful.

OS_ERR_EVENT_TYPE

if pevent is not pointing to a mutex.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

OS_ERR_PEND_ISR

µC/OS-II User's Manual

551Copyright 2015 Micrium Inc.

if you called from an ISR.OSMutexAccept()

Returned Value

If the mutex was available, returns 1. If the mutex was owned by anotherOSMutexAccept()

task, returns 0.OSMutexAccept()

Notes/Warnings

Mutexes must be created before they are used.

This function MUST NOT be called by an ISR.

If you acquire the mutex through , you MUST call toOSMutexAccept() OSMutexPost()

release the mutex when you are done with the resource.

Example

OS_EVENT *DispMutex;

void Task (void *pdata)
{
 INT8U err;
 INT8U value;
 pdata = pdata;
 for (;;) {
 value = OSMutexAccept(DispMutex, &err);
 if (value == 1) {
 . /* Resource available, process */
 .
 } else {
 . /* Resource NOT available */
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

552Copyright 2015 Micrium Inc.

OSMutexCreate()

OS_EVENT *OSMutexCreate (INT8U prio,
 INT8U *err);

File Called From Code Enabled By

OS_MUTEX.C Task or startup code OS_MUTEX_EN

OSMutexCreate() is used to create and initialize a mutex. A mutex is used to gain exclusive

access to a resource.

Arguments

prio

is the Priority Inheritance Priority (PIP) that will be used when a high priority task

attempts to acquire the mutex that is owned by a low priority task. In this case, the

priority of the low priority task will be raised to the PIP until the resource is released.

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the mutex was created.

OS_ERR_CREATE_ISR

if you attempted to create a mutex from an ISR.

OS_PRIO_EXIST

if a task at the specified priority inheritance priority already exist.

OS_ERR_PEVENT_NULL

µC/OS-II User's Manual

553Copyright 2015 Micrium Inc.

if there are no more structures available.OS_EVENT

OS_PRIO_INVALID

if you specified a priority with a higher number than .OS_LOWEST_PRIO

Returned Value

A pointer to the event control block allocated to the mutex. If no event control block is

available, will return a NULL pointer.OSMutexCreate()

Notes/Warnings

Mutexes must be created before they are used.

You MUST make sure that prio has a higher priority than ANY of the tasks that WILL be

using the mutex to access the resource. For example, if 3 tasks of priority 20, 25 and 30

are going to use the mutex then, prio must be a number LOWER than 20. In addition,

there MUST NOT already be a task created at the specified priority.

Example

OS_EVENT *DispMutex;

void main (void)
{
 INT8U err;
 .
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 DispMutex = OSMutexCreate(20, &err); /* Create Display Mutex
 */
 .
 .
 OSStart(); /* Start Multitasking */
}

µC/OS-II User's Manual

554Copyright 2015 Micrium Inc.

OSMutexDel()

OS_EVENT *OSMutexDel (OS_EVENT *pevent,
 INT8U opt,
 INT8U *err);

File Called From Code Enabled By

OS_MUTEX.C Task OS_MUTEX_EN and OS_MUTEX_DEL_EN

OSMutexDel() is used to delete a mutex. This is a dangerous function to use because multiple

tasks could attempt to access a deleted mutex. You should always use this function with great

care. Generally speaking, before you would delete a mutex, you would first delete all the tasks

that can access the mutex.

Arguments

pevent

is a pointer to the mutex. This pointer is returned to your application when the mutex is

created (see).OSMutexCreate()

opt

specifies whether you want to delete the mutex only if there are no pending tasks (

) or whether you always want to delete the mutex regardless of whetherOS_DEL_NO_PEND

tasks are pending or not (). In this case, all pending task will be readied.OS_DEL_ALWAYS

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the mutex was deleted.

OS_ERR_DEL_ISR

µC/OS-II User's Manual

555Copyright 2015 Micrium Inc.

if you attempted to delete a mutex from an ISR.

OS_ERR_INVALID_OPT

if you didn’t specify one of the two options mentioned above.

OS_ERR_TASK_WAITING

if one or more task were waiting on the mutex and you specified .OS_DEL_NO_PEND

OS_ERR_EVENT_TYPE

if pevent is not pointing to a mutex.

OS_ERR_PEVENT_NULL

if there are no more structures available.OS_EVENT

Returned Value

A NULL pointer if the mutex is deleted or pevent if the mutex was not deleted. In the latter

case, you would need to examine the error code to determine the reason.

Notes/Warnings

You should use this call with care because other tasks may expect the presence of the mutex.

µC/OS-II User's Manual

556Copyright 2015 Micrium Inc.

Example

OS_EVENT *DispMutex;

void Task (void *pdata)
{
 INT8U err;
 pdata = pdata;
 while (1) {
 .
 .
 DispMutex = OSMutexDel(DispMutex, OS_DEL_ALWAYS, &err);
 if (DispMutex == (OS_EVENT *)0) {
 /* Mutex has been deleted */
 }
 .
 .
 }
}

µC/OS-II User's Manual

557Copyright 2015 Micrium Inc.

OSMutexPend()

void OSMutexPend (OS_EVENT *pevent,
 INT16U timeout,
 INT8U *err);

File Called From Code Enabled By

OS_MUTEX.C Task only OS_MUTEX_EN

OSMutexPend() is used when a task desires to get exclusive access to a resource. If a task calls

 and the mutex is available, then will give the mutex to the callerOSMutexPend() OSMutexPend()

and return to its caller. Note that nothing is actually given to the caller except for the fact that if

err is set to , the caller can assume that it owns the mutex. However, if the mutex isOS_NO_ERR

already owned by another task, will place the calling task in the wait list for theOSMutexPend()

mutex. The task will thus wait until the task that owns the mutex releases the mutex and thus

the resource or, the specified timeout expires. If the mutex is signaled before the timeout

expires, µC/OS-II will resume the highest priority task that is waiting for the mutex. Note that

if the mutex is owned by a lower priority task then will raise the priority of theOSMutexPend()

task that owns the mutext to the Priority Inheritance Priority (PIP) as specified when you

created the mutex (see).OSMutexCreate()

Arguments

pevent

is a pointer to the mutex. This pointer is returned to your application when the mutex is

created (see).OSMutexCreate()

timeout

is used to allow the task to resume execution if the mutex is not signaled (i.e., posted to)

within the specified number of clock ticks. A timeout value of 0 indicates that the task

desires to wait forever for the mutex. The maximum timeout is 65535 clock ticks. The

timeout value is not synchronized with the clock tick. The timeout count starts being

decremented on the next clock tick which could potentially occur immediately.

err

µC/OS-II User's Manual

558Copyright 2015 Micrium Inc.

is a pointer to a variable which will be used to hold an error code. sets *errOSMutexPend()

to either:

OS_NO_ERR

if the call was successful and the mutex was available.

OS_TIMEOUT

if the mutex was not available within the specified timeout.

OS_ERR_EVENT_TYPE

if you didn’t pass a pointer to a mutex to .OSMutexPend()

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

OS_ERR_PEND_ISR

if you attempted to acquire the mutex from an ISR.

Returned Value

NONE

Notes/Warnings

Mutexes must be created before they are used.

You shoud NOT suspend the task that owns the mutex, have the mutex owner wait on any

other µC/OS-II objects (i.e., semaphore, mailbox or queue) and, you should NOT delay the

task that owns the mutex. In other words, your code should hurry up and release the

resource as quickly as possible.

µC/OS-II User's Manual

559Copyright 2015 Micrium Inc.

Example

OS_EVENT *DispMutex;
void DispTask (void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 OSMutexPend(DispMutex, 0, &err);
 . /* The only way this task continues is if ... */
 . /* ... the mutex is available or signaled! */
 }
}

µC/OS-II User's Manual

560Copyright 2015 Micrium Inc.

OSMutexPost()

INT8U OSMutexPost (OS_EVENT *pevent);

File Called From Code Enabled By

OS_MUTEX.C Task OS_MUTEX_EN

A mutex is signaled (i.e., released) by calling . You would call this functionOSMutexPost()

only if you acquired the mutex either by first calling or . If theOSMutexAccept() OSMutexPend()

priority of the task that owns the mutex has been raised when a higher priority task attempted

to acquire the mutex then, the original task priority of the task will be restored. If one or more

tasks are waiting for the mutex, the mutex is given to the highest priority task waiting on the

mutex. The scheduler is then called to determine if the awakened task is now the highest

priority task ready to run and if so, a context switch will be done to run the readied task. If no

task is waiting for the mutex, the mutex value is simply set to available (0xFF).

Arguments

pevent

is a pointer to the mutex. This pointer is returned to your application when the mutex is

created (see).OSMutexCreate()

Returned Value

OSMutexPost() returns one of these error codes:

OS_NO_ERR

if the call was successful and the mutex released.

OS_ERR_EVENT_TYPE

if you didn’t pass a pointer to a mutex to .OSMutexPost()

OS_ERR_PEVENT_NULL

µC/OS-II User's Manual

561Copyright 2015 Micrium Inc.

if pevent is a NULL pointer.

OS_ERR_POST_ISR

if you attempted to call from an ISR.OSMutexPost()

OS_ERR_NOT_MUTEX_OWNER

if the task posting (i.e., signaling the mutex) doesn’t actually owns the mutex.

Notes/Warnings

Mutexes must be created before they are used.

You cannot call this function from an ISR.

Example

OS_EVENT *DispMutex;
void TaskX (void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMutexPost(DispMutex);
 switch (err) {
 case OS_NO_ERR: /* Mutex signaled */
 .
 .
 break;
 case OS_ERR_EVENT_TYPE:
 .
 .
 break;
 case OS_ERR_PEVENT_NULL:
 .
 .
 break;
 case OS_ERR_POST_ISR:
 .
 .
 break;
 }
 .
 .
 }
}

µC/OS-II User's Manual

562Copyright 2015 Micrium Inc.

OSMutexQuery()

INT8U OSMutexQuery (OS_EVENT *pevent,
 OS_MUTEX_DATA *pdata);

File Called From Code Enabled By

OS_MUTEX.C Task OS_MUTEX_EN and OS_MUTEX_QUERY_EN

OSMutexQuery() is used to obtain run-time information about a mutex. Your application must

allocate an data structure that will be used to receive data from the event controlOS_MUTEX_DATA

block of the mutex. allows you to determine whether any task is waiting on theOSMutexQuery()

mutex, how many tasks are waiting (by counting the number of 1s) in the field,.OSEventTbl[]

obtain the Priority Inheritance Priority (PIP) and determine whether the mutex is available (1)

or not (0). Note that the size of is established by the constant .OSEventTbl[] #define

 (see).OS_EVENT_TBL_SIZE uCOS_II.H

Arguments

pevent

is a pointer to the mutex. This pointer is returned to your application when the mutex is

created (see).OSMutexCreate()

pdata

is a pointer to a data structure of type , which contains the following fields:OS_MUTEX_DATA

INT8U OSMutexPIP; /* The PIP of the mutex */
INT8U OSOwnerPrio; /* The priority of the mutex owner */
INT8U OSValue; /* The current mutex value, 1 means available, 0 means unavailable */
INT8U OSEventGrp; /* Copy of the mutex wait list */
INT8U OSEventTbl[OS_EVENT_TBL_SIZE];

Returned Value

OSMutexQuery() returns one of these error codes:

OS_NO_ERR

µC/OS-II User's Manual

563Copyright 2015 Micrium Inc.

if the call was successful.

OS_ERR_EVENT_TYPE

if you didn’t pass a pointer to a mutex to .OSMutexQuery()

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

OS_ERR_QUERY_ISR

if you attempted to call from an ISR.OSMutexQuery()

Notes/Warnings

Mutexes must be created before they are used.

You cannot call this function from an ISR.

Example

In this example, we check the contents of the mutex to determine the highest priority task that

is waiting for it.

OS_EVENT *DispMutex;
void Task (void *pdata)
{
 OS_MUTEX_DATA mutex_data;
 INT8U err;
 INT8U highest; /* Highest priority task waiting on mutex */
 INT8U x;
 INT8U y;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSMutexQuery(DispMutex, &mutex_data);
 if (err == OS_NO_ERR) {
 if (mutex_data.OSEventGrp != 0x00) {
 y = OSUnMapTbl[mutex_data.OSEventGrp];
 x = OSUnMapTbl[mutex_data.OSEventTbl[y]];
 highest = (y << 3) + x;
 .
 .
 }
 }

µC/OS-II User's Manual

564Copyright 2015 Micrium Inc.

 .
 .
 }
}

µC/OS-II User's Manual

565Copyright 2015 Micrium Inc.

OSQAccept()

void *OSQAccept (OS_EVENT *pevent);

File Called From Code Enabled By

OS_Q.C Task or ISR OS_Q_EN

OSQAccept() checks to see if a message is available in the desired message queue. Unlike

, does not suspend the calling task if a message is not available. In otherOSQPend() OSQAccept()

words, is non-blocking. If a message is available, it is extracted from the queueOSQAccept()

and returned to your application. This call is typically used by ISRs because an ISR is not

allowed to wait for messages at a queue.

Arguments

pevent

is a pointer to the message queue from which the message is received. This pointer is

returned to your application when the message queue is created [see].OSQCreate()

Returned Value

A pointer to the message if one is available; NULL if the message queue does not contain a

message.

Notes/Warnings

Message queues must be created before they are used.

µC/OS-II User's Manual

566Copyright 2015 Micrium Inc.

Example

OS_EVENT *CommQ;

void Task (void *pdata)
{
 void *msg;
 pdata = pdata;
 for (;;) {
 msg = OSQAccept(CommQ); /* Check queue for a message */
 if (msg != (void *)0) {
 . /* Message received, process */
 .
 } else {
 . /* Message not received, do .. */
 . /* .. something else */
 }
 .
 .
 }
}

µC/OS-II User's Manual

567Copyright 2015 Micrium Inc.

OSQCreate()

OS_EVENT *OSQCreate (void **start,
 INT8U size);

File Called From Code Enabled By

OS_Q.C Task or startup code OS_Q_EN

OSQCreate() creates a message queue. A message queue allows tasks or ISRs to send

pointer-sized variables (messages) to one or more tasks. The meaning of the messages sent are

application specific.

Arguments

start

is the base address of the message storage area. A message storage area is declared as an

array of pointers to voids.

size

is the size (in number of entries) of the message storage area.

Returned Value

OSQCreate() returns a pointer to the event control block allocated to the queue. If no event

control block is available, returns a NULL pointer.OSQCreate()

Notes/Warnings

Queues must be created before they are used.

µC/OS-II User's Manual

568Copyright 2015 Micrium Inc.

Example

OS_EVENT *CommQ;

void *CommMsg[10];

void main(void)
{
 OSInit(); /* Initialize ?C/OS-II */
 .
 .
 CommQ = OSQCreate(&CommMsg[0], 10); /* Create COMM Q */
 .
 .
 OSStart(); /* Start Multitasking */
}

µC/OS-II User's Manual

569Copyright 2015 Micrium Inc.

OSQDel()

OS_EVENT *OSQDel (OS_EVENT *pevent,
 INT8U opt,
 INT8U *err);

File Called From Code Enabled By

OS_Q.C Task OS_Q_EN and OS_Q_DEL_EN

OSQDel() is used to delete a message queue. This is a dangerous function to use because

multiple tasks could attempt to access a deleted queue. You should always use this function

with great care. Generally speaking, before you would delete a queue, you would first delete

all the tasks that can access the queue.

Arguments

pevent

is a pointer to the queue. This pointer is returned to your application when the queue is

created (see).OSQCreate()

opt

specifies whether you want to delete the queue only if there are no pending tasks (

) or whether you always want to delete the queue regardless of whetherOS_DEL_NO_PEND

tasks are pending or not (). In this case, all pending task will be readied.OS_DEL_ALWAYS

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the queue was deleted.

OS_ERR_DEL_ISR

µC/OS-II User's Manual

570Copyright 2015 Micrium Inc.

if you attempted to delete the queue from an ISR

OS_ERR_INVALID_OPT

if you didn’t specify one of the two options mentioned above.

OS_ERR_TASK_WAITING

if one or more tasks were waiting for messages at the message queue.

OS_ERR_EVENT_TYPE

if pevent is not pointing to a queue.

OS_ERR_PEVENT_NULL

if there are no more structures available.OS_EVENT

Returned Value

A NULL pointer if the queue is deleted or pevent if the queue was not deleted. In the latter

case, you would need to examine the error code to determine the reason.

Notes/Warnings

You should use this call with care because other tasks may expect the presence of the queue.

Interrupts are disabled when pended tasks are readied. This means that interrupt latency

depends on the number of tasks that were waiting on the queue.

µC/OS-II User's Manual

571Copyright 2015 Micrium Inc.

Example

OS_EVENT *DispQ;

void Task (void *pdata)
{
 INT8U err;
 pdata = pdata;
 while (1) {
 .
 .
 DispQ = OSQDel(DispQ, OS_DEL_ALWAYS, &err);
 if (DispQ == (OS_EVENT *)0) {
 /* Queue has been deleted */
 }
 .
 .
 }
}

µC/OS-II User's Manual

572Copyright 2015 Micrium Inc.

OSQFlush()

INT8U *OSQFlush (OS_EVENT *pevent);

File Called From Code Enabled By

OS_Q.C Task or ISR OS_Q_EN and OS_Q_FLUSH_EN

OSQFlush() empties the contents of the message queue and eliminates all the messages sent to

the queue. This function takes the same amount of time to execute whether tasks are waiting on

the queue (and thus no messages are present) or the queue contains one or more messages.

Arguments

pevent

is a pointer to the message queue. This pointer is returned to your application when the

message queue is created [see].OSQCreate()

Returned Value

OSQFlush()

returns one of the following codes:

OS_NO_ERR

if the message queue was flushed.

OS_ERR_EVENT_TYPE

if you attempted to flush an object other than a message queue.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

µC/OS-II User's Manual

573Copyright 2015 Micrium Inc.

Notes/Warnings

Queues must be created before they are used.

Example

OS_EVENT *CommQ;

void main(void)
{
 INT8U err;
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 err = OSQFlush(CommQ);
 .
 .
 OSStart(); /* Start Multitasking */
}

µC/OS-II User's Manual

574Copyright 2015 Micrium Inc.

OSQPend()

void *OSQPend (OS_EVENT *pevent,
 INT16U timeout,
 INT8U *err);

File Called From Code Enabled By

OS_Q.C Task only OS_Q_EN

OSQPend() is used when a task wants to receive messages from a queue. The messages are sent

to the task either by an ISR or by another task. The messages received are pointer-sized

variables, and their use is application specific. If a at least one message is present at the queue

when is called, the message is retrieved and returned to the caller. If no message isOSQPend()

present at the queue, suspends the current task until either a message is received or aOSQPend()

user-specified timeout expires. If a message is sent to the queue and multiple tasks are waiting

for such a message, then µC/OS-II resumes the highest priority task that is waiting. A pended

task that has been suspended with can receive a message. However, the taskOSTaskSuspend()

remains suspended until it is resumed by calling .OSTaskResume()

Arguments

pevent

is a pointer to the queue from which the messages are received. This pointer is returned to

your application when the queue is created [see].OSQCreate()

timeout

allows the task to resume execution if a message is not received from the mailbox within

the specified number of clock ticks. A timeout value of 0 indicates that the task wants to

wait forever for the message. The maximum timeout is 65,535 clock ticks. The timeout

value is not synchronized with the clock tick. The timeout count starts decrementing on

the next clock tick, which could potentially occur immediately.

err

is a pointer to a variable used to hold an error code. sets *err to one of theOSQPend()

µC/OS-II User's Manual

575Copyright 2015 Micrium Inc.

following:

OS_NO_ERR

if a message was received.

OS_TIMEOUT

if a message was not received within the specified timeout.

OS_ERR_EVENT_TYPE

pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer..

OS_ERR_PEND_ISR

if you called this function from an ISR and µC/OS-II would have to suspend it. In

general, you should not call from an ISR. µC/OS-II checks for thisOSQPend()

situation anyway.

Returned Value

OSQPend() returns a message sent by either a task or an ISR, and *err is set to . If aOS_NO_ERR

timeout occurs, returns a NULL pointer and sets *err to .OSQPend() OS_TIMEOUT

Notes/Warnings

Queues must be created before they are used.

You should not call from an ISR.OSQPend()

µC/OS-II User's Manual

576Copyright 2015 Micrium Inc.

Example

OS_EVENT *CommQ;
void CommTask(void *data)
{
 INT8U err;
 void *msg;
 pdata = pdata;
 for (;;) {
 .
 .
 msg = OSQPend(CommQ, 100, &err);
 if (err == OS_NO_ERR) {
 .
 . /* Message received within 100 ticks! */
 .
 } else {
 .
 . /* Message not received, must have timed out */
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

577Copyright 2015 Micrium Inc.

OSQPost()

INT8U OSQPost (OS_EVENT *pevent,
 void *msg);

File Called From Code Enabled By

OS_Q.C Task or ISR OS_Q_EN and OS_Q_POST_EN

OSQPost() sends a message to a task through a queue. A message is a pointer-sized variable,

and its use is application specific. If the message queue is full, an error code is returned to the

caller. In this case, immediately returns to its caller, and the message is not placed inOSQPost()

the queue. If any task is waiting for a message at the queue, the highest priority task receives

the message. If the task waiting for the message has a higher priority than the task sending the

message, the higher priority task resumes and the task sending the message is suspended; that

is, a context switch occurs. Message queues are first-in-first-out (FIFO), which means that the

first message sent is the first message received.

Arguments

pevent

is a pointer to the queue into which the message is deposited. This pointer is returned to

your application when the queue is created [see].OSQCreate()

msg

is the actual message sent to the task. msg is a pointer-sized variable and is application

specific. You must never post a NULL pointer.

Returned Value

OSQPost() returns one of two error codes:

OS_NO_ERR

if the message was deposited in the queue.

µC/OS-II User's Manual

578Copyright 2015 Micrium Inc.

OS_Q_FULL

if the queue was already full.

OS_ERR_EVENT_TYPE

pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR

if you are posting a NULL pointer. By convention, a NULL pointer is not supposed

to point to anything valid.

Notes/Warnings

Queues must be created before they are used.

You must never post a NULL pointer.

µC/OS-II User's Manual

579Copyright 2015 Micrium Inc.

Example

OS_EVENT *CommQ;

INT8U CommRxBuf[100];

void CommTaskRx(void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSQPost(CommQ, (void *)&CommRxBuf[0]);
 switch (err) {
 case OS_NO_ERR:
 /* Message was deposited into queue */
 break;
 Case OS_Q_FULL:
 /* Queue is full */
 Break;
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

580Copyright 2015 Micrium Inc.

OSQPostFront()

INT8U OSQPostFront (OS_EVENT *pevent,
 void *msg);

File Called From Code Enabled By

OS_Q.C Task or ISR OS_Q_EN and OS_Q_POST_FRONT_EN

OSQPostFront() sends a message to a task through a queue. behaves very muchOSQPostFront()

like , except that the message is inserted at the front of the queue. This means that OSQPost()

 makes the message queue behave like a last-in-first-out (LIFO) queue insteadOSQPostFront()

of a first-in-first-out (FIFO) queue. The message is a pointer-sized variable, and its use is

application specific. If the message queue is full, an error code is returned to the caller.

 immediately returns to its caller and the message is not placed in the queue. IfOSQPostFront()

any tasks are waiting for a message at the queue, the highest priority task receives the message.

If the task waiting for the message has a higher priority than the task sending the message, the

higher priority task is resumed and the task sending the message is suspended; that is, a context

switch occurs.

Arguments

pevent

is a pointer to the queue into which the message is deposited. This pointer is returned to

your application when the queue is created [see].OSQCreate()

msg

is the actual message sent to the task. msg is a pointer-sized variable and is application

specific. You must never post a NULL pointer.

Returned Value

OSQPostFront() returns one of two error codes:

OS_NO_ERR

µC/OS-II User's Manual

581Copyright 2015 Micrium Inc.

if the message was deposited in the queue.

OS_Q_FULL

if the queue was already full.

OS_ERR_EVENT_TYPE

pevent is not pointing to a message queue.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR

if you are posting a NULL pointer. By convention, a NULL pointer is not supposed

to point to anything valid.

Notes/Warnings

Queues must be created before they are used.

You must never post a NULL pointer.

µC/OS-II User's Manual

582Copyright 2015 Micrium Inc.

Example

OS_EVENT *CommQ;

INT8U CommRxBuf[100];

void CommTaskRx(void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSQPostFront(CommQ, (void *)&CommRxBuf[0]);
 switch (err) {
 case OS_NO_ERR:
 /* Message was deposited into queue */
 break;
 Case OS_Q_FULL:
 /* Queue is full */
 Break;
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

583Copyright 2015 Micrium Inc.

OSQPostOpt()

INT8U OSQPostOpt (OS_EVENT *pevent,
 void *msg,
 INT8U opt);

File Called From Code Enabled By

OS_Q.C Task or ISR OS_Q_EN and OS_Q_POST_OPT_EN

OSQPostOpt() is used to send a message to a task through a queue. A message is a pointer-sized

variable and its use is application specific. If the message queue is full, an error code is

returned indicating that the queue is full. then immediately returns to its caller,OSQPostOpt()

and the message is not placed in the queue. If any task is waiting for a message at the queue,

 allows you to either post the message to the highest priority task waiting at theOSQPostOpt()

queue (opt set to) or, to all tasks waiting at the queue (opt is set to OS_POST_OPT_NONE

). In either case, scheduling will occur, and if any of the task thatOS_POST_OPT_BROADCAST

receives the message has a higher priority than the task that is posting the message then, the

higher priority task will be resumed and the sending task will be suspended. In other words, a

context switch will occur.

OSQPostOpt() emulates both and , and also allows you to post aOSQPost() OSQPostFront()

message to MULTIPLE tasks. In other words, it allows the message posted to be broadcast to

ALL tasks waiting on the queue. can actually replace and OSQPostOpt() OSQPost()

 because you specify the mode of operation via an option argument, opt. DoingOSQPostFront()

this allows you to reduce the amount of code space needed by µC/OS-II.

Arguments

pevent

is a pointer to the queue. This pointer is returned to your application when the queue is

created (see).OSQCreate()

msg

is the actual message sent to the task(s) msg is a pointer-sized variable and what msg

points to is application specific. You must never post a NULL pointer.

µC/OS-II User's Manual

584Copyright 2015 Micrium Inc.

opt

determines the type of POST performed:

OS_POST_OPT_NONE

POST to a single waiting task (Identical to)OSQPost()

OS_POST_OPT_BROADCAST

POST to ALL tasks that are waiting on the queue

OS_POST_OPT_FRONT

POST as LIFO (Simulates)OSQPostFront()

Below is a list of ALL the possible combination of these flags:

OS_POST_OPT_NONE

is identical to OSQPost()

OS_POST_OPT_FRONT

is identical to OSQPostFront()

OS_POST_OPT_BROADCAST

is identical to but will broadcast msg to ALL waiting tasksOSQPost()

OS_POST_OPT_FRONT

is identical to except that will broadcast msg to ALL waiting tasks.OSQPostFront()

OS_POST_OPT_BROADCAST

is identical to except that will broadcast msg to ALL waiting tasks.OSQPostFront()

µC/OS-II User's Manual

585Copyright 2015 Micrium Inc.

Returned Value

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the message was sent.

OS_Q_FULL

if the queue can no longer accept messages because it is full.

OS_ERR_EVENT_TYPE

if pevent is not pointing to a mailbox.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR

if you are attempting to post a NULL pointer.

µC/OS-II User's Manual

586Copyright 2015 Micrium Inc.

Notes/Warnings

Queues must be created before they are used.

You must NEVER post a NULL pointer to a queue.

If you need to use this function and want to reduce code space, you may disable code

generation of (set to 0 in) and (set OSQPost() OS_Q_POST_EN OS_CFG.H OSQPostFront()

 to 0 in) since can emulate these two functions.OS_Q_POST_FRONT_EN OS_CFG.H OSQPostOpt()

The execution time of depends on the number of tasks waiting on the queueOSQPostOpt()

if you set opt to .OS_POST_OPT_BROADCAST

Example

OS_EVENT *CommQ;
INT8U CommRxBuf[100];
void CommRxTask (void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSQPostOpt(CommQ, (void *)&CommRxBuf[0], OS_POST_OPT_BROADCAST);
 .
 .
 }
}

µC/OS-II User's Manual

587Copyright 2015 Micrium Inc.

OSQQuery()

INT8U OSQQuery (OS_EVENT *pevent,
 OS_Q_DATA *pdata);

File Called From Code Enabled By

OS_Q.C Task or ISR OS_Q_EN and OS_QUERY_EN

OSQQuery() obtains information about a message queue. Your application must allocate an

 data structure used to receive data from the event control block of the messageOS_Q_DATA

queue. allows you to determine whether any tasks are waiting for messages at theOSQQuery()

queue, how many tasks are waiting (by counting the number of 1s in the field),.OSEventTbl[]

how many messages are in the queue, and what the message queue size is. alsoOSQQuery()

obtains the next message that would be returned if the queue is not empty. Note that the size of

 is established by the constant (see)..OSEventTbl[] #define OS_EVENT_TBL_SIZE uCOS_II.H

Arguments

pevent

is a pointer to the message queue. This pointer is returned to your application when the

queue is created [see].OSQCreate()

pdata

is a pointer to a data structure of type , which contains the following fields:OS_Q_DATA

void *OSMsg; /* Next message if one available */
INT16U OSNMsgs; /* Number of messages in the queue */
INT16U OSQSize; /* Size of the message queue */
INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Message queue wait list */
INT8U OSEventGrp;

Returned Value

OSQQuery() returns one of two error codes:

OS_NO_ERR

µC/OS-II User's Manual

588Copyright 2015 Micrium Inc.

if the call was successful.

OS_ERR_EVENT_TYPE

if you didn’t pass a pointer to a message queue.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

Notes/Warnings

Message queues must be created before they are used.

Example

OS_EVENT *CommQ;

void Task (void *pdata)
{
 OS_Q_DATA qdata;
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSQQuery(CommQ, &qdata);
 if (err == OS_NO_ERR) {
 . /* 'qdata' can be examined! */
 }
 .
 .
 }
}

µC/OS-II User's Manual

589Copyright 2015 Micrium Inc.

OSSchedLock()

void OSSchedLock (void);

File Called From Code Enabled By

OS_CORE.C Task or ISR OS_SCHED_LOCK_EN

OSSchedLock() prevents task rescheduling until its counterpart, , is called. TheOSSchedUnlock()

task that calls keeps control of the CPU even though other higher priority tasksOSSchedLock()

are ready to run. However, interrupts are still recognized and serviced (assuming interrupts are

enabled). and must be used in pairs. µC/OS-II allows OSSchedLock() OSSchedUnlock()

 to be nested up to 255 levels deep. Scheduling is enabled when an equalOSSchedLock()

number of calls have been made.OSSchedUnlock()

Arguments

None

Returned Value

None

Notes/Warnings

After calling , your application must not make system calls that suspendOSSchedLock()

execution of the current task; that is, your application cannot call , OSTimeDly()

 , , , , , or .OSTimeDlyHMSM() OSFlagPend() OSSemPend() OSMutexPend() OSMboxPend() OSQPend()

Since the scheduler is locked out, no other task is allowed to run and your system will lock up.

µC/OS-II User's Manual

590Copyright 2015 Micrium Inc.

Example

void TaskX(void *pdata)
{
 pdata = pdata;
 for (;;) {
 .
 OSSchedLock(); /* Prevent other tasks to run */
 .
 . /* Code protected from context switch */
 .
 OSSchedUnlock(); /* Enable other tasks to run */
 .
 }
}

µC/OS-II User's Manual

591Copyright 2015 Micrium Inc.

OSSchedUnlock()

void OSSchedUnlock (void);

File Called From Code Enabled By

OS_CORE.C Task or ISR OS_SCHED_LOCK_EN

OSSchedUnlock() re-enables task scheduling whenever it is paired with .OSSchedLock()

Arguments

None

Returned Value

None

Notes/Warnings

After calling , your application must not make system calls that suspendOSSchedLock()

execution of the current task; that is, your application cannot call , OSTimeDly()

 , , , , , or .OSTimeDlyHMSM() OSFlagPend() OSSemPend() OSMutexPend() OSMboxPend() OSQPend()

Since the scheduler is locked out, no other task is allowed to run and your system will lock up.

Example

void TaskX(void *pdata)
{
 pdata = pdata;
 for (;;) {
 .
 OSSchedLock(); /* Prevent other tasks to run */
 .
 . /* Code protected from context switch */
 .
 OSSchedUnlock(); /* Enable other tasks to run */
 .
 }
}

µC/OS-II User's Manual

592Copyright 2015 Micrium Inc.

OSSemAccept()

INT16U OSSemAccept (OS_EVENT *pevent);

File Called From Code Enabled By

OS_SEM.C Task or ISR OS_SEM_EN and OS_SEM_ACCEPT_EN

OSSemAccept() checks to see if a resource is available or an event has occurred. Unlike

 , does not suspend the calling task if the resource is not available.OSSemPend() OSSemAccept()

In other words, is non-blocking. Use from an ISR to obtain theOSSemAccept() OSSemAccept()

semaphore.

Arguments

pevent

is a pointer to the semaphore that guards the resource. This pointer is returned to your

application when the semaphore is created [see].OSSemCreate()

Returned Value

When is called and the semaphore value is greater than 0, the semaphore valueOSSemAccept()

is decremented and the value of the semaphore before the decrement is returned to your

application. If the semaphore value is 0 when is called, the resource is notOSSemAccept()

available and 0 is returned to your application.

Notes/Warnings

Semaphores must be created before they are used.

µC/OS-II User's Manual

593Copyright 2015 Micrium Inc.

Example

OS_EVENT *DispSem;
void Task (void *pdata)
{
 INT16U value;
 pdata = pdata;
 for (;;) {
 value = OSSemAccept(DispSem); /* Check resource availability */
 if (value > 0) {
 . /* Resource available, process */
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

594Copyright 2015 Micrium Inc.

OSSemCreate()

OS_EVENT *OSSemCreate (INT16U value);

File Called From Code Enabled By

OS_SEM.C Task or startup code OS_SEM_EN

OSSemCreate() creates and initializes a semaphore. A semaphore:

allows a task to synchronize with either an ISR or a task (you would initialize the

semaphore to 0),

gains exclusive access to a resource (you would initialize the semaphore to a value greater

than 0), and

signals the occurrence of an event (you would initialize the semaphore to 0).

Arguments

value

is the initial value of the semaphore and can be between 0 and 65535. A value of 0

indicates that a resource is not available or, an event has not occurred.

Returned Value

OSSemCreate() returns a pointer to the event control block allocated to the semaphore. If no

event control block is available, returns a NULL pointer.OSSemCreate()

Notes/Warnings

Semaphores must be created before they are used.

µC/OS-II User's Manual

595Copyright 2015 Micrium Inc.

Example

OS_EVENT *DispSem;
void main(void)
{
 .
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 .
 DispSem = OSSemCreate(1); /* Create Display Semaphore */
 .
 .
 OSStart(); /* Start Multitasking */
}

µC/OS-II User's Manual

596Copyright 2015 Micrium Inc.

OSSemDel()

OS_EVENT *OSSemDel (OS_EVENT *pevent,
 INT8U opt,
 INT8U *err);

File Called From Code Enabled By

OS_SEM.C Task OS_SEM_EN and OS_SEM_DEL_EN

OSSemDel() is used to delete a semaphore. This is a dangerous function to use because multiple

tasks could attempt to access a deleted semaphore. You should always use this function with

great care. Generally speaking, before you would delete a semaphore, you would first delete all

the tasks that can access the semaphore.

Arguments

pevent

is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created (see).OSSemCreate()

opt

specifies whether you want to delete the semaphore only if there are no pending tasks (

) or whether you always want to delete the semaphore regardless ofOS_DEL_NO_PEND

whether tasks are pending or not (). In this case, all pending task will beOS_DEL_ALWAYS

readied.

err

is a pointer to a variable which will be used to hold an error code. The error code can be

one of the following:

OS_NO_ERR

if the call was successful and the semaphore was deleted.

µC/OS-II User's Manual

597Copyright 2015 Micrium Inc.

OS_ERR_DEL_ISR

if you attempted to delete the semaphore from an ISR

OS_ERR_INVALID_OPT

if you didn’t specify one of the two options mentioned above.

OS_ERR_TASK_WAITING

if one or more tasks were waiting on the semaphore

OS_ERR_EVENT_TYPE

if pevent is not pointing to a semaphore.

OS_ERR_PEVENT_NULL

if there are no more structures available.OS_EVENT

Returned Value

A NULL pointer if the semaphore is deleted, or pevent if the semaphore was not deleted. In the

latter case, you would need to examine the error code to determine the reason.

Notes/Warnings

You should use this call with care because other tasks may expect the presence of the

semaphore.

Interrupts are disabled when pended tasks are readied. This means that interrupt latency

depends on the number of tasks that were waiting on the semaphore.

µC/OS-II User's Manual

598Copyright 2015 Micrium Inc.

Example

OS_EVENT *DispSem;
void Task (void *pdata)
{
 INT8U err;
 pdata = pdata;
 while (1) {
 .
 .
 DispSem = OSSemDel(DispSem, OS_DEL_ALWAYS, &err);
 if (DispSem == (OS_EVENT *)0) {
 /* Semaphore has been deleted */
 }
 .
 .
 }
}

µC/OS-II User's Manual

599Copyright 2015 Micrium Inc.

OSSemPend()

void OSSemPend (OS_EVENT *pevent,
 INT16U timeout,
 INT8U *err);

File Called From Code Enabled By

OS_SEM.C Task only OS_SEM_EN

OSSemPend() is used when a task wants exclusive access to a resource, needs to synchronize its

activities with an ISR or a task, or is waiting until an event occurs. If a task calls OSSemPend()

and the value of the semaphore is greater than 0, decrements the semaphore andOSSemPend()

returns to its caller. However, if the value of the semaphore is 0, places the callingOSSemPend()

task in the waiting list for the semaphore. The task waits until a task or an ISR signals the

semaphore or the specified timeout expires. If the semaphore is signaled before the timeout

expires, µC/OS-II resumes the highest priority task waiting for the semaphore. A pended task

that has been suspended with can obtain the semaphore. However, the taskOSTaskSuspend()

remains suspended until it is resumed by calling .OSTaskResume()

Arguments

pevent

is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created [see].OSSemCreate()

timeout

allows the task to resume execution if a message is not received from the mailbox within

the specified number of clock ticks. A timeout value of 0 indicates that the task will wait

forever for the message. The maximum timeout is 65,535 clock ticks. The timeout value

is not synchronized with the clock tick. The timeout count begins decrementing on the

next clock tick, which could potentially occur immediately.

err

is a pointer to a variable used to hold an error code. sets *err to one of theOSSemPend()

µC/OS-II User's Manual

600Copyright 2015 Micrium Inc.

following:

OS_NO_ERR

if the semaphore was available.

OS_TIMEOUT

if the semaphore was not signaled within the specified timeout.

OS_ERR_EVENT_TYPE

pevent is not pointing to a semaphore.

OS_ERR_PEND_ISR

if you called this function from an ISR and µC/OS-II would have to suspend it. In

general, you should not call from an ISR. µC/OS-II checks for thisOSMboxPend()

situation.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

Returned Value

None

Notes/Warnings

Semaphores must be created before they are used.

µC/OS-II User's Manual

601Copyright 2015 Micrium Inc.

Example

OS_EVENT *DispSem;

void DispTask(void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 OSSemPend(DispSem, 0, &err);
 . /* The only way this task continues is if ... */
 . /* ... the semaphore is signaled! */
 }
}

µC/OS-II User's Manual

602Copyright 2015 Micrium Inc.

OSSemPost()

INT8U OSSemPost(OS_EVENT *pevent);

File Called From Code Enabled By

OS_SEM.C Task or ISR OS_SEM_EN

A semaphore is signaled by calling . If the semaphore value is 0 or more, it isOSSemPost()

incremented and returns to its caller. If tasks are waiting for the semaphore to beOSSemPost()

signaled, removes the highest priority task pending for the semaphore from theOSSemPost()

waiting list and makes this task ready to run. The scheduler is then called to determine if the

awakened task is now the highest priority task ready to run.

Arguments

pevent

is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created [see].OSSemCreate()

Returned Value

OSSemPost() returns one of two error codes:

OS_NO_ERR

if the semaphore was signaled successfully.

OS_SEM_OVF

if the semaphore count overflowed.

OS_ERR_EVENT_TYPE

pevent is not pointing to a semaphore.

µC/OS-II User's Manual

603Copyright 2015 Micrium Inc.

OS_ERR_PEVENT_NULL

if pevent is a NULL pointer.

Notes/Warnings

Semaphores must be created before they are used.

Example

OS_EVENT *DispSem;

void TaskX(void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSSemPost(DispSem);
 switch (err) {
 case OS_NO_ERR:
 /* Semaphore signaled */
 break;
 Case OS_SEM_OVF:
 /* Semaphore has overflowed */
 break;
 .
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

604Copyright 2015 Micrium Inc.

OSSemQuery()

INT8U OSSemQuery (OS_EVENT *pevent,
 OS_SEM_DATA *pdata);

File Called From Code Enabled By

OS_SEM.C Task or ISR OS_SEM_EN and OS_SEM_QUERY_EN

OSSemQuery() obtains information about a semaphore. Your application must allocate an

 data structure used to receive data from the event control block of the semaphore. OS_SEM_DATA

 allows you to determine whether any tasks are waiting on the semaphore andOSSemQuery()

how many tasks are waiting (by counting the number of 1s in the field) and.OSEventTbl[]

obtains the semaphore count. Note that the size of is established by the .OSEventTbl[] #define

constant (see).OS_EVENT_TBL_SIZE uCOS_II.H

Arguments

pevent

is a pointer to the semaphore. This pointer is returned to your application when the

semaphore is created [see].OSSemCreate()

pdata

is a pointer to a data structure of type , which contains the following fields:OS_SEM_DATA

INT16U OSCnt; /* Current semaphore count */
INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Semaphore wait list */
INT8U OSEventGrp;

Returned Value

OSSemQuery() returns one of two error codes:

OS_NO_ERR

if the call was successful.

µC/OS-II User's Manual

605Copyright 2015 Micrium Inc.

OS_ERR_EVENT_TYPE

if you didn’t pass a pointer to a semaphore.

OS_ERR_PEVENT_NULL

if pevent is is a NULL pointer.

Notes/Warnings

Semaphores must be created before they are used.

Example

In this example, the contents of the semaphore is checked to determine the highest priority task

waiting at the time the function call was made.

OS_EVENT *DispSem;

void Task (void *pdata)
{
 OS_SEM_DATA sem_data;
 INT8U err;
 INT8U highest; /* Highest priority task waiting on sem. */
 INT8U x;
 INT8U y;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSSemQuery(DispSem, &sem_data);
 if (err == OS_NO_ERR) {
 if (sem_data.OSEventGrp != 0x00) {
 y = OSUnMapTbl[sem_data.OSEventGrp];
 x = OSUnMapTbl[sem_data.OSEventTbl[y]];
 highest = (y << 3) + x;
 .
 .
 }
 }
 .
 .
 }
}

µC/OS-II User's Manual

606Copyright 2015 Micrium Inc.

OSStart()

void OSStart (void);

File Called From Code Enabled By

OS_CORE.C Startup code only N/A

OSStart() starts multitasking under µC/OS-II. This function is typically called from your

startup code but after you called .OSInit()

Arguments

None

Returned Value

None

Notes/Warnings

OSInit() must be called prior to calling . should only be called once byOSStart() OSStart()

your application code. If you do call more than once, it will not do anything on theOSStart()

second and subsequent calls.

Example

void main(void)
{
 . /* User Code */
 .
 OSInit(); /* Initialize µC/OS-II */
 . /* User Code */
 .
 OSStart(); /* Start Multitasking */
 /* Any code hers should NEVER be executed! */
}

µC/OS-II User's Manual

607Copyright 2015 Micrium Inc.

OSStatInit()

void OSStatInit (void);

File Called From Code Enabled By

OS_CORE.C Startup code only OS_TASK_STAT_EN and OS_TASK_CREATE_EXT_EN

OSStatInit() determines the maximum value that a 32-bit counter can reach when no other

task is executing. This function must be called when only one task is created in your

application and when multitasking has started; that is, this function must be called from the

first, and only, task created.

Arguments

None

Returned Value

None

Notes/Warnings

None

Example

void FirstAndOnlyTask (void *pdata)
{
 .
 .
 OSStatInit(); /* Compute CPU capacity with no task running */
 .
 OSTaskCreate(...); /* Create the other tasks */
 OSTaskCreate(...);
 .
 for (;;) {
 .
 .
 }
}

µC/OS-II User's Manual

608Copyright 2015 Micrium Inc.

OSTaskChangePrio()

INT8U OSTaskChangePrio (INT8U oldprio,
 INT8U newprio);

File Called From Code Enabled By

OS_TASK.C Task only

OSTaskChangePrio() changes the priority of a task.

Arguments

oldprio

is the priority number of the task to change.

newprio

is the new task’s priority.

Returned Value

OSTaskChangePrio() returns one of the following error codes:

OS_NO_ERR

if the task’s priority was changed.

OS_PRIO_INVALID

if either the old priority or the new priority is equal to or exceeds .OS_LOWEST_PRIO

OS_PRIO_EXIST

if newprio already exists.

OS_PRIO_ERR

µC/OS-II User's Manual

609Copyright 2015 Micrium Inc.

if no task with the specified “old” priority exists (i.e., the task specified by oldprio

does not exist).

Notes/Warnings

The desired priority must not already have been assigned; otherwise, an error code is returned.

Also, verifies that the task to change exists.OSTaskChangePrio()

Example

void TaskX(void *data)
{
 INT8U err;
 for (;;) {
 .
 .
 err = OSTaskChangePrio(10, 15);
 .
 .
 }
}

µC/OS-II User's Manual

610Copyright 2015 Micrium Inc.

OSTaskCreate()

INT8U OSTaskCreate (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio);

File Called From Code Enabled By

OS_TASK.C Task or startup code OS_TASK_CREATE_EN

OSTaskCreate() creates a task so it can be managed by µC/OS-II. Tasks can be created either

prior to the start of multitasking or by a running task. A task cannot be created by an ISR. A

task must be written as an infinite loop, as shown below, and must not return. OSTaskCreate()

is used for backward compatibility with µC/OS and when the added features of

OSTaskCreateExt() are not needed.

Depending on how the stack frame was built, your task will have interrupts either enabled or

disabled. You need to check with the processor-specific code for details.

Arguments

task

is a pointer to the task’s code.

pdata

is a pointer to an optional data area used to pass parameters to the task when it is created.

Where the task is concerned, it thinks it was invoked and passed the argument pdata.

pdata can be used to pass arguments to the task created. For example, you can create a

generic task that will handle an asynchronous serial port. pdata can be used to pass this

task information about the serial port it has to manage: the port address, the baud rate, the

number of bits, the parity and more.

void Task (void *pdata)
{
 . /* Do something with 'pdata' */
 for (;;) { /* Task body, always an infinite loop. */
 .
 .

µC/OS-II User's Manual

611Copyright 2015 Micrium Inc.

 /* Must call one of the following services: */
 /* OSMboxPend() */
 /* OSFlagPend() */
 /* OSMutexPend() */
 /* OSQPend() */
 /* OSSemPend() */
 /* OSTimeDly() */
 /* OSTimeDlyHMSM() */
 /* OSTaskSuspend() (Suspend self) */
 /* OSTaskDel() (Delete self) */
 .
 .
 }
}

ptos

is a pointer to the task’s top-of-stack. The stack is used to store local variables, function

parameters, return addresses, and CPU registers during an interrupt. The size of the stack

is determined by the task’s requirements and the anticipated interrupt nesting.

Determining the size of the stack involves knowing how many bytes are required for

storage of local variables for the task itself and all nested functions, as well as

requirements for interrupts (accounting for nesting). If the configuration constant

 is set to 1, the stack is assumed to grow downward (i.e., from high to lowOS_STK_GROWTH

memory). thus needs to point to the highest valid memory location on the stack. If ptos

 is set to 0, the stack is assumed to grow in the opposite direction (i.e., fromOS_STK_GROWTH

low to high memory).

prio

is the task priority. A unique priority number must be assigned to each task and the lower

the number, the higher the priority (i.e., the task importance).

Returned Value

OSTaskCreate() returns one of the following error codes:

OS_NO_ERR

if the function was successful.

OS_PRIO_EXIST

if the requested priority already exists.

µC/OS-II User's Manual

612Copyright 2015 Micrium Inc.

OS_PRIO_INVALID

if prio is higher than .OS_LOWEST_PRIO

OS_NO_MORE_TCB

if µC/OS-II doesn’t have any more to assign.OS_TCBs

Notes/Warnings

The stack for the task must be declared with the type.OS_STK

A task must always invoke one of the services provided by µC/OS-II to either wait for time to

expire, suspend the task, or wait for an event to occur (wait on a mailbox, queue, or

semaphore). This allows other tasks to gain control of the CPU.

You should not use task priorities 0, 1, 2, 3, , , OS_LOWEST_PRIO-3 OS_LOWEST_PRIO-2

 , and because they are reserved for use by µC/OS-II. ThisOS_LOWEST_PRIO-1 OS_LOWEST_PRIO

leaves you with up to 56 application tasks.

Example 1

This example shows that the argument that receives is not used, so the pointer pdata isTask1()

set to NULL. Note that I assume the stack grows from high to low memory because I pass the

address of the highest valid memory location of the stack . If the stack grows in theTask1Stk[]

opposite direction for the processor you are using, pass as the task’s top-of-stack.&Task1Stk[0]

Assigning pdata to itself is used to prevent compilers from issuing a warning about the fact that

pdata not being used. In other words, if I had not added this line, some compilers would have

complained about ‘WARNING - variable pdata not used’

OS_STK Task1Stk[1024];

void main(void)
{
 INT8U err;
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 OSTaskCreate(Task1,
 (void *)0,
 &Task1Stk[1023],

µC/OS-II User's Manual

613Copyright 2015 Micrium Inc.

 25);
 .
 OSStart(); /* Start Multitasking */
}

void Task1(void *pdata)
{
 pdata = pdata; /* Prevent compiler warning */
 for (;;) {
 . /* Task code */
 .
 }
}

Example 2

You can create a generic task that can be instantiated more than once. For example, a task that

handles a serial port could be passed the address of a data structure that characterizes the

specific port (i.e., port address, baud rate). Note that each task has it’s own stack space and its

own (different) priority. In this example, I arbitrarily decided that COM1 is the most important

port of the two.

OS_STK *Comm1Stk[1024];
COMM_DATA Comm1Data; /* Data structure containing COMM port */
 /* Specific data for channel 1 */

OS_STK *Comm2Stk[1024];
COMM_DATA Comm2Data; /* Data structure containing COMM port */
 /* Specific data for channel 2 */

void main(void)
{
 INT8U err;
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 /* Create task to manage COM1 */
 OSTaskCreate(CommTask,
 (void *)&Comm1Data,
 &Comm1Stk[1023],
 25);
 /* Create task to manage COM2 */
 OSTaskCreate(CommTask,
 (void *)&Comm2Data,
 &Comm2Stk[1023],
 26);
 .
 OSStart(); /* Start Multitasking */
}

void CommTask(void *pdata) /* Generic communication task */
{
 for (;;) {
 . /* Task code */
 .
 }
}

µC/OS-II User's Manual

614Copyright 2015 Micrium Inc.

OSTaskCreateExt()

INT8U OSTaskCreateExt (void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio,
 INT16U id,
 OS_STK *pbos,
 INT32U stk_size,
 void *pext,
 INT16U opt);

File Called From Code Enabled By

OS_TASK.C Task or startup code

OSTaskCreateExt() creates a task to be managed by µC/OS-II. This function serves the same

purpose as , except that it allows you to specify additional information aboutOSTaskCreate()

your task to µC/OS-II. Tasks can be created either prior to the start of multitasking or by a

running task. A task cannot be created by an ISR. A task must be written as an infinite loop, as

shown below, and must not return. Depending on how the stack frame was built, your task will

have interrupts either enabled or disabled. You need to check with the processor-specific code

for details. Note that the first four arguments are exactly the same as the ones for

 . This was done to simplify the migration to this new and more powerfulOSTaskCreate()

function. It is highly recommended that you use instead of the older OSTaskCreateExt()

 function because it’s much more flexible.OSTaskCreate()

Arguments

task

is a pointer to the task’s code.

pdata

is a pointer to an optional data area, which is used to pass parameters to the task when it is

created. Where the task is concerned, it thinks it was invoked and passed the argument

pdata. pdata can be used to pass arguments to the task created. For example, you can

create a generic task that will handle an asynchronous serial port. pdata can be used to

pass this task information about the serial port it has to manage: the port address, the baud

rate, the number of bits, the parity and more.

µC/OS-II User's Manual

615Copyright 2015 Micrium Inc.

void Task (void *pdata)
{
 . /* Do something with 'pdata' */
 for (;;) { /* Task body, always an infinite loop. */
 .
 .
 /* Must call one of the following services: */
 /* OSMboxPend() */
 /* OSFlagPend() */
 /* OSMutexPend() */
 /* OSQPend() */
 /* OSSemPend() */
 /* OSTimeDly() */
 /* OSTimeDlyHMSM() */
 /* OSTaskSuspend() (Suspend self) */
 /* OSTaskDel() (Delete self) */
 .
 .
 }
}

ptos

is a pointer to the task’s top-of-stack. The stack is used to store local variables, function

parameters, return addresses, and CPU registers during an interrupt.

The size of this stack is determined by the task’s requirements and the anticipated

interrupt nesting. Determining the size of the stack involves knowing how many bytes are

required for storage of local variables for the task itself and all nested functions, as well as

requirements for interrupts (accounting for nesting).

If the configuration constant is set to 1, the stack is assumed to growOS_STK_GROWTH

downward (i.e., from high to low memory). ptos thus needs to point to the highest valid

memory location on the stack. If is set to 0, the stack is assumed to growOS_STK_GROWTH

in the opposite direction (i.e., from low to high memory).

prio

is the task priority. A unique priority number must be assigned to each task: the lower the

number, the higher the priority (i.e., the importance) of the task.

id

is the task’s ID number. At this time, the ID is not currently used in any other function

and has simply been added in for future expansion. You should set idOSTaskCreateExt()

µC/OS-II User's Manual

616Copyright 2015 Micrium Inc.

to the same value as the task’s priority.

pbos

is a pointer to the task’s bottom-of-stack. If the configuration constant isOS_STK_GROWTH

set to 1, the stack is assumed to grow downward (i.e., from high to low memory); thus,

pbos must point to the lowest valid stack location. If is set to 0, the stack isOS_STK_GROWTH

assumed to grow in the opposite direction (i.e., from low to high memory); thus, pbos

must point to the highest valid stack location. pbos is used by the stack-checking function

 .OSTaskStkChk()

stk_size

specifies the size of the task’s stack in number of elements. If is set to INT8U,OS_STK

then corresponds to the number of bytes available on the stack. If is setstk_size OS_STK

to INT16U, then contains the number of 16-bit entries available on the stack.stk_size

Finally, if is set to INT32U, then contains the number of 32-bit entriesOS_STK stk_size

available on the stack.

pext

is a pointer to a user-supplied memory location (typically a data structure) used as a TCB

extension. For example, this user memory can hold the contents of floating-point registers

during a context switch, the time each task takes to execute, the number of times the task

is switched-in, and so on.

opt

contains task-specific options. The lower 8 bits are reserved by µC/OS-II, but you can use

the upper 8 bits for application-specific options. Each option consists of one or more bits.

The option is selected when the bit(s) is(are) set. The current version of µC/OS-II

supports the following options:

OS_TASK_OPT_STK_CHK

specifies whether stack checking is allowed for the task.

OS_TASK_OPT_STK_CLR

µC/OS-II User's Manual

617Copyright 2015 Micrium Inc.

specifies whether the stack needs to be cleared.

OS_TASK_OPT_SAVE_FP

specifies whether floating-point registers will be saved. This option is only valid if

your processor has floating-point hardware and the processor-specific code saves the

floating-point registers.

Refer to for other options.uCOS_II.H

Returned Value

OSTaskCreateExt() returns one of the following error codes:

OS_NO_ERR

if the function was successful.

OS_PRIO_EXIST

if the requested priority already exist.

OS_PRIO_INVALID

if prio is higher than .OS_LOWEST_PRIO

OS_NO_MORE_TCB

if µC/OS-II doesn’t have any more to assign.OS_TCBs

Notes/Warnings

The stack must be declared with the type.OS_STK

A task must always invoke one of the services provided by µC/OS-II either to wait for time to

expire, suspend the task or, wait an event to occur (wait on a mailbox, queue, or semaphore).

This allows other tasks to gain control of the CPU.

µC/OS-II User's Manual

618Copyright 2015 Micrium Inc.

You should not use task priorities 0, 1, 2, 3, -3, , OS_LOWEST_PRIO OS_LOWEST_PRIO-2

 , and because they are reserved for use by µC/OS-II. ThisOS_LOWEST_PRIO-1 OS_LOWEST_PRIO

leaves you with up to 56 application tasks.

Example 1

E1(1)

The task control block is extended using a user-defined data structure called

 , which in this case contains the name of the task as well as otherOS_TASK_USER_DATA

fields.

E1(2)

The task name is initialized with the standard library function .strcpy()

E1(4)

Note that stack checking has been enabled for this task, so you are allowed to call

 .OSTaskStkChk()

E1(3)

Also, assume here that the stack grows downward on the processor used (i.e.,

 is set to 1; TOS stands for Top-Of-Stack and BOS stands forOS_STK_GROWTH

Bottom-Of-Stack).

typedef struct { /* User defined data structure (1) */
 char OSTaskName[20];
 INT16U OSTaskCtr;
 INT16U OSTaskExecTime;
 INT32U OSTaskTotExecTime;
} OS_TASK_USER_DATA;

OS_STK TaskStk[1024];
TASK_USER_DATA TaskUserData;

void main(void)
{
 INT8U err;
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 strcpy(TaskUserData.TaskName, "MyTaskName"); /* Name of task (2) */
 err = OSTaskCreateExt(Task,
 (void *)0,

µC/OS-II User's Manual

619Copyright 2015 Micrium Inc.

 &TaskStk[1023], /* Stack grows down (TOS) (3) */
 10,
 &TaskStk[0], /* Stack grows down (BOS) (3) */
 1024,
 (void *)&TaskUserData, /* TCB Extension */
 OS_TASK_OPT_STK_CHK); /* Stack checking enabled (4) */
 .
 OSStart(); /* Start Multitasking */
}

void Task(void *pdata)
{
 pdata = pdata; /* Avoid compiler warning */
 for (;;) {
 . /* Task code */
 .
 }
}

Example 2

E2(1)

Now create a task, but this time on a processor for which the stack grows upward. The

Intel MCS-51 is an example of such a processor. In this case, is set to 0.OS_STK_GROWTH

E2(2)

Note that stack checking has been enabled for this task so you are allowed to call

 (TOS stands for Top-Of-Stack and BOS stands for Bottom-Of-Stack).OSTask¬StkChk()

OS_STK *TaskStk[1024];
void main(void)
{
 INT8U err;
 .
 OSInit(); /* Initialize µC/OS-II */
 .
 err = OSTaskCreateExt(Task,
 (void *)0,
 &TaskStk[0], /* Stack grows up (TOS) (1) */
 10,
 10,
 &TaskStk[1023], /* Stack grows up (BOS) (1) */
 1024,
 (void *)0,
 OS_TASK_OPT_STK_CHK); /* Stack checking enabled (2) */
 .
 OSStart(); /* Start Multitasking */
}
void Task(void *pdata)
{
 pdata = pdata; /* Avoid compiler warning */
 for (;;) {
 . /* Task code */
 .

µC/OS-II User's Manual

620Copyright 2015 Micrium Inc.

 }
}

µC/OS-II User's Manual

621Copyright 2015 Micrium Inc.

OSTaskDel()

INT8U OSTaskDel (INT8U prio);

File Called From Code Enabled By

OS_TASK.C Task only OS_TASK_DEL_EN

OSTaskDel() deletes a task by specifying the priority number of the task to delete. The calling

task can be deleted by specifying its own priority number or (if the task doesn’tOS_PRIO_SELF

know its own priority number). The deleted task is returned to the dormant state. The deleted

task can be re-created by calling either or to make the taskOSTaskCreate() OSTaskCreateExt()

active again.

Arguments

prio

is the priority number of the task to delete. You can delete the calling task by passing

 , in which case, the next highest priority task is executed.OS_PRIO_SELF

Returned Value

OSTaskDel() returns one of the following error codes:

OS_NO_ERR

if the task didn’t delete itself.

OS_TASK_DEL_IDLE

if you tried to delete the idle task. This is of course not allowed.

OS_TASK_DEL_ERR

if the task to delete does not exist.

µC/OS-II User's Manual

622Copyright 2015 Micrium Inc.

OS_PRIO_INVALID

if you specified a task priority higher than .OS_LOWEST_PRIO

OS_TASK_DEL_ISR

if you tried to delete a task from an ISR.

Notes/Warnings

OSTaskDel() verifies that you are not attempting to delete the µC/OS-II idle task.

You must be careful when you delete a task that owns resources. Instead, consider using

 as a safer approach.OSTaskDelReq()

Example

void TaskX(void *pdata)
{
 INT8U err;
 for (;;) {
 .
 .
 err = OSTaskDel(10); /* Delete task with priority */
 if (err == OS_NO_ERR) {
 . /* Task was deleted */
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

623Copyright 2015 Micrium Inc.

OSTaskDelReq()

INT8U OSTaskDelReq (INT8U prio);

File Called From Code Enabled By

OS_TASK.C Task only OS_TASK_DEL_EN

OSTaskDelReq() requests that a task delete itself. Basically, use when you needOSTaskDelReq()

to delete a task that can potentially own resources (e.g., the task may own a semaphore). In this

case, you don’t want to delete the task until the resource is released. The requesting task calls

 to indicate that the task needs to be deleted. Deletion of the task is, however,OSTaskDelReq()

deferred to the task being deleted. In other words, the task is actually deleted when it regains

control of the CPU. For example, suppose Task 10 needs to be deleted. The task wanting to

delete this task (example Task 5) would call . When Task 10 executes, itOSTaskDelReq(10)

calls and monitors the return value. If the return value is OSTaskDelReq(OS_PRIO_SELF)

 , then Task 10 is asked to delete itself. At this point, Task 10 callsOS_TASK_DEL_REQ

OSTaskDel(). Task 5 knows whether Task 10 has been deleted by calling OS_PRIO_SELF

 and checking the return code. If the return code is , thenOSTaskDelReq(10) OS_TASK_NOT_EXIST

Task 5 knows that Task 10 has been deleted. Task 5 may have to check periodically until

 is returned.OS_TASK_NOT_EXIST

Arguments

prio is the task’s priority number of the task to delete. If you specify , you areOS_PRIO_SELF

asking whether another task wants the current task to be deleted.

Returned Value

OSTaskDelReq() returns one of the following error codes:

OS_NO_ERR

if the task deletion has been registered.

OS_TASK_NOT_EXIST

µC/OS-II User's Manual

624Copyright 2015 Micrium Inc.

if the task does not exist. The requesting task can monitor this return code to see if

the task was actually deleted.

OS_TASK_DEL_IDLE

if you asked to delete the idle task (this is obviously not allowed).

OS_PRIO_INVALID

if you specified a task priority higher than or you have not specified OS_LOWEST_PRIO

 .OS_PRIO_SELF

OS_TASK_DEL_REQ

if a task (possibly another task) requested that the running task be deleted.

Notes/Warnings

OSTaskDelReq() verifies that you are not attempting to delete the µC/OS-II idle task.

µC/OS-II User's Manual

625Copyright 2015 Micrium Inc.

Example

void TaskThatDeletes (void *pdata) /* My priority is */
{
 INT8U err;
 for (;;) {
 .
 .
 err = OSTaskDelReq(10); /* Request task #10 to delete itself */
 if (err == OS_NO_ERR) {
 while (err != OS_TASK_NOT_EXIST) {
 err = OSTaskDelReq(10);
 OSTimeDly(1); /* Wait for task to be deleted */
 }
 . /* Task #10 has been deleted */
 }
 .
 .
 }
}

void TaskToBeDeleted (void *pdata) /* My priority is */
{
 .
 .
 pdata = pdata;
 for (;;) {
 OSTimeDly(1);
 if (OSTaskDelReq(OS_PRIO_SELF) == OS_TASK_DEL_REQ) {
 /* Release any owned resources; */
 /* De-allocate any dynamic memory; */
 OSTaskDel(OS_PRIO_SELF);
 }
 }
}

µC/OS-II User's Manual

626Copyright 2015 Micrium Inc.

OSTaskQuery()

INT8U OSTaskQuery (INT8U prio,
 OS_TCB *pdata);

File Called From Code Enabled By

OS_TASK.C Task or ISR

OSTaskQuery() obtains information about a task. Your application must allocate an dataOS_TCB

structure to receive a “snapshot” of the desired task’s control block. Your copy will contain

every field in the structure. You should be careful when accessing the contents of the OS_TCB

 structure, especially and , because they point to the next andOS_TCB OSTCBNext OSTCBPrev

previous in the chain of created tasks, respectively. You could use this function toOS_TCB

provide a debugger ‘kernel awareness’.

Arguments

prio

is the priority of the task you wish to obtain data from. You can obtain information about

the calling task by specifying .OS_PRIO_SELF

pdata

is a pointer to a structure of type , which contains a copy of the task’s controlOS_TCB

block.

Returned Value

OSTaskQuery() returns one of three error codes:

OS_NO_ERR

if the call was successful.

OS_PRIO_ERR

µC/OS-II User's Manual

627Copyright 2015 Micrium Inc.

if you tried to obtain information from an invalid task.

OS_PRIO_INVALID

if you specified a priority higher than .OS_LOWEST_PRIO

Notes/Warnings

The fields in the task control block depend on the following configuration options (see

):OS_CFG.H

OS_TASK_CREATE_EN

OS_Q_EN

OS_FLAG_EN

OS_MBOX_EN

OS_SEM_EN

OS_TASK_DEL_EN

Example

void Task (void *pdata)
{
 OS_TCB task_data;
 INT8U err;
 void *pext;
 INT8U status;
 pdata = pdata;
 for (;;) {
 .
 .
 err = OSTaskQuery(OS_PRIO_SELF, &task_data);
 if (err == OS_NO_ERR) {
 pext = task_data.OSTCBExtPtr; /* Get TCB extension pointer */
 status = task_data.OSTCBStat; /* Get task status */
 .
 .
 }
 .
 .
 }
 }

µC/OS-II User's Manual

628Copyright 2015 Micrium Inc.

OSTaskResume()

INT8U OSTaskResume (INT8U prio);

File Called From Code Enabled By

OS_TASK.C Task only OS_TASK_SUSPEND_EN

OSTaskResume() resumes a task that was suspended through the function. InOSTaskSuspend()

fact, is the only function that can “unsuspend” a suspended task.OSTaskResume()

Arguments

prio

specifies the priority of the task to resume.

Returned Value

OSTaskResume() returns one of the following error codes:

OS_NO_ERR

if the call was successful.

OS_TASK_RESUME_PRIO

if the task you are attempting to resume does not exist.

OS_TASK_NOT_SUSPENDED

if the task to resume has not been suspended.

OS_PRIO_INVALID

if prio is higher or equal to .OS_LOWEST_PRIO

µC/OS-II User's Manual

629Copyright 2015 Micrium Inc.

Notes/Warnings

None

Example

void TaskX(void *pdata)
{
 INT8U err;
 for (;;) {
 .
 .
 err = OSTaskResume(10); /* Resume task with priority 10 */
 if (err == OS_NO_ERR) {
 . /* Task was resumed */
 .
 }
 .
 .
 }
}

µC/OS-II User's Manual

630Copyright 2015 Micrium Inc.

OSTaskStkChk()

INT8U OSTaskStkChk (INT8U prio,
 OS_STK_DATA *pdata);

File Called From Code Enabled By

OS_TASK.C Task code OS_TASK_CREATE_EXT

OSTaskStkChk() determines a task’s stack statistics. Specifically, it computes the amount of

free stack space as well as the amount of stack space used by the specified task. This function

requires that the task be created with and that you specify OSTaskCreateExt()

 in the opt argument.OS_TASK_OPT_STK_CHK

Stack sizing is done by walking from the bottom of the stack and counting the number of 0

entries on the stack until a nonzero value is found. Of course, this assumes that the stack is

cleared when the task is created. For that purpose, you need to set to 1 asOS_TASK_OPT_STK_CLR

an option when you create the task. You could set to 0 if your startupOS_TASK_OPT_STK_CLR

code clears all RAM and you never delete your tasks. This would reduce the execution time of

 .OSTaskCreateExt()

Arguments

prio

is the priority of the task you want to obtain stack information about. You can check the

stack of the calling task by passing .OS_PRIO_SELF

pdata

is a pointer to a variable of type , which contains the following fields:OS_STK_DATA

Returned Value

INT32U OSFree; /* Number of bytes free on the stack */
INT32U OSUsed; /* Number of bytes used on the stack */

OSTaskStkChk() returns one of the following error codes:

µC/OS-II User's Manual

631Copyright 2015 Micrium Inc.

OS_NO_ERR

if you specified valid arguments and the call was successful.

OS_PRIO_INVALID

if you specified a task priority higher than , or you didn’t specify OS_LOWEST_PRIO

 .OS_PRIO_SELF

OS_TASK_NOT_EXIST

if the specified task does not exist.

OS_TASK_OPT_ERR

if you did not specify when the task was created by OS_TASK_OPT_STK_CHK

 or if you created the task by using .OSTaskCreateExt() OSTaskCreate()

Notes/Warnings

Execution time of this task depends on the size of the task’s stack and is thus nondeterministic.

Your application can determine the total task stack space (in number of bytes) by adding the

two fields and of the data structure..OSFree .OSUsed OS_STK_DATA

Technically, this function can be called by an ISR, but because of the possibly long execution

time, it is not advisable.

µC/OS-II User's Manual

632Copyright 2015 Micrium Inc.

Example

void Task (void *pdata)
{
 OS_STK_DATA stk_data;
 INT32U stk_size;
 for (;;) {
 .
 .
 err = OSTaskStkChk(10, &stk_data);
 if (err == OS_NO_ERR) {
 stk_size = stk_data.OSFree + stk_data.OSUsed;
 }
 .
 .
 }
}

µC/OS-II User's Manual

633Copyright 2015 Micrium Inc.

OSTaskSuspend()

INT8U OSTaskSuspend (INT8U prio);

File Called From Code Enabled By

OS_TASK.C Task only OS_TASK_SUSPEND_EN

OSTaskSuspend() suspends (or blocks) execution of a task unconditionally. The calling task can

be suspended by specifying its own priority number or if the task doesn’t knowOS_PRIO_SELF

its own priority number. In this case, another task needs to resume the suspended task. If the

current task is suspended, rescheduling occurs and µC/OS-II runs the next highest priority task

ready to run. The only way to resume a suspended task is to call .OSTaskResume()

Task suspension is additive. This means that if the task being suspended is delayed until n ticks

expire, the task is resumed only when both the time expires and the suspension is removed.

Also, if the suspended task is waiting for a semaphore and the semaphore is signaled, the task

is removed from the semaphore wait list (if it is the highest priority task waiting for the

semaphore) but execution is not resumed until the suspension is removed.

Arguments

prio

specifies the priority of the task to suspend. You can suspend the calling task by passing

 , and the next highest priority task is executed.OS_PRIO_SELF

Returned Value

OSTaskSuspend() returns one of the following error codes:

OS_NO_ERR

if the call was successful.

OS_TASK_SUSPEND_IDLE

µC/OS-II User's Manual

634Copyright 2015 Micrium Inc.

if you attempted to suspend the µC/OS-II idle task, which is not allowed.

OS_PRIO_INVALID

if you specified a priority higher than the maximum allowed (i.e., you specified a

priority of or more) or you didn’t specify .OS_LOWEST_PRIO OS_PRIO_SELF

OS_TASK_SUSPEND_PRIO

if the task you are attempting to suspend does not exist.

Notes/Warnings

OSTaskSuspend() and must be used in pairs.OSTaskResume()

A suspended task can only be resumed by .OSTaskResume()

Example

void TaskX(void *pdata)
{
 INT8U err;
 for (;;) {
 .
 .
 err = OSTaskSuspend(OS_PRIO_SELF); /* Suspend current task */
 . /* Execution continues when ANOTHER task .. */
 . /* .. explicitly resumes this task. */
 .
 }
}

µC/OS-II User's Manual

635Copyright 2015 Micrium Inc.

OSTimeDly()

void OSTimeDly (INT16U ticks);

File Called From Code Enabled By

OS_TIME.C Task only N/A

OSTimeDly() allows a task to delay itself for an integral number of clock ticks. Rescheduling

always occurs when the number of clock ticks is greater than zero. Valid delays range from

one to 65,535 ticks. A delay of 0 means that the task is not delayed and returnsOSTimeDly()

immediately to the caller. The actual delay time depends on the tick rate (see OS_TICKS_PER_SEC

in the configuration file).OS_CFG.H

Arguments

ticks

is the number of clock ticks to delay the current task.

Returned Value

None

Notes/Warnings

Note that calling this function with a value of 0 results in no delay, and the function returns

immediately to the caller. To ensure that a task delays for the specified number of ticks, you

should consider using a delay value that is one tick higher. For example, to delay a task for at

least 10 ticks, you should specify a value of 11.

µC/OS-II User's Manual

636Copyright 2015 Micrium Inc.

Example

void TaskX(void *pdata)
{
 for (;;) {
 .
 .
 OSTimeDly(10); /* Delay task for 10 clock ticks */
 .
 .
 }
}

µC/OS-II User's Manual

637Copyright 2015 Micrium Inc.

OSTimeDlyHMSM()

void OSTimeDlyHMSM (INT8U hours,
 INT8U minutes,
 INT8U seconds,
 INT8U milli);

File Called From Code Enabled By

OS_TIME.C Task only

OSTimeDlyHMSM() allows a task to delay itself for a user-specified amount of time specified in

hours, minutes, seconds, and milliseconds. This is a more convenient and natural format than

ticks. Rescheduling always occurs when at least one of the parameters is nonzero.

Arguments

hours

is the number of hours the task will be delayed. The valid range of values is 0 to 255.

minutes

is the number of minutes the task will be delayed. The valid range of values is 0 to 59.

seconds

is the number of seconds the task will be delayed. The valid range of values is 0 to 59.

milli

is the number of milliseconds the task will be delayed. The valid range of values is 0 to

999. Note that the resolution of this argument is in multiples of the tick rate. For instance,

if the tick rate is set to 100 Hz, a delay of 4ms results in no delay. The delay is rounded to

the nearest tick. Thus, a delay of 15ms actually results in a delay of 20ms.

Returned Value

OSTimeDlyHMSM() returns one of the following error codes:

µC/OS-II User's Manual

638Copyright 2015 Micrium Inc.

OS_NO_ERR

if you specified valid arguments and the call was successful.

OS_TIME_INVALID_MINUTES

if the minutes argument is greater than 59.

OS_TIME_INVALID_SECONDS

if the seconds argument is greater than 59.

OS_TIME_INVALID_MILLI

if the milliseconds argument is greater than 999.

OS_TIME_ZERO_DLY

if all four arguments are 0.

Notes/Warnings

Note that (i.e., hours, minutes, seconds, milli) results in no delay, andOSTimeDlyHMSM(0,0,0,0)

the function returns to the caller. Also, if the total delay time is longer than 65,535 clock ticks,

you will not be able to abort the delay and resume the task by calling .OSTimeDlyResume()

Example

void TaskX(void *pdata)
{
 for (;;) {
 .
 .
 OSTimeDlyHMSM(0, 0, 1, 0); /* Delay task for 1 second */
 .
 .
 }
}

µC/OS-II User's Manual

639Copyright 2015 Micrium Inc.

OSTimeDlyResume()

INT8U OSTimeDlyResume (INT8U prio);

File Called From Code Enabled By

OS_TIME.C Task only

OSTimeDlyResume() resumes a task that has been delayed through a call to either orOSTimeDly()

 .OSTimeDlyHMSM()

Arguments

prio

specifies the priority of the task to resume.

Returned Value

OSTimeDlyResume() returns one of the following error codes:

OS_NO_ERR

if the call was successful.

OS_PRIO_INVALID

if you specified a task priority greater than .OS_LOWEST_PRIO

OS_TIME_NOT_DLY

if the task is not waiting for time to expire.

OS_TASK_NOT_EXIST

if the task has not been created.

µC/OS-II User's Manual

640Copyright 2015 Micrium Inc.

Notes/Warnings

Note that you must not call this function to resume a task that is waiting for an event with

timeout. This situation would make the task look like a timeout occurred (unless you desire

this effect).

You cannot resume a task that has called with a combined time that exceedsOSTimeDlyHMSM()

65,535 clock ticks. In other words, if the clock tick runs at 100 Hz, you will not be able to

resume a delayed task that called or higher.OSTimeDlyHMSM(0, 10, 55, 350)

(10 minutes * 60 + (55 + 0.35) seconds) * 100 ticks/second

Example

void TaskX(void *pdata)
{
 INT8U err;
 pdata = pdata;
 for (;;) {
 .
 err = OSTimeDlyResume(10); /* Resume task with priority 10 */
 if (err == OS_NO_ERR) {
 . /* Task was resumed */
 .
 }
 .
 }
}

µC/OS-II User's Manual

641Copyright 2015 Micrium Inc.

OSTimeGet()

INT32U OSTimeGet (void);

File Called From Code Enabled By

OS_TIME.C Task or ISR

OSTimeGet() obtains the current value of the system clock. The system clock is a 32-bit counter

that counts the number of clock ticks since power was applied or since the system clock was

last set.

Arguments

None

Returned Value

The current system clock value (in number of ticks).

Notes/Warnings

None

Example

void TaskX(void *pdata)
{
 INT32U clk;
 for (;;) {
 .
 .
 clk = OSTimeGet(); /* Get current value of system clock */
 .
 .
 }
}

µC/OS-II User's Manual

642Copyright 2015 Micrium Inc.

OSTimeSet()

void OSTimeSet (INT32U ticks);

File Called From Code Enabled By

OS_TIME.C Task or ISR

OSTimeSet() sets the system clock. The system clock is a 32-bit counter that counts the number

of clock ticks since power was applied or since the system clock was last set.

Arguments

ticks

is the desired value for the system clock, in ticks.

Returned Value

None

Notes/Warnings

None

Example

void TaskX(void *pdata)
{
 for (;;) {
 .
 .
 OSTimeSet(0L); /* Reset the system clock */
 .
 .
 }
}

µC/OS-II User's Manual

643Copyright 2015 Micrium Inc.

OSTimeTick()

void OSTimeTick (void);

File Called From Code Enabled By

OS_TIME.C Task or ISR N/A

OSTimeTick() processes a clock tick. µC/OS-II checks all tasks to see if they are either waiting

for time to expire [because they called or] or waiting for eventsOSTimeDly() OSTimeDlyHMSM()

to occur until they timeout.

Arguments

None

Returned Value

None

Notes/Warnings

The execution time of is directly proportional to the number of tasks created inOSTimeTick()

an application. can be called by either an ISR or a task. If called by a task, theOSTimeTick()

task priority should be very high (i.e., have a low priority number) because this function is

responsible for updating delays and timeouts.

Example

(Intel 80x86, real mode, large model)

_OSTickISR PROC FAR
 PUSHA ; Save processor context
 PUSH ES
 PUSH DS
;
 MOV AX, SEG(_OSIntNesting) ; Reload DS
 MOV DS, AX
 INC BYTE PTR DS:_OSIntNesting ; Notify uC/OS-II of ISR
;
 CMP BYTE PTR DS:_OSIntNesting, 1 ; if (OSIntNesting == 1)
 JNE SHORT _OSTickISR1

µC/OS-II User's Manual

644Copyright 2015 Micrium Inc.

 MOV AX, SEG(_OSTCBCur) ; Reload DS
 MOV DS, AX
 LES BX, DWORD PTR DS:_OSTCBCur ; OSTCBCur->OSTCBStkPtr = SS:SP
 MOV ES:[BX+2], SS ;
 MOV ES:[BX+0], SP ;
 CALL FAR PTR _OSTimeTick ; Process clock tick
 . ; User Code to clear interrupt
 .
 CALL FAR PTR _OSIntExit ; Notify ?C/OS-II of end of ISR
 POP DS ; Restore processor registers
 POP ES
 POPA
;
 IRET ; Return to interrupted task
_OSTickISR ENDP

µC/OS-II User's Manual

645Copyright 2015 Micrium Inc.

OSTmrCreate()

OS_TMR *OSTmrCreate(INT32U dly,
 INT32U period,
 INT8U opt,
 OS_TMR_CALLBACK callback,
 void *callback_arg,
 INT8U *pname,
 INT8U *perr);

File Called from Code enabled by

OS_TMR.C Task OS_TMR_EN

OSTmrCreate() allows you to create a timer. The timer can be configured to run continuously (

 set to) or only once (set to). When theopt OS_TMR_OPT_PERIODIC opt OS_TMR_OPT_ONE_SHOT

timer counts down to (from the value specified in), an optional ‘ ’ function0 period callback

can be executed. The callback can be used to signal a task that the timer expired or, perform

any other function. However, it’s recommended that you keep the callback function as short as

possible.

You call to actually start the timer. If you configured the timer for oneMUST OSTmrStart()

shot mode and the timer expired, you need to call to retrigger the timer or OSTmrStart()

 to delete the timer if you don’t plan on retriggering it and or not use the timerOSTmrDel()

anymore. Note that you can use the callback function to delete the timer if you use the one shot

mode.

Arguments

dly

specifies an initial delay used by the timer (see drawing below).

In ONE-SHOT mode, this is the time of the one-shot.

If in PERIODIC mode, this is the initial delay before the timer enters periodic mode.

The units of this time depends on how often you call . In other words, if OSTmrSignal()

 is called every 1/10 of a second (i.e. set to)OSTmrSignal() OS_TMR_CFG_TICKS_PER_SEC 10

then, specifies the number of 1/10 of a second before the delay expires. Note that thedly

µC/OS-II User's Manual

646Copyright 2015 Micrium Inc.

timer is started when it is created.NOT

period

specifies the amount of time it will take before the timer expires. You should set the ‘

’ to 0 when you use one-shot mode. The units of this time depends on how oftenperiod

you call . In other words, if is called every 1/10 of a secondOSTmrSignal() OSTmrSignal()

(i.e. set to) then, specifies the number of 1/10 of aOS_TMR_CFG_TICKS_PER_SEC 10 period

second before the timer times out.

opt

OS_TMR_OPT_PERIODIC

specifies whether you want to timer to automatically reload itself.

OS_TMR_OPT_ONE_SHOT

specifies to stop the timer when it times out.

Note that you select one of these two options.MUST

callback

specifies the address of a function (optional) that you want to execute when the timer

expires or, is terminated before it expires (i.e. by calling). The callbackOSTmrStop()

function must be declared as follows:

void MyCallback (void *ptmr, void *callback_arg);

When the timer expires, this function will be called and passed the timer ‘handle’ of the

expiring timer as well as the argument specified by .callback_arg

You should note that you don’t have to specify a callback and, in this case, simply pass a

 pointer.NULL

callback_arg

µC/OS-II User's Manual

647Copyright 2015 Micrium Inc.

Is the argument passed to the callback function when the timer expires or is terminated.

 can be a pointer if the callback function doesn’t require arguments.callback_arg NULL

pname

Is a pointer to an ASCII string that allows you to give a name to your timer. You can

retrieve this name by calling .OSTmrNameGet()

perr

a pointer to an error code and can be any of the following:

OS_ERR_NONE

If the timer was created successfully.

OS_ERR_TMR_INVALID_DLY

You specified a delay of 0 when in ONE SHOT mode.

OS_ERR_TMR_INVALID_PERIOD

You specified a period of 0 when in PERIODIC mode.

OS_ERR_TMR_INVALID_OPT

If you did not specify either or .OS_TMR_OPT_PERIODIC OS_TMR_OPT_ONE_SHOT

OS_ERR_TMR_ISR

If you called this function from an ISR, which you are not allowed to do.

OS_ERR_TMR_NON_AVAIL

You get this error when you cannot start a timer because all timer elements (i.e.

objects) have already been allocated.

PERIODIC MODE (see ‘ ’) – opt dly > 0

µC/OS-II User's Manual

648Copyright 2015 Micrium Inc.

1.

2.

3.

PERIODIC MODE (see ‘ ’) – opt dly == 0

ONE-SHOT MODE (see ‘ ’) – MUST be non-zeroopt dly

Returned Values

A pointer to an object that you use to reference the timer that you just created.OS_TMR MUST

A pointer is returned if the timer was not created because of errors (see returned errorNULL

codes).

Notes/Warnings

You should examine the return value to make sure what you get from this function is

valid.

You call this function from an ISR.MUST NOT

Note that the timer is started when it is created. To start the timer, you callNOT MUST

.OSTmrStart()

Example

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)
{
 INT8U err;

 (void)p_arg;
 for (;;) {
 CloseDoorTmr = OSTmrCreate(10,
 100,
 OS_TMR_OPT_PERIODIC,
 DoorCloseFnct,
 (void *)0,
 “Door Close”,
 &err);
 if (err == OS_ERR_NONE) {
 /* Timer was created but NOT started */
 }
 }
}

µC/OS-II User's Manual

649Copyright 2015 Micrium Inc.

OSTmrDel()

BOOLEAN OSTmrDel(OS_TMR *ptmr,
 INT8U *perr);

File Called from Code enabled by

OS_TMR.C Task OS_TMR_EN

OSTmrDel() allows you to delete a timer. If a timer was running, it will be stopped and then

deleted. If the timer has already timed out and is thus stopped, it will simply be deleted.

It is up to you to delete unused timers. If you delete a timer you reference itMUST NOT

anymore.

Arguments

ptmr

is a pointer to the timer that you want to delete. This pointer is returned to you when the

timer is created (see).OSTmrCreate()

perr

a pointer to an error code and can be any of the following:

OS_ERR_NONE

If the timer was deleted successfully.

OS_ERR_TMR_INVALID

If you passed a pointer for the argument.NULL ptmr

OS_ERR_TMR_INVALID_TYPE

‘ ’ is not pointing to a timer.ptmr

µC/OS-II User's Manual

650Copyright 2015 Micrium Inc.

1.

2.

3.

OS_ERR_TMR_ISR

You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE

ptmr is pointing to an inactive timer. In other words, you would get this error if you

are pointing to a timer that has been deleted or was not created.

OS_ERR_TMR_INVALID_STATE

The timer is in an invalid state.

Returned Values

OS_TRUE if the timer was deleted

OS_FALSE if an error occurred.

Notes/Warnings

You should examine the return value to make sure what you get from this function is

valid.

You call this function from an ISR.MUST NOT

If you delete a timer you reference it anymore.MUST NOT

µC/OS-II User's Manual

651Copyright 2015 Micrium Inc.

Example

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)
{
 INT8U err;

 (void)p_arg;
 for (;;) {
 CloseDoorTmr = OSTmrDel(CloseDoorTmr,
 &err);
 if (err == OS_ERR_NONE) {
 /* Timer was deleted ... DO NOT reference it anymore! */
 }
 }
}

µC/OS-II User's Manual

652Copyright 2015 Micrium Inc.

OSTmrNameGet()

INT8U OSTmrNameGet(OS_TMR *ptmr,
 INT8U **pdest,
 INT8U *perr);

File Called from Code enabled by

OS_TMR.C Task OS_TMR_EN && OS_TMR_CFG_NAME_EN

OSTmrNameGet() allows you to retrieve the name associated with the specified timer.

 places the name of the timer in an array of characters which must be as big as OSTmrNameGet()

 (see).OS_TMR_CFG_NAME_SIZE OS_CFG.H

Arguments

ptmr

is a pointer to the timer that you are inquiring about. This pointer is returned to you when

the timer is created (see).OSTmrCreate()

pdest

is a pointer to a pointer to the name of the timer.

perr

a pointer to an error code and can be any of the following:

OS_ERR_NONE

If the name of the task was copied to the array pointed to by .pname

OS_ERR_TMR_INVALID_DEST

If you specified a pointer for .NULL pdest

OS_ERR_TMR_INVALID

µC/OS-II User's Manual

653Copyright 2015 Micrium Inc.

If you passed a pointer for the argument.NULL ptmr

OS_ERR_TMR_INVALID_TYPE

‘ ’ is not pointing to a timer.ptmr

OS_ERR_NAME_GET_ISR

You called this function from an ISR which is allowed.NOT

OS_ERR_TMR_INACTIVE

ptmr is pointing to an inactive timer. In other words, you would get this error if you

are pointing to a timer that has been deleted or was not created.

OS_ERR_TMR_INVALID_STATE

The timer is in an invalid state.

Returned Values

The length of the timer name (in number of characters).

Notes/Warnings

You should examine the return value of this function.

You call this function from an ISR.MUST NOT

µC/OS-II User's Manual

654Copyright 2015 Micrium Inc.

Example

INT8U *CloseDoorTmrName;
OS_TMR *CloseDoorTmr;

void Task (void *p_arg)
{
 INT8U err;

 (void)p_arg;
 for (;;) {
 OSTmrNameGet(CloseDoorTmr, &CloseDoorTmrName, &err);
 if (err == OS_ERR_NONE) {
 /* CloseDoorTmrName points to the name of the timer */
 }
 }
}

µC/OS-II User's Manual

655Copyright 2015 Micrium Inc.

OSTmrRemainGet()

INT32U OSTmrRemainGet(OS_TMR *ptmr,
 INT8U *perr);

File Called from Code enabled by

OS_TMR.C Task OS_TMR_EN

OSTmrRemainGet() allows you to obtain the time remaining (before it times out) of the specified

timer. The value returned depends on the rate (in Hz) at which the timer task is signaled (see

 in). In other words, if is set toOS_TMR_CFG_TICKS_PER_SEC OS_CFG.H OS_TMR_CFG_TICKS_PER_SEC

 then the value returned is the number of 1/10 of a second before the timer times out. If the10

timer has timed out, the value returned will be .0

Arguments

ptmr

is a pointer to the timer that you are inquiring about. This pointer is returned to you when

the timer is created (see).OSTmrCreate()

perr

a pointer to an error code and can be any of the following:

OS_ERR_NONE

If the function returned the time remaining for the timer.

OS_ERR_TMR_INVALID

If you passed a pointer for the argument.NULL ptmr

OS_ERR_TMR_INVALID_TYPE

‘ ’ is not pointing to a timer.ptmr

µC/OS-II User's Manual

656Copyright 2015 Micrium Inc.

1.

2.

OS_ERR_TMR_ISR

You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE

ptmr is pointing to an inactive timer. In other words, you would get this error if you

are pointing to a timer that has been deleted or was not created.

OS_ERR_TMR_INVALID_STATE

The timer is in an invalid state.

Returned Values

The time remaining for the timer. The value returned depends on the rate (in Hz) at which the

timer task is signaled (see in). In other words, if OS_TMR_CFG_TICKS_PER_SEC OS_CFG.H

is set to then the value returned is the number of 1/10 of aOS_TMR_CFG_TICKS_PER_SEC 10

second before the timer times out. If you specified an invalid timer, the returned value will be 0

. If the timer has already expired then the returned value will be .0

Notes/Warnings

You should examine the return value to make sure what you get from this function is

valid.

You call this function from an ISR.MUST NOT

µC/OS-II User's Manual

657Copyright 2015 Micrium Inc.

Example

INT32U TimeRemainToCloseDoor;
OS_TMR *CloseDoorTmr;

void Task (void *p_arg)
{
 INT8U err;

 (void)p_arg;
 for (;;) {
 TimeRemainToCloseDoor = OSTmrRemainGet(CloseDoorTmr, &err);
 if (err == OS_ERR_NONE) {
 /* Call was successful */
 }
 }
}

µC/OS-II User's Manual

658Copyright 2015 Micrium Inc.

OSTmrSignal()

INT8U OSTmrSignal(void);

File Called from Code enabled by

OS_TMR.C Task or ISR OS_TMR_EN

OSTmrSignal() is called either by a task or an ISR to indicate that it’s time to update the timers.

Typically, would be called by at a multiple of the tick rate. InOSTmrSignal() OSTimeTickHook()

other words, if is set to in then you should call OS_TICKS_PER_SEC 1000 OS_CFG.H OSTmrSignal()

every 10 or 100 tick interrupt (100 Hz or 10 Hz, respectively). You should typically call th th

 every 1/10 of a second. The higher the timer rate, of course, the more overheadOSTmrSignal()

timer management will impose on your system. Generally, we recommend 10 Hz (1/10 of a

second).

You ‘could’ call from the µC/OS-II tick ISR hook function (see exampleOSTmrSignal()

below). If the tick rate occurs at 1000 Hz then you can simply call every 100OSTmrSignal() th

tick. Of course, you would have to implement a simple counter to do this.

Arguments

None.

Returned Values

OSTmrSignal()

uses semaphores to implement the signaling mechanism. Because of that, OSTmrSignal()

can return one of the following errors. However, it’s very unlikely you will get anything

else but .OS_ERR_NONE

OS_ERR_NONE

The call was successful and the timer task was signaled.

OS_ERR_SEM_OVF

µC/OS-II User's Manual

659Copyright 2015 Micrium Inc.

If was called more often than can handle the timers. ThisOSTmrSignal() OSTmr_Task()

would indicate that your system is heavily loaded.

OS_ERR_EVENT_TYPE

Unlikely you would get this error because the semaphore used for signaling is created by

µC/OS-II.

OS_ERR_PEVENT_NULL

Again, unlikely you would ever get this error because the semaphore used for signaling is

created by µC/OS-II.

Notes/Warnings

None.

Example

#if OS_TMR_EN > 0
static INT16U OSTmrTickCtr = 0;
#endif

void OSTimeTickHook (void)
{
#if OS_TMR_EN > 0
 OSTmrTickCtr++;
 if (OSTmrTickCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) {
 OSTmrTickCtr = 0;
 OSTmrSignal();
 }
#endif
}

µC/OS-II User's Manual

660Copyright 2015 Micrium Inc.

OSTmrStart()

BOOLEAN OSTmrStart(OS_TMR *ptmr,
 INT8U *perr);

File Called from Code enabled by

OS_TMR.C Task OS_TMR_EN

OSTmrStart() allows you to start (or restart) the countdown process of a timer. The timer to

start have previously been created.MUST

Arguments

ptmr

is a pointer to the timer that you want to start (or restart). This pointer is returned to you

when the timer is created (see).OSTmrCreate()

perr

a pointer to an error code and can be any of the following:

OS_ERR_NONE

If the timer was started.

OS_ERR_TMR_INVALID

If you passed a pointer for the argument.NULL ptmr

OS_ERR_TMR_INVALID_TYPE

‘ ’ is not pointing to a timer.ptmr

OS_ERR_TMR_ISR

You called this function from an ISR which is NOT allowed.

µC/OS-II User's Manual

661Copyright 2015 Micrium Inc.

1.

2.

3.

OS_ERR_TMR_INACTIVE

ptmr is pointing to an inactive timer. In other words, you would get this error if you

are pointing to a timer that has been deleted or was not created.

OS_ERR_TMR_INVALID_STATE

The timer is in an invalid state.

Returned Values

OS_TRUE if the timer was started

OS_FALSE if an error occurred.

Notes/Warnings

You should examine the return value to make sure what you get from this function is

valid.

You call this function from an ISR.MUST NOT

The timer to start have previously been created.MUST

Example

OS_TMR *CloseDoorTmr;
BOOLEAN status;

void Task (void *p_arg)
{
 INT8U err;

 (void)p_arg;
 for (;;) {
 status = OSTmrStart(CloseDoorTmr,
 &err);
 if (err == OS_ERR_NONE) {
 /* Timer was started */
 }
 }
}

µC/OS-II User's Manual

662Copyright 2015 Micrium Inc.

OSTmrStateGet()

INT8U OSTmrStateGet(OS_TMR *ptmr,
 INT8U *perr);

File Called from Code enabled by

OS_TMR.C Task OS_TMR_EN

OSTmrStateGet() allows you to obtain the current state of a timer. A timer can be in one of 4

states:

OS_TMR_STATE_UNUSED

The timer has not been created

OS_TMR_STATE_STOPPED

The timer has been created but has not been started or has been stopped.

OS_TMR_STATE_COMPLETED

The timer is in ONE-SHOT mode and has completed its delay.

OS_TMR_STATE_RUNNING

The timer is currently running

Arguments

ptmr

is a pointer to the timer that you are inquiring about. This pointer is returned to you when

the timer is created (see).OSTmrCreate()

perr

µC/OS-II User's Manual

663Copyright 2015 Micrium Inc.

1.

2.

a pointer to an error code and can be any of the following:

OS_ERR_NONE

If the function returned the time remaining for the timer.

OS_ERR_TMR_INVALID

If you passed a pointer for the argument.NULL ptmr

OS_ERR_TMR_INVALID_TYPE

‘ ’ is not pointing to a timer.ptmr

OS_ERR_TMR_ISR

You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE

ptmr is pointing to an inactive timer. In other words, you would get this error if you

are pointing to a timer that has been deleted or was not created.

OS_ERR_TMR_INVALID_STATE

The timer is in an invalid state.

Returned Values

The state of the timer (see description).

Notes/Warnings

You should examine the return value to make sure what you get from this function is

valid.

You call this function from an ISR.MUST NOT

µC/OS-II User's Manual

664Copyright 2015 Micrium Inc.

Example

INT8U CloseDoorTmrState;
OS_TMR *CloseDoorTmr;

void Task (void *p_arg)
{
 INT8U err;

 (void)p_arg;
 for (;;) {
 CloseDoorTmrState = OSTmrStateGet(CloseDoorTmr, &err);
 if (err == OS_ERR_NONE) {
 /* Call was successful */
 }
 }
}

µC/OS-II User's Manual

665Copyright 2015 Micrium Inc.

OSTmrStop()

BOOLEAN OSTmrStop(OS_TMR *ptmr,
 INT8U opt,
 void *callback_arg,
 INT8U *perr);

File Called from Code enabled by

OS_TMR.C Task OS_TMR_EN

OSTmrStop() allows you to stop (i.e. abort) a timer. You can execute the callback function of

the timer when it’s stopped and pass this callback function a different argument than what was

specified when the timer was started. This allows your callback function to that the timerknow

was stopped because the callback argument can be made to indicate this (this, of course, is

application specific). If the timer is already stopped, the callback function is not called.

Arguments

ptmr

Is a pointer to the timer you want to stop. This ‘handle’ was returned to your application

when you called and uniquely identifies the timer.OSTmrStart()

opt

specifies whether you want the timer to:

1) OS_TMR_OPT_NONE

Do NOT call the callback function.

2) OS_TMR_OPT_CALLBACK

Call the callback function and pass it the callback argument specified when you

started the timer (see).OSTmrCreate()

3) OS_TMR_OPT_CALLBACK_ARG

µC/OS-II User's Manual

666Copyright 2015 Micrium Inc.

Call the callback function BUT pass it the callback argument specified in the

 function INSTEAD of the one defined in .OSTmrStop() OSTmrCreate()

callback_arg

If you set to then this is the argument passed to the callbackopt OS_TMR_OPT_CALLBACK_ARG

function when it’s executed.

perr

a pointer to an error code and can be any of the following:

OS_ERR_NONE

If the timer was started.

OS_ERR_TMR_INVALID

If you passed a pointer for the argument.NULL ptmr

OS_ERR_TMR_INVALID_TYPE

‘ ’ is not pointing to a timer.ptmr

OS_ERR_TMR_ISR

You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INVALID_OPT

You specified an invalid option for ‘ ’.opt

OS_ERR_TMR_STOPPED

The timer was already stopped. However, this is NOT considered an actual error

since it’s OK to attempt to stop a timer that is already stopped.

OS_ERR_TMR_INACTIVE

µC/OS-II User's Manual

667Copyright 2015 Micrium Inc.

1.

2.

3.

ptmr is pointing to an inactive timer. In other words, you would get this error if you

are pointing to a timer that has been deleted or was not created.

OS_ERR_TMR_INVALID_STATE

The timer is in an invalid state.

OS_ERR_TMR_NO_CALLBACK

If you wanted the callback to be called but no callback has been specified for this

timer.

Returned Values

OS_TRUE if the timer was stopped (even if it was already stopped).

OS_FALSE if an error occurred.

Notes/Warnings

You should examine the return value to make sure what you get from this function is

valid.

You call this function from an ISR.MUST NOT

The callback function is called if the timer is already stopped.NOT

µC/OS-II User's Manual

668Copyright 2015 Micrium Inc.

Example

OS_TMR *CloseDoorTmr;

void Task (void *p_arg)
{
 INT8U err;

 (void)p_arg;
 for (;;) {
 OSTmrStop(CloseDoorTmr,
 OS_TMR_OPT_CALLBACK,
 (void *)0,
 &err);
 if (err == OS_ERR_NONE || err == OS_ERR_TMR_STOPPED) {
 /* Timer was stopped ... */
 /* ... callback was called only if timer was running */
 }
 }
}

µC/OS-II User's Manual

669Copyright 2015 Micrium Inc.

OSVersion()

File Called From Code Enabled By

OS_CORE.C Task or ISR N/A

OSVersion() obtains the current version of µC/OS-II.

Arguments

None

Return Value

The version is returned as x.yy multiplied by 100. For example, version 2.52 is returned as

252.

Notes/Warnings

None

Example

void TaskX(void *pdata)
{
 INT16U os_version;
 for (;;) {
 .
 .
 os_version = OSVersion(); /* Obtain µC/OS-II's version */
 .
 .
 }
}

µC/OS-II User's Manual

670Copyright 2015 Micrium Inc.

µC/OS-II Configuration Manual
This chapter provides a description of the configurable elements of µC/OS-II. Because

µC/OS-II is provided in source form, configuration is done through a number of #define

constants, which are found in and should exist for each project/product that youOS_CFG.H

develop. In other words, configuration is done via conditional compilation.

Instead of creating an file from scratch, it is recommended that you copy and modifyOS_CFG.H

one of the files provided in one of the examples that came with µC/OS-II. isOS_CFG.H OS_CFG.H

independent of the type of CPU used.

This section describes each of the constants in .#define OS_CFG.H

µC/OS-II User's Manual

671Copyright 2015 Micrium Inc.

Miscellaneous

OS_APP_HOOKS_EN

When set to , this specifies that application defined hooks are called from µC/OS-II’s1 #define

hooks. See also . Specifically:OS_CPU_HOOKS_EN

The µC/OS-II hook… Calls the Application-define hook…

OSTaskCreateHook() App_TaskCreateHook()

OSTaskDelHook() App_TaskDelHook()

OSTaskIdleHook() App_TaskIdleHook()

OSTaskStatHook() App_TaskStatHook()

OSTaskSwHook() App_TaskSwHook()

OSTCBInitHook() App_TCBInitHook()

OSTimeTickHook() App_TimeTickHook()

OS_ARG_CHK_EN

OS_ARG_CHK_EN indicates whether you want most of µC/OS-II functions to perform argument

checking. When set to , µC/OS-II will ensure that pointers passed to functions are non- ,1 NULL

that arguments passed are within allowable range and more. was added toOS_ARG_CHK_EN

reduce the amount of code space and processing time required by µC/OS-II. Set OS_ARG_CHK_EN

to if you must reduce code space to a minimum. In general, you should always enable0

argument checking and thus set to 1.OS_ARG_CHK_EN

OS_CPU_HOOKS_EN

OS_CPU_HOOKS_EN indicates whether declares the hook function (when set to) orOS_CPU_C.C 1

not (when set to). Recall that µC/OS-II expects the presence of nine functions that can be0

defined either in the port (i.e., in) or by the application code. These functions are:OS_CPU_C.C

OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTaskSwHook()

µC/OS-II User's Manual

672Copyright 2015 Micrium Inc.

OSTCBInitHook()
OSTimeTickHook()

OS_DEBUG_EN

When set to , this adds ROM constants located in to help support kernel1 #define OS_DEBUG.C

aware debuggers. Specifically, a number of named ROM variables can be queried by a

debugger to find out about compiled-in options. For example, the debugger can find out the

size of an , µC/OS-II’s version number, the size of an event flag group ()OS_TCB OS_FLAG_GRP

and much more.

OS_EVENT_MULTI_EN

This constant determines whether the code to support pending on multiple events will be

enabled (1) or not (0). This constant thus enables code for the function .OSEventPendMulti()

This was added in V2.86.#define

OS_EVENT_NAME_EN

This constant determines whether names can be assigned to either a semaphore, a mutex, a

mailbox or a message queue. If is set to , this feature is disabled. YouOS_EVENT_NAME_EN 0

should note that need to use to set the name of either a semaphores, a mutex,OSEventNameSet()

a mailbox or a message queue. You need to use to obtain the name of eitherOSEventNameGet()

a semaphores, a mutex, a mailbox or a message queue.

µC/OS-II User's Manual

673Copyright 2015 Micrium Inc.

OS_LOWEST_PRIO

OS_LOWEST_PRIO specifies the lowest task priority (i.e., highest number) that you intend to use

in your application and is provided to reduce the amount of RAM needed by µC/OS-II. As of

V2.80 µC/OS-II priorities can go from 0 (highest priority) to a maximum of 254 (lowest

possible priority). Setting to a value less than 254 means that your applicationOS_LOWEST_PRIO

cannot create tasks with a priority number higher than . In fact, µC/OS-IIOS_LOWEST_PRIO

reserves priorities and for itself; is reservedOS_LOWEST_PRIO OS_LOWEST_PRIO–1 OS_LOWEST_PRIO

for the idle task, and is reserved for the statistic task, OS_TaskIdle(), OS_LOWEST_PRIO–1

. The priorities of your application tasks can thus take a value between 0 and OS_TaskStat()

 (inclusive). The lowest task priority specified by isOS_LOWEST_PRIO–2 OS_LOWEST_PRIO

independent of . For example, you can set to 10 and OS_MAX_TASKS OS_MAX_TASKS

 to 32 and have up to 10 application tasks, each of which can have a taskOS_LOWEST_PRIO

priority value between 0 and 30 (inclusive). Note that each task must still have a different

priority value. You must always set to a value greater than the number ofOS_LOWEST_PRIO

application tasks in your system. For example, if you set to 20 and OS_MAX_TASKS

 to 10, you can not create more than eight application tasks (0 to 7) sinceOS_LOWEST_PRIO

priority 8 is the statistics task and priority 9 is the idle task. You are simply wasting RAM.

OS_MAX_EVENTS

OS_MAX_EVENTS specifies the maximum number of event control blocks that can be allocated.

An event control block is needed for every message mailbox, message queue, mutual exclusion

semaphore, or semaphore object. For example, if you have 10 mailboxes, five queues, four

mutexes, and three semaphores, you must set to at least 22. mustOS_MAX_EVENTS OS_MAX_EVENTS

be greater than 0. See also , , , and .OS_MBOX_EN OS_Q_EN OS_MUTEX_EN OS_SEM_EN

OS_MAX_FLAGS

OS_MAX_FLAGS specifies the maximum number of event flags that you need in your application.

 must be greater than 0. To use event-flag services, you also need to set OS_MAX_FLAGS

 to 1.OS_FLAG_EN

µC/OS-II User's Manual

674Copyright 2015 Micrium Inc.

OS_MAX_MEM_PART

OS_MAX_MEM_PART specifies the maximum number of memory partitions that your application

can create. To use memory partitions, also need to set to . If you intend to useOS_MEM_EN 1

memory partitions, must be set to at least the number of partitions you wishOS_MAX_MEM_PART

to create. For example, by setting to , your are allowed to create and use upOS_MAX_MEM_PART 3

to three memory partitions. Setting to a number greater than the number ofOS_MAX_MEM_PART

memory partitions your application uses will not cause problems but is unnecessary and a

waste of RAM.

OS_MAX_QS

OS_MAX_QS specifies the maximum number of message queues that your application can create.

To use message queues, you also must set to . If you intend to use message queues, OS_Q_EN 1

 must be set to at least the number of queues you wish to create. For example, if youOS_MAX_QS

set to , you are allowed to create and use up to three message queues. Setting OS_MAX_QS 3

 to greater than the number of message queues your application uses will not causeOS_MAX_QS

problems but is unnecessary and a waste of RAM.

OS_MAX_TASKS

OS_MAX_TASKS specifies the maximum number of tasks that can exist in yourapplication

application. Note that cannot be greater than (as of V2.80) because µC/OS-IIOS_MAX_TASKS 253

currently reserves two tasks for itself (see in). If you set OS_N_SYS_TASKS uCOS_II.H

 to the exact number of tasks in your system, you need to make sure that youOS_MAX_TASKS

revise this value when you add additional tasks. Conversely, if you make muchOS_MAX_TASKS

higher than your current task requirements (for future expansion), you are wasting valuable

RAM.

OS_SCHED_LOCK_EN

This constant enables (when set to 1) or disables (when set to 0) code generation for the two

functions and .OSSchedLock() OSSchedUnlock()

µC/OS-II User's Manual

675Copyright 2015 Micrium Inc.

OS_TICK_STEP_EN

µC/OS-View (a Micrium product that allows you to display run-time data about your tasks on a

Windows-based PC) can now ‘halt’ µC/OS-II’s tick processing and allow you to issue ‘step’

commands from µC/OS-View. In other words, µC/OS-View can prevent µC/OS-II from calling

 so that timeouts and time delays are no longer processed. However, though aOSTimeTick()

keystroke from µC/OS-View, you can execute a single tick at a time. If OS_TIME_TICK_HOOK_EN

(see below) is set to , is still executed at the regular tick rate in case you1 OSTimeTickHook()

have time critical items to take care of in your application.

OS_TICKS_PER_SEC

OS_TICKS_PER_SEC specifies the rate at which you call . It is up to yourOSTimeTick()

initialization code to ensure that is invoked at this rate. This constant is used by OSTimeTick()

, , and .OSStatInit() OS_TaskStat() OSTimeDlyHMSM()

OS_TLS_TBL_SIZE

OS_TLS_TBL_SIZE performs two functions. By defining this you indicate that you desire#define

to have Thread Local Storage (TLS) support for either the CCES tools from Analog Devices

Inc (ADI) or Embedded Workbench from IAR. The value of this #define determines the

number of ‘elements’ needed in the TLS table for the desired toolchain. Each entry is typically

a pointer size variable. You should specify for both tools. 5

µC/OS-II User's Manual

676Copyright 2015 Micrium Inc.

Event Flags

OS_FLAG_EN

OS_FLAG_EN enables (when set to 1) or disables (when set to 0) code generation of all the

event-flag services and data structures, which reduces the amount of code and data space

 isneeded when your application does not require the use of event flags. When OS_FLAG_EN

set to 0, you do not need to enable or disable any of the other constants in this section.#define

OS_FLAG_ACCEPT_EN

OS_FLAG_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function .OSFlagAccept()

OS_FLAG_DEL_EN

OS_FLAG_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSFlagDel()

OS_FLAG_NAME_EN

This constant determines whether names can be assigned to event flag groups. If

 is set to , this feature is disabled.OS_FLAG_NAME_EN 0

OS_FLAG_QUERY_EN

OS_FLAG_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSFlagQuery()

OS_FLAG_WAIT_CLR_EN

OS_FLAG_WAIT_CLR_EN enables (when set to 1) or disables (when set to 0) the code generation

used to wait for event flags to be 0 instead of 1. Generally, you want to wait for event flags to

be set. However, you might also want to wait for event flags to be clear, and thus you need to

enable this option.

µC/OS-II User's Manual

677Copyright 2015 Micrium Inc.

OS_FLAGS_NBITS

OS_FLAGS_NBITS has been introduced in V2.80 and specifies the number of bits used in event

flags and MUST be either 8, 16 or 32.

µC/OS-II User's Manual

678Copyright 2015 Micrium Inc.

Message Mailboxes

OS_MBOX_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of all

message-mailbox services and data structures, which reduces the amount of code space needed

when your application does not require the use of message mailboxes. When is setOS_MBOX_EN

to 0, you do not need to enable or disable any of the other constants in this section.#define

OS_MBOX_ACCEPT_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSMboxAccept()

OS_MBOX_DEL_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSMboxDel()

OS_MBOX_PEND_ABORT_EN

OS_MBOX_PEND_ABORT_EN enables (when set to) or disables (when set to) the code generation1 0

of the function .OSMboxPendAbort()

OS_MBOX_POST_EN

OS_MBOX_POST_EN enables (when set to) or disables (when set to) the code generation of the1 0

function . You can disable code generation for this function if you decide to useOSMboxPost()

the more powerful function instead.OSMboxPostOpt()

OS_MBOX_POST_OPT_EN

OS_MBOX_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function . You can disable code generation for this function if you do notOSMboxPostOpt()

need the additional functionality provided by . generates lessOSMboxPostOpt() OSMboxPost()

code.

µC/OS-II User's Manual

679Copyright 2015 Micrium Inc.

OS_MBOX_QUERY_EN

OS_MBOX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSMboxQuery()

µC/OS-II User's Manual

680Copyright 2015 Micrium Inc.

Memory Management

OS_MEM_EN

OS_MEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the

µC/OS-II partition-memory manager and its associated data structures. This feature

reduces the amount of code and data space needed when your application does not

require the use of memory partitions.

OS_MEM_NAME_EN

This constant determines whether names can be assigned to memory partitions. If

 is set to , this feature is disabled and no RAM is used in the for theOS_MEM_NAME_EN 0 OS_MEM

memory partition for storage of names.

OS_MEM_QUERY_EN

OS_MEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSMemQuery()

µC/OS-II User's Manual

681Copyright 2015 Micrium Inc.

Mutual Exclusion Semaphores

OS_MUTEX_EN

OS_MUTEX_EN enables (when set to 1) or disables (when set to 0) the code generation of all

mutual-exclusion-semaphore services and data structures, which reduces the amount of

code and data space needed when your application does not require the use of mutexes.

 is set to 0, you do not need to enable or disable any of the other When OS_MUTEX_EN #define

constants in this section.

OS_MUTEX_ACCEPT_EN

OS_MUTEX_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function .OSMutexAccept()

OS_MUTEX_DEL_EN

OS_MUTEX_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSMutexDel()

OS_MUTEX_QUERY_EN

OS_MUTEX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function .OSMutexQuery()

µC/OS-II User's Manual

682Copyright 2015 Micrium Inc.

Message Queues

OS_Q_EN

OS_Q_EN enables (when set to 1) or disables (when set to 0) the code generation of all

message-queue services and data structures, which reduces the amount of code space

needed when your application does not require the use of message queues. When OS_Q_EN

is set to 0, you do not need to enable or disable any of the other constants in this#define

section. Note that if is set to 0, the constant is irrelevant.OS_Q_EN #define OS_MAX_QS

OS_Q_ACCEPT_EN

OS_Q_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSQAccept()

OS_Q_DEL_EN

OS_Q_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSQDel()

OS_Q_FLUSH_EN

OS_Q_FLUSH_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSQFlush()

OS_Q_PEND_ABORT_EN

OS_Q_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function .OSQPendAbort()

OS_Q_POST_EN

OS_Q_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function . You can disable code generation for this function if you decide to use theOSQPost()

more powerful function instead.OSQPostOpt()

µC/OS-II User's Manual

683Copyright 2015 Micrium Inc.

OS_Q_POST_FRONT_EN

OS_Q_POST_FRONT_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function . You can disable code generation for this function if you decide toOSQPostFront()

use the more powerful function instead.OSQPostOpt()

OS_Q_POST_OPT_EN

OS_Q_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function . You can disable code generation for this function if you do not needOSQPostOpt()

the additional functionality provided by . generates less code.OSQPostOpt() OSQPost()

OS_Q_QUERY_EN

OS_Q_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSQQuery()

µC/OS-II User's Manual

684Copyright 2015 Micrium Inc.

Semaphores

OS_SEM_EN

OS_SEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the

µC/OS-II semaphore manager and its associated data structures, which reduces the

amount of code and data space needed when your application does not require the use of

 is set to 0, you do not need to enable or disable any of the othersemaphores. When OS_SEM_EN

 constants in this section.#define

OS_SEM_ACCEPT_EN

OS_SEM_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSSemAccept()

OS_SEM_DEL_EN

OS_SEM_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSSemDel()

OS_SEM_PEND_ABORT_EN

OS_SEM_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation

of the function .OSSemPendAbort()

OS_SEM_QUERY_EN

OS_SEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSSemQuery()

OS_SEM_SET_EN

OS_SEM_SET_EN enables (when set to 1) or disables (when set to 0) the code generation of the

function .OSSemSet()

µC/OS-II User's Manual

685Copyright 2015 Micrium Inc.

Task Management

OS_TASK_TMR_STK_SIZE

OS_TASK_TMR_STK_SIZE specifies the size of the µC/OS-II timer task stack. The size is specified

not in bytes but in number of elements. This is because a stack is declared to be of type .OS_STK

The size of the timer-task stack depends on the processor you are using, the ‘callback’

functions that will be executed when each of the timer times out and the deepest anticipated

interrupt-nesting level.

OS_TASK_STAT_STK_SIZE

OS_TASK_STAT_STK_SIZE specifies the size of the µC/OS-II statistic-task stack. The size is

specified not in bytes but in number of elements. This is because a stack is declared as being of

type . The size of the statistic-task stack depends on the processor you are using and theOS_STK

maximum of the following actions:

The stack growth associated with performing 32-bit arithmetic (subtraction and division)

The stack growth associated with calling OSTimeDly()

The stack growth associated with calling OSTaskStatHook()

The deepest anticipated interrupt-nesting level

If you want to run stack checking on this task and determine its actual stack requirements, you

must enable code generation for by setting to 1.OSTaskCreateExt() OS_TASK_CREATE_EXT_EN

Again, the priority of is always set to .OS_TaskStat() OS_LOWEST_PRIO-1

OS_TASK_IDLE_STK_SIZE

OS_TASK_IDLE_STK_SIZE specifies the size of the µC/OS-II idle-task stack. The size is specified

not in bytes but in number of elements. This is because a stack is declared to be of type .OS_STK

The size of the idle-task stack depends on the processor you are using and the deepest

anticipated interrupt-nesting level. Very little is being done in the idle task, but you should

allow at least enough space to store all processor registers on the stack and enough storage to

handle all nested interrupts.

µC/OS-II User's Manual

686Copyright 2015 Micrium Inc.

OS_TASK_CHANGE_PRIO_EN

OS_TASK_CHANGE_PRIO_EN enables (when set to 1) or disables (when set to 0) the code

generation of the function . If your application never changes taskOSTaskChangePrio()

priorities after they are assigned, you can reduce the amount of code space used by µC/OS-II

by setting to 0.OS_TASK_CHANGE_PRIO_EN

OS_TASK_CREATE_EN

OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function. Enabling this function makes µC/OS-II backward compatibleOSTaskCreate()

with the µC/OS task-creation function. If your application always uses OSTaskCreateExt()

(recommended), you can reduce the amount of code space used by µC/OS-II by setting

 to 0. Note that you must set at least or OS_TASK_CREATE_EN OS_TASK_CREATE_EN

 to 1. If you wish, you can use both.OS_TASK_CREATE_EXT_EN

OS_TASK_CREATE_EXT_EN

OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function , which is the extended, more powerful version of the twoOSTaskCreateExt()

task-creation functions. If your application never uses , you can reduce theOSTaskCreateExt()

amount of code space used by µC/OS-II by setting to 0. Note that youOS_TASK_CREATE_EXT_EN

need the extended task-create function to use the stack-checking function .OSTaskStkChk()

OS_TASK_DEL_EN

OS_TASK_DEL_EN enables (when set to) or disables (when set to) code generation of the1 0

function , which deletes tasks. If your application never uses this function, you canOSTaskDel()

reduce the amount of code space used by µC/OS-II by setting to .OS_TASK_DEL_EN 0

OS_TASK_NAME_EN

This constant determines whether you can assign names to tasks. If is set to 0,OS_TASK_NAME_EN

this feature is disabled and no RAM is used in the for the task name.OS_TCB

µC/OS-II User's Manual

687Copyright 2015 Micrium Inc.

OS_TASK_PROFILE_EN

This constant allows variables to be allocated in each task’s that hold performance dataOS_TCB

about each task. Specifically, if is set to , each task will have a variableOS_TASK_PROFILE_EN 1

to keep track of the number of context switches, the task execution time, the number of bytes

used by the task and more.

OS_TASK_QUERY_EN

OS_TASK_QUERY_EN enables (when set to) or disables (when set to) code generation of the1 0

function , which allows your application to get a snapshot of a current task’s OSTaskQuery()

. If your application never uses this function, you can reduce the amount of code spaceOS_TCB

used by µC/OS-II by setting to .OS_TASK_QUERY_EN 0

OS_TASK_STAT_EN

OS_TASK_STAT_EN specifies whether or not you can enable the µC/OS-II statistic task, as well as

its initialization function. When set to 1, the statistic task and theOS_TaskStat()

statistic-task-initialization function are enabled. computes the CPU usage ofOS_TaskStat()

your application. When enabled, it executes every second and computes the 8-bit variable

, which provides the percentage of CPU use of your application. OSCPUUsage OS_TaskStat()

calls every time it executes so that you can add your own statistics asOSTaskStatHook()

needed. See for details on the statistic task. The priority of is alwaysOS_CORE.C OS_TaskStat()

set to .OS_LOWEST_PRIO-1

The global variables , , , , and OSCPUUsage OSIdleCtrMax OSIdleCtrRun OSTaskStatStk[]

 are not declared when is set to 0, which reduces the amount ofOSStatRdy OS_TASK_STAT_EN

RAM needed by µC/OS-II if you don’t intend to use the statistic task. contains aOSIdleCtrRun

snapshot of just before is cleared to zero every second. isOSIdleCtr OSIdleCtr OSIdleCtrRun

not used by µC/OS-II for any other purpose. However, you can read and display OSIdleCtrRun

if needed.

µC/OS-II User's Manual

688Copyright 2015 Micrium Inc.

OS_TASK_STAT_STK_CHK_EN

This constant allows the statistic task to determine the actual stack usage of each active task. If

 is set to (the statistic task is not enabled) but, you can call OS_TASK_STAT_EN 0

 yourself from one of your tasks. is set to , stackOS_TaskStatStkChk() If OS_TASK_STAT_EN 1

sizes will be determined every second by the statistic task.

OS_TASK_SUSPEND_EN

OS_TASK_SUSPEND_EN enables (when set to) or disables (when set to) code generation of the1 0

functions and , which allows you to explicitly suspend andOSTaskSuspend() OSTaskResume()

resume tasks, respectively. If your application never uses these functions, you can reduce the

amount of code space used by µC/OS-II by setting to .OS_TASK_SUSPEND_EN 0

OS_TASK_SW_HOOK_EN

Normally, µC/OS-II requires that you have a context switch hook function called

. When set to , this constant allows you to omit from yourOSTaskSwHook() 0 OSTaskSwHook()

code. This configuration constant was added to reduce the amount of overhead during a

context switch in applications that doesn’t require the context switch hook. Of course, you will

also need to remove the calls to from , and OSTaskSwHook() OSTaskStartHighRdy() OSCtxSw()

 in .OSIntCtxSw() OS_CPU_A.ASM

OS_TASK_TMR_PRIO (APP_CFG.H)

OS_TASK_TMR_PRIO specifies the priority of the timer management task. You can set the priority

of the timer task to anything you want. Note that timer callback functions are executed by the

timer task. needs to be set in your application file called .OS_TASK_TMR_PRIO APP_CFG.H

µC/OS-II User's Manual

689Copyright 2015 Micrium Inc.

Time Management

OS_TIME_DLY_HMSM_EN

OS_TIME_DLY_HMSM_EN enables (when set to 1) or disables (when set to 0) the code generation of

the function , which is used to delay a task for a specified number of hours,OSTimeDlyHMSM()

minutes, seconds, and milliseconds.

OS_TIME_DLY_RESUME_EN

OS_TIME_DLY_RESUME_EN enables (when set to 1) or disables (when set to 0) the code generation

of the function .OSTimeDlyResume()

OS_TIME_GET_SET_EN

OS_TIME_GET_SET_EN enables (when set to 1) or disables (when set to 0) the code and data

generation of the functions and . If you don’t need to use the 32-bitOSTimeGet() OSTimeSet()

tick counter , then you can save yourself 4 bytes of data space and code space by notOSTime

having the code for these functions generated by the compiler.

OS_TIME_TICK_HOOK_EN

Normally, µC/OS-II requires the presence of a function called which isOSTimeTickHook()

called at the very beginning of the tick ISR. When set to , this constant allows you to omit 0

 from your code. This configuration constant was added to reduce theOSTimeTickHook()

amount of overhead during a tick ISR in applications that doesn’t require this hook.

µC/OS-II User's Manual

690Copyright 2015 Micrium Inc.

Timer Management

Note that timer management requires semaphores and thus, you need to set to .OS_SEM_EN 1

OS_TMR_EN

Enables (when set to 1) or disables (when set to 0) the code generation of the timer

management services.

OS_TMR_CFG_MAX

Determines the maximum number of timers you can have in your application. Depending on

the amount of RAM available in your product, you can have hundreds or even thousands of

timers (max. is 65500). 36 entries are reserved.

OS_TMR_CFG_NAME_EN

This constant determines whether names can be assigned to timers. If isOS_TMR_CFG_NAME_EN

set to 0, this feature is disabled and no RAM is used in the for the timer name.OS_TMR

OS_TMR_CFG_WHEEL_SIZE

Timers are updated using a rotating wheel. This ‘wheel’ allows to reduce the number of timers

that need to be updated by the timer manager task. The size of the wheel should be a fraction

of the number of timers you have in your application. In other words:

OS_TMR_CFG_WHEEL_SIZE <= OS_TMR_CFG_MAX

This value should be a number between 2 and 1024. Timer management overhead is somewhat

determined by the size of the wheel. A large number of entries might reduce the overhead for

timer management but would require more RAM. Each entry requires a pointer and a count

(16-bit value). We recommend a number that is NOT a multiple of the tick rate. If your

application has many timers then it’s recommended that you have a high value. As a starting

value, you could use .OS_TMR_CFG_MAX / 4

µC/OS-II User's Manual

691Copyright 2015 Micrium Inc.

OS_TMR_CFG_TICKS_PER_SEC

This configuration constant determines the rate at which timers are updated (in Hz). Timer

updates should be done at a fraction of the tick rate (i.e.). We recommendOS_TICKS_PER_SEC

that you update timers at 10 Hz.

µC/OS-II User's Manual

692Copyright 2015 Micrium Inc.

Function Summary

Table 17.1 lists each µC/OS-II function by type (), indicates which variables enable theService

code (), and lists other configuration constants that affect the function (Set to 1 Other

).Constants

Of course, must be included when µC/OS-II is built, in order for the desiredOS_CFG.H

configuration to take effect.

Table 17.1 µC/OS-II functions and #define configuration constants.

Miscellaneous

Service Set to 1 Other Constants

Thread Local Storage (TLS) OS_TLS_TBL_SIZE (set to)5 N/A

OSEventNameGet() OS_EVENT_NAME_EN N/A

OSEventNameSet() OS_EVENT_NAME_EN N/A

OSEventPendMulti() OS_EVENT_MULTI_EN

OSInit() N/A OS_MAX_EVENTS
 OS_Q_EN and OS_MAX_QS

 OS_MEM_EN
 OS_TASK_IDLE_STK_SIZE

 OS_TASK_STAT_EN
OS_TASK_STAT_STK_SIZE

OSSafetyCriticalStart() OS_SAFETY_CRITICAL_IEC61508

OSSchedLock() OS_SCHED_LOCK_EN N/A

OSSchedUnlock() OS_SCHED_LOCK_EN N/A

OSStart() N/A N/A

OSStatInit() OS_TASK_STAT_EN &&
OS_TASK_CREATE_EXT_EN

OS_TICKS_PER_SEC

OSVersion() N/A N/A

Interrupt Management

Service Set to 1 Other Constants

OSIntEnter() N/A N/A

OSIntExit() N/A N/A

µC/OS-II User's Manual

693Copyright 2015 Micrium Inc.

Event Flags

Service Set to 1 Other Constants

OSFlagAccept() OS_FLAG_EN OS_FLAG_ACCEPT_EN

OSFlagCreate() OS_FLAG_EN OS_MAX_FLAGS

OSFlagDel() OS_FLAG_EN OS_FLAG_DEL_EN

OSFlagNameGet() OS_FLAG_EN OS_FLAG_NAME_EN

OSFlagNameSet() OS_FLAG_EN OS_FLAG_NAME_EN

OSFlagPend() OS_FLAG_EN OS_FLAG_WAIT_CLR_EN

OSFlagPost() OS_FLAG_EN N/A

OSFlagQuery() OS_FLAG_EN OS_FLAG_QUERY_EN

Message Mailboxes

Service Set to 1 Other Constants

OSMboxAccept() OS_MBOX_EN OS_MBOX_ACCEPT_EN

OSMboxCreate() OS_MBOX_EN OS_MAX_EVENTS

OSMboxDel() OS_MBOX_EN OS_MBOX_DEL_EN

OSMboxPend() OS_MBOX_EN N/A

OSMboxPendAbort() OS_MBOX_EN OS_MBOX_PEND_ABORT_EN

OSMboxPost() OS_MBOX_EN OS_MBOX_POST_EN

OSMboxPostOpt() OS_MBOX_EN OS_MBOX_POST_OPT_EN

OSMboxQuery() OS_MBOX_EN OS_MBOX_QUERY_EN

Memory Partition Management

Service Set to 1 Other Constants

OSMemCreate() OS_MEM_EN OS_MAX_MEM_PART

OSMemGet() OS_MEM_EN N/A

OSMemNameGet() OS_MEM_EN OS_MEM_NAME_EN

OSMemNameSet() OS_MEM_EN OS_MEM_NAME_EN

OSMemPut() OS_MEM_EN N/A

OSMemQuery() OS_MEM_EN OS_MEM_QUERY_EN

µC/OS-II User's Manual

694Copyright 2015 Micrium Inc.

Mutex Management

Service Set to 1 Other Constants

OSMutexAccept() OS_MUTEX_EN OS_MUTEX_ACCEPT_EN

OSMutexCreate() OS_MUTEX_EN OS_MAX_EVENTS

OSMutexDel() OS_MUTEX_EN OS_MUTEX_DEL_EN

OSMutexPend() OS_MUTEX_EN N/A

OSMutexPost() OS_MUTEX_EN N/A

OSMutexQuery() OS_MUTEX_EN OS_MUTEX_QUERY_EN

Message Queues

Service Set to 1 Other Constants

OSQAccept() OS_Q_EN OS_Q_ACCEPT_EN

OSQCreate() OS_Q_EN OS_MAX_EVENTS
OS_MAX_QS

OSQDel() OS_Q_EN OS_Q_DEL_EN

OSQFlush() OS_Q_EN OS_Q_FLUSH_EN

OSQPend() OS_Q_EN N/A

OSQPendAbort() OS_Q_EN OS_Q_PEND_ABORT_EN

OSQPost() OS_Q_EN OS_Q_POST_EN

OSQPostFront() OS_Q_EN OS_Q_POST_FRONT_EN

OSQPostOpt() OS_Q_EN OS_Q_POST_OPT_EN

OSQQuery() OS_Q_EN OS_Q_QUERY_EN

µC/OS-II User's Manual

695Copyright 2015 Micrium Inc.

Semaphore Management

Service Set to 1 Other Constants

OSSemAccept() OS_SEM_EN OS_SEM_ACCEPT_EN

OSSemCreate() OS_SEM_EN OS_MAX_EVENTS

OSSemDel() OS_SEM_EN OS_SEM_DEL_EN

OSSemPend() OS_SEM_EN N/A

OSSemPendAbort() OS_SEM_EN OS_SEM_PEND_ABORT_EN

OSSemPost() OS_SEM_EN N/A

OSSemQuery() OS_SEM_EN OS_SEM_QUERY_EN

OSSemSet() OS_SEM_EN OS_SEM_SET_EN

Task Management

Service Set to 1 Other Constants

OSTaskChangePrio() OS_TASK_CHANGE_PRIO_EN OS_LOWEST_PRIO

OSTaskCreate() OS_TASK_CREATE_EN OS_MAX_TASKS

OSTaskCreateExt() OS_TASK_CREATE_EXT_EN OS_MAX_TASKS
OS_TASK_STK_CLR

OSTaskDel() OS_TASK_DEL_EN OS_MAX_TASKS

OSTaskDelReq() OS_TASK_DEL_EN OS_MAX_TASKS

OSTaskRegGet() OS_TASK_REG_TBL_SIZE N/A

OSTaskRegGetID() OS_TASK_REG_TBL_SIZE N/A

OSTaskRegSet() OS_TASK_REG_TBL_SIZE N/A

OSTaskResume() OS_TASK_SUSPEND_EN OS_MAX_TASKS

OSTaskNameGet() OS_TASK_NAME_EN N/A

OSTaskNameSet() OS_TASK_NAME_EN N/A

OSTaskStkChk() OS_TASK_CREATE_EXT_EN OS_MAX_TASKS

OSTaskSuspend() OS_TASK_SUSPEND_EN OS_MAX_TASKS

OSTaskQuery() OS_TASK_QUERY_EN OS_MAX_TASKS

OS_TaskStatStkChk() OS_TASK_STAT_STK_CHK_EN N/A

µC/OS-II User's Manual

696Copyright 2015 Micrium Inc.

Time Management

Service Set to 1 Other Constants

OSTimeDly() N/A N/A

OSTimeDlyHMSM() OS_TIME_DLY_HMSM_EN OS_TICKS_PER_SEC

OSTimeDlyResume() OS_TIME_DLY_RESUME_EN OS_MAX_TASKS

OSTimeGet() OS_TIME_GET_SET_EN N/A

OSTimeSet() OS_TIME_GET_SET_EN N/A

OSTimeTick() N/A N/A

Timer Management

Service Set to 1 Other Constants

OSTmrCreate() OS_TMR_EN N/A

OSTmrDel() OS_TMR_EN N/A

OSTmrNameGet() OS_TMR_EN && OS_TMR_CFG_NAME_EN N/A

OSTmrRemainGet() OS_TMR_EN N/A

OSTmrStart() OS_TMR_EN N/A

OSTmrStop() OS_TMR_EN N/A

OSTmrSignal() OS_TMR_EN OS_TMR_CFG_TICKS_PER_SEC

User-Defined Functions

Service Set to 1 Other Constants

OSTaskCreateHook() OS_CPU_HOOKS_EN N/A

OSTaskDelHook() OS_CPU_HOOKS_EN N/A

OSTaskStatHook() OS_CPU_HOOKS_EN N/A

OSTaskSwHook() OS_CPU_HOOKS_EN OS_TASK_SW_HOOK_EN

OSTimeTickHook() OS_CPU_HOOKS_EN OS_TIME_TICK_HOOK_EN

µC/OS-II User's Manual

697Copyright 2015 Micrium Inc.

PC Services
The code in this user manual was tested on a PC. It was convenient to create a number of

services (i.e., functions) to access some of the capabilities of a PC. These services are invoked

from the test code and are encapsulated in a file called . Since industrial PCs are soPC.C

popular as embedded system platforms the functions provided in this chapter could be of some

use to you. These services assume that you are running under DOS or a DOS box under

Windows 95/98/NT or 2000. You should note that under these environments, you have an

emulated DOS and not an actual one (i.e., a Virtual x86 session). The behavior of some

functions may be altered because of this.

The files and are found in the directory. These functionsPC.C PC.H \SOFTWARE\BLOCKS\PC\BC45

encapsulate services that are available on a PC. This allows you to easily adapt the code to a

different compiler. basically contains three types of services: character based display,PC.C

elapsed time measurement and, miscellaneous. All functions start with the prefix PC_.

Character Based Display

PC.C provides services to display ASCII (and special) characters on a PC’s VGA display. In

normal mode (i.e., character mode), a PC’s display can hold up to 2000 characters organized as

25 rows (i.e., Y) by 80 columns (i.e., X) as shown in figure 20-1. Please disregard the aspect

ratio of the figure. The actual aspect ratio of a monitor is generally 4 x 3. Video memory on a

PC is and, on a VGA monitor, video memory starts at absolute memorymemory mapped

location (or using a segment:offset notation,).0x000B8000 B800:0000

µC/OS-II User's Manual

698Copyright 2015 Micrium Inc.

Figure - Figure 20-1, 80 x 25 characters on a VGA monitor

Each displayable requires two bytes to display. The first byte (lowest memorycharacter

location) is the character that you want to display while the second byte (next memory

location) is an attribute that determines the foreground/background color combination of the

character. The foreground color is specified in the lower 4 bits of the attribute while the

background color appears in bits 4 to 6. Finally, the most-significant bit determines whether

the character will blink (when 1) or not (when 0). The character and attribute bytes are shown

in figure 20-2.

µC/OS-II User's Manual

699Copyright 2015 Micrium Inc.

Figure - Figure 20-2, Character and attribute bytes on a VGA monitor

The tables below show the possible colors that can be obtained from the PC’s VGA character

mode.

Blink (B7)

Blink? #define Hex

No 0x00

Yes DISP_BLINK 0xB0

Background Color (B6 BS B4)

Color #define Hex

Black DISP_BGND_BLACK 0x00

Blue DISP_BGND_BLUE 0x10

Green DISP_BGND_GREEN 0x20

Cyan DISP_BGND_CYAN 0x30

Red DISP_BGND_RED 0x40

Purple DISP_BGND_PURPLE 0x50

Brown DISP_BGND_BROWN 0x60

Light Gray DISP_BGND_LIGHT_GRAY 0x70

µC/OS-II User's Manual

700Copyright 2015 Micrium Inc.

Foreground Color (B3 B2 B1 B0)

Color #define Hex

Black DISP_FGND_BLACK 0x00

Blue DISP_FGND_BLUE 0x01

Green DISP_FGND_GREEN 0x02

Cyan DISP_FGND_CYAN 0x03

Red DISP_FGND_RED 0x04

Purple DISP_FGND_PURPLE 0x05

Brown DISP_FGND_BROWN 0x06

Light Gray DISP_FGND_LIGHT_GRAY 0x07

Dark Gray DISP_FGND_DARK_GRAY 0x0B

Light Blue DISP_FGND_LIGHT_BLUE 0x09

Light Green DISP_FGND_LIGHT_GREEN 0x0A

Light Cyan DISP_FGND_LIGHT_CYAN 0x0B

Light Red DISP_FGND_LIGHT_RED 0x0C

Light Purple DISP_FGND_LIGHT_PURPLE 0x0D

Yellow DISP_FGND_YELLOW 0x0E

White DISP_FGND_WHITE 0x0F

You will note that you can only have 8 possible background colors but a choice of 16

foreground colors. contains #defines which allow you to select the proper combination ofPC.H

foreground and background colors. These #defines are shown in Table 20-1. For example, to

obtain a non-blinking WHITE character on a BLACK background, you would simply add

 and (FGND means foreground and BGND is background).DISP_FGND_WHITE DISP_BGND_BLACK

This corresponds to a HEX value of 0x07 which happens to be the default video attribute of a

displayable character on a PC. You should note that because has a value ofDISP_BGND_BLACK

0x00, you don’t actually need to specify it and thus, the attribute for the same WHITE

character could just as well have been specified as . You should use theDISP_FGND_WHITE

#define constants instead of the HEX values to make your code more readable.

The display functions in are used to write ASCII (and special) characters anywhere on thePC.C

screen using X and Y coordinates. The coordinate system of the display is shown in Figure

20-1. You should note that position 0,0 is located at the upper left corner as opposed to the

µC/OS-II User's Manual

701Copyright 2015 Micrium Inc.

1.

2.

3.

bottom left corner as you may have expected. This makes the computation of the location of

each character to display easier to determine. The address in video memory for any character

on the screen is given by:

Address of Character = 0x000B8000 + Y * 160 + X * 2

The address of the attribute byte is at the next memory location or:

Address of Attribute = 0x000B8000 + Y * 160 + X * 2 + 1

The display functions provided in perform direct writes to video RAM even though BIOSPC.C

(Basic Input Output System) services in most PC can do the same thing but in a portable

fashion. I chose to write directly to video memory for performance reasons.

PC.C contains the following five functions which are further described in the interface section

of this chapter.

PC_DispChar() To display a single ASCII character anywhere on the screen

PC_DispClrCol() To clear a single column

PC_DispClrRow() To clear a single row (or line)

PC_DispClrScr() To clear the screen

PC_DispStr() To display an ASCII string anywhere on the screen

Saving and Restoring DOS’s Context

The current DOS environment is saved by calling (see listing 18.1) andPC_DOSSaveReturn

would be called by to:main

Setup µC/OS-II’s context switch vector

Setup the tick ISR vector

Save DOS’s context so that we can return back to DOS when we need to terminate

execution of a µC/OS-II based application

A lot happens in so you may need to look at the code in listing 18.1 toPC_DOSSaveReturn()

follow along.

µC/OS-II User's Manual

702Copyright 2015 Micrium Inc.

void PC_DOSSaveReturn (void)
{
 PC_ExitFlag = FALSE; (1)
 OSTickDOSCtr = 1; (2)
 PC_TickISR = PC_VectGet(VECT_TICK); (3)

 OS_ENTER_CRITICAL();
 PC_VectSet(VECT_DOS_CHAIN, PC_TickISR); (4)
 OS_EXIT_CRITICAL();

 setjmp(PC_JumpBuf); (5)
 if (PC_ExitFlag == TRUE) {
 OS_ENTER_CRITICAL();
 PC_SetTickRate(18); (6)
 PC_VectSet(VECT_TICK, PC_TickISR); (7)
 OS_EXIT_CRITICAL();
 PC_DispClrScr(DISP_FGND_WHITE + DISP_BGND_BLACK); (8)
 exit(0); (9)
 }
}

Listing - Listing 18.1, Saving the DOS environment.

 starts by setting the flag to FALSE indicating that we are(1) PC_DOSSaveReturn PC_ExitFlag

not returning to DOS.

 Then, initializes to 1 because this variable will be(2) PC_DOSSaveReturn OSTickDOSCtr

decremented in . A value of 0 would have caused this value to wrap around toOSTickISR

255 when decremented by .OSTickISR

(3)

 then saves DOS’s tick handler in a free vector table entry so it can be(4) PC_DOSSaveReturn

called by µC/OS-II’s tick handler (this is called the vectors).chaining

 Next, calls , which captures the state of the processor (i.e., the(5) PC_DOSSaveReturn setjmp

contents of all important registers) into a structure called . Capturing thePC_JumpBuf

processor's context will allow us to return to and execute the codePC_DOSSaveReturn

immediately following the call to . Because PC_ExitFlag was initialized tosetjmp

FALSE [see L18.1(1)], skips the code in the if statement and returnsPC_DOSSaveReturn

to the caller (i.e.,).main

 This brings the processor back in (just after the call to).(5) PC_DOSSaveReturn setjmp

This time, however, PC_ExitFlag is TRUE and the code following the if statement is

µC/OS-II User's Manual

703Copyright 2015 Micrium Inc.

executed.

(7)

(8)

 changes the tick rate back to 18.2 Hz, restores the PC’s tick ISR(9) PC_DOSSaveReturn

handler, clears the screen and returns to the DOS prompt through the exit(0) function.

void PC_DOSReturn (void)
{
 PC_ExitFlag = TRUE; (1)
 longjmp(PC_JumpBuf, 1); (2)
}

Listing - Listing 18.2, Setting up to return to DOS.

(1)

 When you want to return to DOS, all you have to do is call (see listing(2) PC_DOSReturn

18.2) which sets PC_ExitFlag to TRUE and execute a .longjmp

Elapsed Time Measurement

The elapsed time measurement functions are used to determine how much time a function

takes to execute. Time measurement is performed by using the PC’s 82C54 timer #2. You

make time measurement by wrapping the code to measure by the two functions

 and . However, before you can use these two functions, youPC_ElapsedStart PC_ElapsedStop

need to call the function . basically computes the overheadPC_ElapsedInit PC_ElapsedInit

associated with the other two functions. This way, the execution time (in microseconds)

returned by consist exclusively of the code you are measuring. Note that nonePC_ElapsedStop

of these functions are reentrant and thus, you must be careful that you do not invoke them from

multiple tasks at the same time. .

µC/OS-II User's Manual

704Copyright 2015 Micrium Inc.

Miscellaneous

PC_GetDateTime is a function that obtains the PC’s current date and time, and formats this

information into an ASCII string. The format is:

"YYYY-MM-DD HH:MM:SS"

and you will need at least 21 characters (including the NUL character) to hold this string. You

should note that there are 2 spaces between the date and the time which explains why you need

21 characters instead of 20. uses the Borland C/C++ library functions PC_GetDateTime gettime

and which should have their equivalent on other DOS compilers.getdate

PC_GetKey is a function that checks to see if a key was pressed and if so, obtains that key, and

returns it to the caller. uses the Borland C/C++ library functions and PC_GetKey kbhit getch

which again, have their equivalent on other DOS compilers.

PC_SetTickRate allows you to change the tick rate for µC/OS-II by specifying the desired

frequency. Under DOS, a tick occurs 18.20648 times per second or, every 54.925 mS. This is

because the 82C54 chip used didn’t get its counter initialized and the default value of 65535

takes effect. Had the chip been initialized with a divide by 59659, the tick rate would have

been a very nice 20.000 Hz! I decided to change the tick rate to something more ‘exciting’ and

thus, decided to use about 200 Hz (actually 199.9966). The code found in calls theOS_CPU_A.O

DOS tick handler one time out of 11. This is done to ensure that some of the housekeeping

needed in DOS is maintained. You would not need to do this if you were to set the tick rate to

20 Hz. Before returning to DOS, is called by specifying 18 as the desiredPC_SetTickRate

frequency. will know that you actually mean 18.2 Hz and will correctly set thePC_SetTickRate

82C54.

The last two functions in are used to get and set an interrupt vector. and PC.C PC_VectGet

 should be compiler independent as long as the compiler support the macros PC_VectSet MK_FP

(make far pointer), (get the offset portion of a far pointer) and, (get the segmentFP_OFF FP_SEG

of a far pointer).

Interface Functions

This section provides a reference section for the PC services.

µC/OS-II User's Manual

705Copyright 2015 Micrium Inc.

PC_DispChar()

 void PC_DispChar(INT8U x, INT8U y, INT8U c, INT8U color)

PC_DispChar allows you to display a single ASCII (or special) character anywhere on the

display.

Arguments

x and specifies the coordinates (col, row) where the character will appear. rows (i.e., lines)y

are numbered from to 1, and columns are numbered from to 10 DISP_MAX_Y – 0 DISP_MAX_X –

(see).PC.C

cis the character to display. You can specify any ASCII characters and special characters if c

has a value higher than 128. You can see what characters (i.e., symbols) will be displayed

based on the value of by running the test code provided in this book as follows:c

C:\SOFTWARE\BLOCKS\SAMPLE\TEST > TEST display

color specifies the contents of the attribute byte and thus the color combination of the

character to be displayed. You can add one (see) and one DISP_FGND_??? PC.H DISP_BGND_???

(see) to obtain the desired color combination.PC.H

Returned Value

NONE

Notes/Warnings

NONE

µC/OS-II User's Manual

706Copyright 2015 Micrium Inc.

Example

void Task (void *pdata)
 {
 .
 .
 for (;;) {
 .
 PC_DispChar(0, 0, ‘$’, DISP_FGND_WHITE);
 .
 .
 }
 }

µC/OS-II User's Manual

707Copyright 2015 Micrium Inc.

PC_DispClrCol()

void PC_DispClrCol(INT8U x, INT8U color)

PC_DispClrCol allows you to clear the contents of a column (all 25 characters).

Arguments

x specifies which column will be cleared. Columns are numbered from to 10 DISP_MAX_X –

(see).PC.C

color specifies the contents of the attribute byte. Because the character used to clear a column

is the space character (i.e., ‘ ‘), only the background color will appear. You can thus specify

any of the colors.DISP_BGND_???

Returned Value

NONE

Notes/Warnings

NONE

Example

void Task (void *pdata)
 {
 .
 .
 for (;;) {
 .
 PC_DispClrCol(0, DISP_BGND_BLACK);
 .
 .
 }
 }

µC/OS-II User's Manual

708Copyright 2015 Micrium Inc.

PC_DispClrRow()

 void PC_DispClrRow(INT8U y, INT8U color)

PC_DispClrRow allows you to clear the contents of a row (all 80 characters).

Arguments

y specifies which row (i.e., line) will be cleared. Rows are numbered from to 10 DISP_MAX_Y –

(see).PC.C

color specifies the contents of the attribute byte. Because the character used to clear a row is

the space character (i.e., ‘ ‘), only the background color will appear. You can thus specify any

of the colors.DISP_BGND_???

Returned Value

NONE

Notes/Warnings

NONE

Example

void Task (void *pdata)
 {
 .
 .
 for (;;) {
 .
 PC_DispClrRow(10, DISP_BGND_BLACK);
 .
 .
 }
 }

µC/OS-II User's Manual

709Copyright 2015 Micrium Inc.

PC_DispClrScr()

 void PC_DispClrScr(INT8U color)

PC_DispClrScr allows you to clear the entire display.

Arguments

color specifies the contents of the attribute byte. Because the character used to clear the screen

is the space character (i.e., ‘ ‘), only the background color will appear. You can thus specify

any of the colors.DISP_BGND_???

Returned Value

NONE

Notes/Warnings

You should use instead of because you don’t want to leaveDISP_FGND_WHITE DISP_BGND_BLACK

the attribute field with black on black.

Example

void Task (void *pdata)
 {
 .
 .
 PC_DispClrScr(DISP_FGND_WHITE);
 for (;;) {
 .
 .
 .
 }
 }

µC/OS-II User's Manual

710Copyright 2015 Micrium Inc.

PC_DispStr()

 void PC_DispStr(INT8U x, INT8U y, INT8U *s, INT8U color)

PC_DispStr allows you to display an ASCII string. In fact, you could display an array

containing any of 255 characters as long as the array itself is NUL terminated.

Arguments

x and specifies the coordinates (col, row) where the first character will appear. rows (i.e.,y

lines) are numbered from to 1, and columns are numbered from to 0 DISP_MAX_Y – 0

1 (see).DISP_MAX_X – PC.C

s is a pointer to the array of characters to display. The array MUST be NUL terminated. Note

that you can display any characters from 0x01 to 0xFF.

color specifies the contents of the attribute byte and thus the color combination of the

characters to be displayed. You can add one (see) and one DISP_FGND_??? PC.H DISP_BGND_???

(see) to obtain the desired color combination.PC.H

Returned Value

NONE

Notes/Warnings

All the characters of the string or array will be displayed with the same color attributes.

Example #1

The code below displays the current value of a global variable called Temperature. The color

used depends on whether the temperature is below 100 (white), below 200 (yellow) or if it

exceeds 200 (blinking white on a red background).

FP32 Temperature;

void Task (void *pdata)

µC/OS-II User's Manual

711Copyright 2015 Micrium Inc.

{
 char s[20];

 .
 .
 PC_DispStr(0, 0, “Temperature:”,
 DISP_FGND_YELLOW + DISP_BGND_BLUE);
 for (;;) {
 sprintf(s, “%6.1f”, Temperature);
 if (Temperature < 100.0) {
 color = DISP_FGND_WHITE;
 } else if (Temperature < 200.0) {
 color = DISP_FGND_YELLOW;
 } else {
 color = DISP_FGND_WHITE + DISP_BGND_RED + DISP_BLINK;
 PC_DispStr(13, 0, s, color);
 .
 .
 }
}

Example #2

The code below displays a square b0x 10 characters wide by 7 characters high in the center of

the screen.

INT8U B0x[7][11] = {
 {0xDA, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xBF, 0x00},
 {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},
 {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},
 {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},
 {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},
 {0xB3, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0xB3, 0x00},
 {0xC0, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xC4, 0xD9, 0x00}
};

void Task (void *pdata)
{
 INT8U i;

 .
 .
 for (i = 0; i < 7; i++) {
 PC_DispStr(35, i + 9, B0x[i], DISP_FGND_WHITE);
 }
 for (;;) {
 .
 .
 }
}

µC/OS-II User's Manual

712Copyright 2015 Micrium Inc.

PC_DOSReturn()

 void PC_DOSReturn(void)

PC_DOSReturn allows your application to return back to DOS. It is assumed that you have

previously called in order to save the processor’s important registers in orderPC_DOSSaveReturn

to properly return to DOS. See section 18.02 for a description on how to use this function.

Arguments

NONE

Returned Value

NONE

Notes/Warnings

You MUST have called prior to calling .PC_DOSSaveReturn PC_DOSReturn

Example

void Task (void *pdata)
{
 INT16U key;

 .
 .
 for (;;) {
 .
 .
 if (PC_GetKey(&key) == TRUE) {
 if (key == 0x1B) {
 PC_DOSReturn(); /* Return to DOS */
 }
 }
 .
 .
 }
}

µC/OS-II User's Manual

713Copyright 2015 Micrium Inc.

PC_DOSSaveReturn()

 void PC_DOSSaveReturn(void)

PC_DOSSaveReturn allows your application to save the processor’s important registers in order

to properly return to DOS before you actually start multitasking with µC/OS-II. You would

normally call this function from as shown in the example code provided below.main

Arguments

NONE

Returned Value

NONE

Notes/Warnings

You MUST call this function prior to setting µC/OS-II’s context switch vector (as shown

below).

Example

void main (void)
{
 OSInit(); /* Initialize uC/OS-II */
 .
 PC_DOSSaveReturn(); /* Save DOS’s environment */
 .
 PC_VectSet(uCOS, OSCtxSw); /* uC/OS-II's context switch vector */
 OSTaskCreate(…);
 .
 .
 OSStart(); /* Start multitasking */
}

µC/OS-II User's Manual

714Copyright 2015 Micrium Inc.

PC_ElapsedInit()

 void PC_ElapsedInit(void)

PC_ElapsedInit is invoked to compute the overhead associated with the and PC_ElapsedStart

 calls. This allows to return return the execution time (inPC_ElapsedStop PC_ElapsedStop

microseconds) of the code you are trying to measure.

Arguments

NONE

Returned Value

NONE

Notes/Warnings

You MUST call this function prior to calling either and .PC_ElapsedStart() PC_ElapsedStop()

Example

void main (void)
{
 OSInit(); /* Initialize uC/OS-II */
 .
 .
 PC_ElapsedInit(); /* Compute overhead of elapse meas. */
 .
 .
 OSStart(); /* Start multitasking */
}

µC/OS-II User's Manual

715Copyright 2015 Micrium Inc.

PC_ElapsedStart()

 void PC_ElapsedStart(void)

PC_ElapsedStart is used in conjunction with to measure the execution time ofPC_ElapsedStop

some of your application code.

Arguments

NONE

Returned Value

NONE

Notes/Warnings

You MUST call before you use either and PC_ElapsedInit PC_ElapsedStart()

.PC_ElapsedStop()

This function is non-reentrant and cannot be called by multiple tasks without proper protection

mechanisms (i.e., semaphores, locking the scheduler, etc.).

The execution time of your code must be less than 54.93 milliseconds in order for the elapsed

time measurement functions to work properly.

µC/OS-II User's Manual

716Copyright 2015 Micrium Inc.

Example

void main (void)
{
 OSInit(); /* Initialize uC/OS-II */
 .
 .
 PC_ElapsedInit(); /* Compute overhead of elapse meas. */
 .
 .
 OSStart(); /* Start multitasking */
}

void Task (void *pdata)
{
 INT16U time_us;

 .
 .
 for (;;) {
 .
 .
 PC_ElapsedStart();
 /* Code you want to measure the execution time */
 time_us = PC_ElaspedStop();
 .
 .
 }
}

µC/OS-II User's Manual

717Copyright 2015 Micrium Inc.

PC_ElapsedStop()

 INT16U PC_ElapsedStop(void)

PC_ElapsedStop is used in conjunction with to measure the execution time ofPC_ElapsedStart

some of your application code.

Arguments

NONE

Returned Value

The execution time of your code that was wrapped between and PC_ElapsedStart()

. The execution time is returned in microseconds.PC_ElapsedStop()

Notes/Warnings

You MUST call before you use either and PC_ElapsedInit() PC_ElapsedStart()

.PC_ElapsedStop()

This function is non-reentrant and cannot be called by multiple tasks without proper protection

mechanisms (i.e., semaphores, locking the scheduler, etc.).

The execution time of your code must be less than 54.93 milliseconds in order for the elapsed

time measurement functions to work properly.

Example

See .PC_ElapsedStart()

µC/OS-II User's Manual

718Copyright 2015 Micrium Inc.

PC_GetDateTime()

void PC_GetDateTime(char *s)

PC_GetDateTime is used to obtain the current date and time from the PC’s real-time clock chip

and return this information in an ASCII string that can hold at least 21 characters.

Arguments

s is a pointer to the storage area where the ASCII string will be deposited. The format of the

ASCII string is:

"YYYY-MM-DD HH:MM:SS"

and requires 21 bytes of storage (note that there is 2 spaces between the date and the time.

Returned Value

NONE

Notes/Warnings

NONE

Example

void Task (void *pdata)
{
 char s[80];

 .
 .
 for (;;) {
 .
 .
 PC_GetDateTime(&s[0]);
 PC_DispStr(0, 24, s, DISP_FGND_WHITE);
 .
 .
 }
}

µC/OS-II User's Manual

719Copyright 2015 Micrium Inc.

PC_GetKey()

 BOOLEAN PC_GetDateTime(INT16S *key)

PC_GetKey is used to see if a key was pressed at the PC’s keyboard and if so, obtain the value of

the key pressed. You would normally invoke this function every so often (i.e., poll the

keyboard) to see if a key was pressed. Note that the PC actually obtains key presses through an

ISR and buffers key presses. Up to 10 keys are buffered by the PC.

Arguments

key is a pointer to where the key value will be stored. If no key has been pressed, the value will

contain 0x00.

Returned Value

TRUE is a key was pressed and FALSE otherwise.

Notes/Warnings

NONE

Example

void Task (void *pdata)
{
 INT16S key;
 BOOLEAN avail;

 .
 .
 for (;;) {
 .
 .
 avail = PC_GetKey(&key);
 if (avail == TRUE) {
 /* Process key pressed */
 }
 .
 .
 }
}

µC/OS-II User's Manual

720Copyright 2015 Micrium Inc.

PC_SetTickRate()

 void PC_SetTickRate(INT16U freq)

PC_SetTickRate is used to change the PC’s tick rate from the standard 18.20648 Hz to

something faster. A tick rate of 200 Hz is a multiple of 18.20648 Hz (the multiple is 11).

Arguments

freq is the desired frequency of the ticker.

Returned Value

NONE

Notes/Warnings

You can only make the ticker faster than 18.20648 Hz.

The higher the frequency, the more overhead you will impose on the CPU.

Example

void Task (void *pdata)
{
 .
 .
 OS_ENTER_CRITICAL();
 PC_VectSet(0x08, OSTickISR);
 PC_SetTickRate(400); /* Reprogram PC’s tick rate to 400 Hz */
 OS_EXIT_CRITICAL();
 .
 .
 for (;;) {
 .
 .
 }
}

µC/OS-II User's Manual

721Copyright 2015 Micrium Inc.

PC_VectGet()

 void *PC_VectGet(INT8U vect)

PC_VectGet is used to obtain the address of the interrupt handler specified by the interrupt

vector number. An 80x86 processor supports up to 256 interrupt/exception handlers.

Arguments

vect is the interrupt vector number, a number between 0 and 255.

Returned Value

The address of the current interrupt/exception handler for the specified interrupt vector

number.

Notes/Warnings

Vector number 0 corresponds to the RESET handler.

It is assumed that the 80x86 code is compiled using the ‘large model’ option and thus all

pointers returned are ‘far pointers’.

It is assumed that the 80x86 is running in ‘real mode’.

Example

void Task (void *pdata)
{
 void (*p_tick_isr)(void);

 .
 .
 p_tick_isr = PC_VectGet(0x08); /* Get tick handler address */
 .
 .
 for (;;) {
 .
 .
 }
}

µC/OS-II User's Manual

722Copyright 2015 Micrium Inc.

PC_VectSet()

 void PC_VectSet(INT8U vect, void *(pisr)(void))

PC_VectSet is used to set the contents of an interrupt vector table location. An 80x86 processor

supports up to 256 interrupt/exception handlers.

Arguments

vect is the interrupt vector number, a number between 0 and 255.

pisr is the address of the interrupt/exception handler.

Returned Value

NONE

Notes/Warnings

You should be careful when setting interrupt vectors. Some interrupt vectors are used by the

operating system (DOS and/or µC/OS-II).

It is assumed that the 80x86 code is compiled using the ‘large model’ option and thus all

pointers returned are ‘far pointers’.

If your interrupt handler works in conjunction with µC/OS-II, it must follow the rules imposed

by µC/OS-II (see page 91 of “MicroC/OS-II, The Real-Time Kernel”, ISBN 0-87930-543-6).

µC/OS-II User's Manual

723Copyright 2015 Micrium Inc.

Example

void InterruptHandler (void)
{
}

void Task (void *pdata)
{
 .
 .
 PC_VectSet(64, InterruptHandler);
 .
 .
 for (;;) {
 .
 .
 }
}

µC/OS-II User's Manual

724Copyright 2015 Micrium Inc.

C Coding Conventions
Conventions should be established early in a project. These conventions are necessary to

maintain consistency throughout the project. Adopting conventions increases productivity and

simplifies project maintenance.

There are many ways to code a program in C (or any other language). The style you use is just

as good as any other as long as you strive to attain the following goals:

Portability

Consistency

Neatness

Easy maintenance

Easy understanding

Simplicity

Whichever style you use, I would emphasize that it should be adopted consistently throughout

all your projects. I would further insist that a single style be adopted by all team members in a

large project. To this end, I would recommend that a C programming style document be

formalized for your organization. Adopting a common coding style reduces code maintenance

headaches and costs. Adopting a common style will avoid code rewrites. This section describes

the C programming style I use. The main emphasis on the programming style presented here is

to make the source code easy to follow and maintain.

I don't like to limit the width of my C source code to 80 characters just because today's

monitors only allow you to display 80 characters wide. My limitation is actually how many

characters can be printed on an 8.5" by 11" page using an 8 point, fixed width font. With an 8

point font, you can accommodate up to 132 characters and have enough room on the left of the

page for holes for insertion in a three ring binder. Allowing 132 characters per line prevents

having to interleave source code with comments.

µC/OS-II User's Manual

725Copyright 2015 Micrium Inc.

Header

The header of a C source file looks as shown below. Your company name and address can be

on the first few lines followed by a title describing the contents of the file. A copyright notice

is included to give warning of the proprietary nature of the software.

/*
**
* Company Name
* Address
*
* (c) Copyright 19xx, Company Name, City, State
* All Rights Reserved
*
*
* Filename :
* Programmer(s):
* Description :
**
*/
/*$PAGE*/

The name of the file is supplied followed by the name of the programmer(s). The name of the

programmer who created the file is given first. The last item in the header is a description of

the contents of the file.

I like to dictate when page breaks occur on my listings if my code doesn’t fit on a printed page.

In fact, I like to find a logical spot like after a comment block if both the comment block and

the actual code doesn’t fit on one page. For historical reasons, I insert the special comment

 followed by a form feed character (). I like to use the because it tells/*$PAGE*/ 0x0C /*$PAGE*/

the reader where the page break will occur.

Include Files

The header files needed for your project immediately follow the revision history section. You

may either list only the header files required for the module or combine header files in a single

header file like I do in a file called . I like to use an header file becauseINCLUDES.H INCLUDES.H

it prevents you from having to remember which header file goes with which source file

especially when new modules are added. The only inconvenience is that it takes longer to

compile each file.

/*
**
* INCLUDE FILES

µC/OS-II User's Manual

726Copyright 2015 Micrium Inc.

**
*/
#include "INCLUDES.H"
/*$PAGE*/

Naming Identifiers

C compilers which conform to the ANSI C standard (most C compilers do by now) allow up to

32 characters for identifier names. Identifiers are variables, structure/union members,

functions, macros, #defines and so on. Descriptive identifiers can be formulated using this 32

character feature and the use of acronyms, abbreviations and mnemonics (see Acronyms,

Abbreviations and Mnemonics). Identifier names should reflect what the identifier is used for.

I like to use a hierarchical method when creating an identifier. For instance, the function

 indicates that it is part of the operating system (), it is a semaphore () andOSSemPend () OS Sem

the operation being performed is to wait () for the semaphore. This method allows me toPend

group all functions related to semaphores together. You will notice that some of the functions

in µC/OS-II starts with instead of . This is done to show you that the functions areOS_ OS OS_

internal to µC/OS-II event though they are global functions.

Variable names should be declared on separate lines rather than combining them on a single

line. Separate lines make it easy to provide a descriptive comment for each variable.

I use the file name as a prefix for variables that are either local () or global to the file.static

This makes it clear that the variables are being used locally and globally. For example, local

and global variables of a file named are declared as follows:KEY.C

static INT16U KeyCharCnt; /* Number of keys pressed */
static char KeyInBuf[100]; /* Storage buffer to hold chars */
 char KeyInChar; /* Character typed */

/*$PAGE*/

Upper case characters are used to separate words in an identifier. I prefer to use this technique

versus making use of the underscore character, (_) because underscores do not add any

meaning to names and also use up character spaces.

Global variables (external to the file) can use any name as long as they contain a mixture of

upper case and lower case characters and are prefixed with the module/file name (i.e. all global

keyboard related variable names would be prefixed with the word). Key

Formal arguments to a function and local variables within a function are declared in lower

µC/OS-II User's Manual

727Copyright 2015 Micrium Inc.

case. The lower case makes it obvious that such variables are local to a function; global

variables will contain a mixture of upper and lower case characters. To make variables

readable, you can use the underscore character (i.e.,). _

Within functions, certain variable names can be reserved to always have the same meaning.

Some examples are given below but others can be used as long as consistency is maintained.

 i , and for loop counters. j k

 p1 , ... for pointers. p2 pn

 c , ... for characters.c1 cn

 s , ... for strings.s1 sn

 ix , and for intermediate integer variables iy iz

 fx , and for intermediate floating point variables fy fz

To summarize:

formal parameters in a function declaration should only contain lower case characters.

auto variable names should only contain lower case characters.

static variables and should use the file/module name (or a portion of it) as afunctions

prefix and should make use of upper/lower case characters.

extern variables and should use the file/module name (or a portion of it) as afunctions

prefix and should make use of upper/lower case characters.

µC/OS-II User's Manual

728Copyright 2015 Micrium Inc.

Acronyms, Abbreviations & Mnemonics

When creating names for variables and functions (identifiers), it is often the practice to use

acronyms (e.g. , , and so on), abbreviations (, etc.) and mnemonics (, ,OS ISR TCB buf doc clr cmp

etc.). The use of acronyms, abbreviations and mnemonics allows an identifier to be descriptive

while requiring fewer characters. Unfortunately, if acronyms, abbreviations and mnemonics

are not used consistently, they may add confusion. To ensure consistency, I have opted to

create a list of acronyms, abbreviations and mnemonics that I use in all my projects. The same

acronym, abbreviation or mnemonic is used throughout, once it is assigned. I call this list the

 and the list for µC/OS-II is shown in TableAcronym, Abbreviation and Mnemonic Dictionary

A.1. As I need more acronyms, abbreviations or mnemonics, I simply add them to the list.

µC/OS-II User's Manual

729Copyright 2015 Micrium Inc.

Acronym, Abbreviation, or Mnemonic Meaning

Addr Address

Blk Block

Chk Check

Clr Clear

Cnt Count

CPU Central Processing Unit

Ctr Counter

Ctx Context

Cur Current

Del Delete

Dly Delay

Err Error

Ext Extension

FP Floating Point

Grp Group

HMSM Hours Minutes Seconds Milliseconds

ID Identifier

Init Initialize

Int Interrupt

ISR Interrupt Service Routine

Max Maximum

Mbox Mailbox

Mem Memory

Msg Message

N Number of

Opt Option

OS Operating System

Ovf Overflow

Prio Priority

Ptr Pointer

Q Queue

µC/OS-II User's Manual

730Copyright 2015 Micrium Inc.

Rdy Ready

Req Request

Sched Scheduler

Sem Semaphore

Stat Status or statistic

Stk Stack

Sw Switch

Sys System

Tbl Table

TCB Task Control Block

TO Timeout

Table - Table A.1 Acronyms, abbreviations, and mnemonics used in this book.

There might be instances where one list for all products doesn't make sense. For instance, if

you are an engineering firm working on a project for different clients and the products that you

develop are totally unrelated, then a different list for each project would be more appropriate;

the vocabulary for the farming industry is not the same as the vocabulary for the defense

industry. I use the rule that if all products are similar, they use the same dictionary.

A common dictionary to a project team will also increase the team's productivity. It is

important that consistency be maintained throughout a project, irrespective of the individual

programmer(s). Once has been agreed to mean it should be used by all projectbuf buffer

members instead of having some individuals use and others use . To further thisbuffer bfr

concept, you should always use even if your identifier can accommodate the full name;buf

stick to even if you can fully write the word .buf buffer

Comments

I find it very difficult to mentally separate code from comments when code and comments are

interleaved. Because of this, I never interleave code with comments. Comments are written to

the right of the actual C code. When large comments are necessary, they are written in the

function description header.

Comments are lined up as shown in the following example. The comment terminators () do*/

not need to be lined up, but for neatness I prefer to do so. It is not necessary to have one

comment per line since a comment could apply to a few lines.

µC/OS-II User's Manual

731Copyright 2015 Micrium Inc.

/*
**
* atoi()
*
* Description : Function to convert string 's' to an integer.
* Arguments : ASCII string to convert to integer.
* (All characters in the string must be decimal digits (0..9))
* Returns : String converted to an 'int'
**
*/

int atoi (char *s)
{
 int n; /* Partial result of conversion */

 n = 0; /* Initialize result */
 while (*s >= '0' && *s <= '9' && *s) { /* For all valid characters and not end of string */
 n = 10 * n + *s - '0'; /* Convert char to int and add to partial result */
 s++; /* Position on next character to convert */
 }
 return (n); /* Return the result of the converted string */
}

/*$PAGE*/

#defines

Header files () and C source files () might require that constants and macros be defined..H .C

Constants and macros are always written in upper case with the underscore character used to

separate words. Note that hexadecimal numbers are always written with a lower case x and all

upper case letters for hexadecimal A through F. Also, you shouldnote that the contant names

are all lined up as well as their values.

/*
**
* CONSTANTS & MACROS
**
*/

#define KEY_FF 0x0F
#define KEY_CR 0x0D
#define KEY_BUF_FULL() (KeyNRd > 0)

/*$PAGE*/

µC/OS-II User's Manual

732Copyright 2015 Micrium Inc.

Data Types

C allows you to create new data types using the keyword. I declare all data types usingtypedef

upper case characters, and thus follow the same rule used for constants and macros. There is

never a problem confusing constants, macros, and data types; because of the context in which

they are used. Since different microprocessors have different word length, I like to declare the

following data types (assuming Borland C++ V4.51):

/*
**
* DATA TYPES
**
*/

typedef unsigned char BOOLEAN; /* Boolean */
typedef unsigned char INT8U; /* 8 bit unsigned */
typedef char INT8S; /* 8 bit signed */
typedef unsigned int INT16U; /* 16 bit unsigned */
typedef int INT16S; /* 16 bit signed */
typedef unsigned long INT32U; /* 32 bit unsigned */
typedef long INT32S; /* 32 bit signed */
typedef float FP; /* Floating Point */

/*$PAGE*/

Using these , you will always know the size of each data type.#defines

Local Variables

Some source modules will require that local variables be available. These variables are only

needed for the source file (file scope) and should thus be hidden from the other modules.

Hiding these variables is accomplished in C by using the keyword. Variables can eitherstatic

be listed in alphabetical order, or in functional order.

/*
**
* LOCAL VARIABLES
**
*/

static char KeyBuf[100];
static INT16S KeyNRd;

/*$PAGE*/

µC/OS-II User's Manual

733Copyright 2015 Micrium Inc.

Function Prototypes

This section contains the prototypes (or calling conventions) used by the functions declared in

the file. The order in which functions are prototyped should be the order in which the functions

are declared in the file. This order allows you to quickly locate the position of a function when

the file is printed.

/*
**
* FUNCTION PROTOTYPES
**
*/

 void KeyClrBuf(void);
static BOOLEAN KeyChkStat(void);
static INT16S KeyGetCnt(int ch);

/*$PAGE*/

Also note that the keyword, the returned data type, and the function names are allstatic

aligned.

Function Declarations

As much as possible, there should only be one function per page when code listings are printed

on a printer. A comment block should precede each function. All comment blocks should look

as shown below. A description of the function should be given and should include as much

information as necessary. If the combination of the comment block and the source code

extends past a printed page, a page break should be forced (preferably between the end of the

comment block and the start of the function). This allows the function to be on a page by itself

and prevents having a page break in the middle of the function. If the function itself is longer

than a printed page then it should be broken by a page break comment () in a logical/*$PAGE*/

location (i.e. at the end of an statement instead of in the middle of one).if

More than one small function can be declared on a single page. They should all, however,

contain the comment block describing the function. The beginning of a function should start at

least two lines after the end of the previous function.

/*
**
* CLEAR KEYBOARD BUFFER
*
* Description : Flush keyboard buffer

µC/OS-II User's Manual

734Copyright 2015 Micrium Inc.

* Arguments : none
* Returns : none
* Notes : none
**
*/

void KeyClrBuf (void)
{

}
/*$PAGE*/

Functions that are only used within the file should be declared to hide them from otherstatic

functions in different files.

By convention, I always call all invocations of the function without a space between the

function name and the open parenthesis of the argument list. Because of this, I place a space

between the name of the function and the opening parenthesis of the argument list in the

function declaration as shown above. This is done so that I can quickly find the function

definition using a grep utility.

Function names should make use of the file name as a prefix. This prefix makes it easy to

locate function declarations in medium to large projects. It also makes it very easy to know

where these functions are declared. For example, all functions in a file named andKEY.C

functions in a file named could be declared as follows:VIDEO.C

KEY.C
 KeyGetChar()
 KeyGetLine()
 KeyGetFnctKey()

VIDEO.C
 VideoGetAttr()
 VideoPutChar()
 VideoPutStr()
 VideoSetAttr()

It's not necessary to use the whole file/module name as a prefix. For example, a file called

 could have functions starting with instead of . It is also preferable toKEYBOARD.C Key Keyboard

use upper case characters to separate words in a function name instead of using underscores.

Again, underscores don't add any meaning to names and they use up character spaces. As

mentioned previously, formal parameters and local variables should be in lower case. This

makes it clear that such variables have a scope limited to the function.

Each local variable name MUST be declared on its own line. This allows the programmer to

comment each one as needed. Local variables are indented four spaces. The statements for the

µC/OS-II User's Manual

735Copyright 2015 Micrium Inc.

function are separated from the local variables by three spaces. Declarations of local variables

should be physically separated from the statements because they are different.

Indentation

Indentation is important to show the flow of the function. The question is, how many spaces

are needed for indentation? One space is obviously not enough while 8 spaces is way too

much. The compromise I use is four spaces. I also never use TABs, because various printers

will interpret TABs differently; and your code may not look as you want. Avoiding TABs does

not mean that you can't use the TAB key on your keyboard. A good editor will give you the

option to replace TABs with spaces (in this case, 4 spaces).

A space follows the keywords , , and . The keyword has the privilege ofif for while do else

having one before and one after it if curly braces are used. I write on its ownif (condition)

line and the statement(s) to execute on the next following line(s) as follows:

if (x < 0)
 z = 25;
if (y > 2) {
 z = 10;
 x = 100;
 p++;
}

instead of the following method.

if (x < 0) z = 25;
if (y > 2) {z = 10; x = 100; p++;}

There are two reasons for this method. The first is that I like to keep the decision portion apart

from the execution statement(s). The second reason is consistency with the method I use for

, and statements.while for do

switch statements are treated as any other conditional statement. Note that the case statements

are lined up with the case label. The important point here is that statements must beswitch

easy to follow. should also be separated from one another.cases

if (x > 0) {
 y = 10;
 z = 5;
}
if (z < LIM) {

µC/OS-II User's Manual

736Copyright 2015 Micrium Inc.

 x = y + z;
 z = 10;
} else {
 x = y - z;
 z = -25;
}
for (i = 0; i < MAX_ITER; i++) {
 *p2++ = *p1++;
 xx[i] = 0;
}
while (*p1) {
 *p2++ = *p1++;
 cnt++;
}
do {
 cnt--;
 *p2++ = *p1++;
} while (cnt > 0);
switch (key) {
 case KEY_BS :
 if (cnt > 0) {
 p--;
 cnt--;
 }
 break;

 case KEY_CR :
 *p = NUL;
 break;

 case KEY_LINE_FEED :
 p++;
 break;

 default:
 *p++ = key;
 cnt++;
 break;
}

Statements & Expressions

All statements and expressions should be made to fit on a single source line. I never use more

than one assignment per line such as:

x = y = z = 1;

Even though this is correct in C, when the variable names get more complicated, the intent

might not be as obvious.

The following operators are written with no space around them:

-> Structure pointer operator p->m

. Structure member operator s.m

µC/OS-II User's Manual

737Copyright 2015 Micrium Inc.

[] Array subscripting a[i]

Parentheses after function names have no space(s) before them. A space should be introduced

after each comma to separate each actual argument in a function. Expressions within

parentheses are written with no space after the opening parenthesis and no space before the

closing parenthesis. Commas and semicolons should have one space after them.

strncat(t, s, n);
for (i = 0; i < n; i++)

The unary operators are written with no space between them and their operands:

!p ~b ++i --j (long)m *p &x sizeof(k)

The binary operators is preceded and followed by one or more spaces, as is the ternary

operator:

c1 = c2 x + y i += 2 n > 0 ? n : -n;

The keywords , , , and are followed by one space. if while for switch return

For assignments, numbers are lined up in columns as if you were to add them. The equal signs

are also lined up.

x = 100.567;
temp = 12.700;
var5 = 0.768;
variable = 12;
storage = &array[0];

Structures and Unions

Structures are since this allows a single name to represent the structure. The structuretypedef

type is declared using all upper case characters with underscore characters used to separate

words.

typedef struct line { /* Structure that defines a LINE */
 int LineStartX; /* 'X' & 'Y' starting coordinate */
 int LineStartY;

µC/OS-II User's Manual

738Copyright 2015 Micrium Inc.

 int LineEndX; /* 'X' & 'Y' ending coordinate */
 int LineEndY;
 int LineColor; /* Color of line to draw */
} LINE;
typedef struct point { /* Structure that defines a POINT */
 int PointPosX; /* 'X' & 'Y' coordinate of point */
 int PointPosY;
 int PointColor; /* Color of point */
} POINT;

Structure members start with the same prefix (as shown in the examples above). Member

names should start with the name of the structure type (or a portion of it). This makes it clear

when pointers are used to reference members of a structure such as:

p->LineColor; /* We know that 'p' is a pointer to LINE */

µC/OS-II User's Manual

739Copyright 2015 Micrium Inc.

Licensing Policy for µC/OS-II
µC/OS-II is not freeware nor is it open source.

Colleges and Universities

µC/OS-II source and object code can be freely distributed (to students) by accredited Colleges

and Universities without requiring a license, as long as there is no commercial application

involved. In other words, no licensing is required if µC/OS-II is used for educational use.

Colleges and Universities should their courses by sending a class syllabus and provideregister

a web link so it can be added to the Micriµm web site. Please send this information to:

Universities@Micrium.com

Commercial Use

You must obtain an Object Code Distribution License to embed µC/OS-II in a commercial

product. This is a license to put µC/OS-II in a product that is sold with the intent to make a

profit. There will be a license fee for such situations, and you need to contact Micriµm, Inc.

(see below) for pricing.

You must obtain a Source Code Distribution License to distribute µC/OS-II source code.

Again, there is a fee for such a license, and you need to contact Micriµm, Inc. for pricing.

Licensing@Micrium.com

or

Micrium, Inc.

949 Crestview Circle

Weston, FL 33327-1848

U.S.A.

1-954-217-2036 (Phone)

1-954-217-2037 (Fax)

http://www.Micrium.com

µC/OS-II User's Manual

740Copyright 2015 Micrium Inc.

µC/OS-II Quick Reference

This appendix provides a summary of the services provided by µC/OS-II assuming you

enabled everything (I didn’t want to clutter this reference with conditional compilation

statements). Of course, some of the services might not be included in your application

depending on the contents of .OS_CFG.H

Miscellaneous

Function Prototypes:

void OSInit(void);
void OSIntEnter(void);
void OSIntExit(void);
void OSSchedLock(void);
void OSSchedUnlock(void);
void OSStart(void);
void OSStatInit(void);
INT16U OSVersion(void);

Macros:

OS_ENTER_CRITICAL()
OS_EXIT_CRITICAL()

Global Variables:

INT8S OSCPUUsage // CPU usage in percent (%)
INT8U OSIntNesting // Interrupt nesting level (0..255)
INT8U OSLockNesting // OSSchedLock() nesting level.
BOOLEAN OSRunning // Flag indicating multitasking running
INT8U OSTaskCtr // Number of tasks created
OS_TCB *OSTCBCur // Pointer to current task’s TCB
OS_TCB *OSTCBHighRdy // Pointer to highest priority task’s TCB
INT8U OSTaskCtr // Number of tasks created

µC/OS-II User's Manual

741Copyright 2015 Micrium Inc.

Task Management

Function Prototypes:

INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

INT8U OSTaskCreate(void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio);

INT8U OSTaskCreateExt(void (*task)(void *pd),
 void *pdata,
 OS_STK *ptos,
 INT8U prio,
 INT16U id,
 OS_STK *pbos,
 INT32U stk_size,
 void *pext,
 INT16U opt);

INT8U OSTaskDel(INT8U prio);

INT8U OSTaskDelReq(INT8U prio);

INT8U OSTaskResume(INT8U prio);

INT8U OSTaskSuspend(INT8U prio);

INT8U OSTaskStkChk(INT8U prio, OS_STK_DATA *pdata);

INT8U OSTaskQuery(INT8U prio, OS_TCB *pdata);

OSTaskCreateExt() ‘opt’ argument:

OS_TASK_OPT_STK_CHK // Enable stack checking for the task
OS_TASK_OPT_STK_CLR // Clear the stack when the task is create
OS_TASK_OPT_SAVE_FP // Save Floating-Point registers

OSTaskDelReq() return values:

OS_NO_ERR // The request has been registered
OS_TASK_NOT_EXIST // The task has been deleted
OS_TASK_DEL_IDLE // Can’t delete the Idle task!
OS_PRIO_INVALID // Invalid priority

µC/OS-II User's Manual

742Copyright 2015 Micrium Inc.

OSTaskStkChk() data structure:

typedef struct {
 INT32U OSFree; // # of free bytes on the stack
 INT32U OSUsed; // # of bytes used on the stack
} OS_STK_DATA;

OSTaskQuery() data structure:

typedef struct os_tcb {

 OS_STK *OSTCBStkPtr; // Stack Pointer

 void *OSTCBExtPtr; // TCB extension pointer

 OS_STK *OSTCBStkBottom; // Ptr to bottom of stack
 INT32U OSTCBStkSize; // Size of task stack (#elements)

 INT16U OSTCBOpt; // Task options

 INT16U OSTCBId; // Task ID (0..65535)

 struct os_tcb *OSTCBNext; // Pointer to next TCB
 struct os_tcb *OSTCBPrev; // Pointer to previous TCB

 OS_EVENT *OSTCBEventPtr; // Pointer to ECB

 void *OSTCBMsg; // Message received

 OS_FLAG_NODE *OSTCBFlagNode; // Pointer to event flag node
 OS_FLAGS OSTCBFlagsRdy; // Event flags that made task ready

 INT16U OSTCBDly; // Nbr ticks to delay task or, timeout
 INT8U OSTCBStat; // Task status
 INT8U OSTCBPrio; // Task priority (0 == highest)

 INT8U OSTCBX;
 INT8U OSTCBY;
 INT8U OSTCBBitX;
 INT8U OSTCBBitY;

 BOOLEAN OSTCBDelReq; // Flag to tell task to delete itself

} OS_TCB;

µC/OS-II User's Manual

743Copyright 2015 Micrium Inc.

Time Management

Function Prototypes:

void OSTimeDly(INT16U ticks);

INT8U OSTimeDlyHMSM(INT8U hours,
 INT8U minutes,
 INT8U seconds,
 INT16U milli);

INT8U OSTimeDlyResume(INT8U prio);

INT32U OSTimeGet(void);

void OSTimeSet(INT32U ticks);

void OSTimeTick(void);

µC/OS-II User's Manual

744Copyright 2015 Micrium Inc.

Semaphore Management

Function Prototypes:

INT16U OSSemAccept(OS_EVENT *pevent);

OS_EVENT *OSSemCreate(INT16U cnt);

OS_EVENT *OSSemDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

void OSSemPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

INT8U OSSemPost(OS_EVENT *pevent);

INT8U OSSemQuery(OS_EVENT *pevent, OS_SEM_DATA *pdata);

OSSemDel() ‘opt’ argument:

OS_DEL_NO_PEND // Delete only if no task pending
OS_DEL_ALWAYS // Always delete

OSSemQuery() data structure:

typedef struct {
 INT16U OSCnt; // Semaphore count

 INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; // Wait list
 INT8U OSEventGrp;
} OS_SEM_DATA;

µC/OS-II User's Manual

745Copyright 2015 Micrium Inc.

Mutual Exclusion Semaphore Management

Function Prototypes:

INT8U OSMutexAccept(OS_EVENT *pevent, INT8U *err);
OS_EVENT *OSMutexCreate(INT8U prio, INT8U *err);
OS_EVENT *OSMutexDel(OS_EVENT *pevent, INT8U opt, INT8U *err);
void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U OSMutexPost(OS_EVENT *pevent);
INT8U OSMutexQuery(OS_EVENT *pevent, OS_MUTEX_DATA *pdata);

OSMutexDel() ‘opt’ argument:

OS_DEL_NO_PEND // Delete only if no task pending
OS_DEL_ALWAYS // Always delete

OSMutexQuery() data structure:

typedef struct {
 INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; // Wait List
 INT8U OSEventGrp;
 INT8U OSValue; // Mutex value
 // (0=used, 1=available)
 INT8U OSOwnerPrio; // Mutex owner's task priority
 INT8U OSMutexPIP; // Priority Inheritance Priority or
 // 0xFF if no owner
} OS_MUTEX_DATA;

µC/OS-II User's Manual

746Copyright 2015 Micrium Inc.

Event Flags Management

Function Prototypes:

OS_FLAGS OSFlagAccept(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U wait_type,
 INT8U *err);

OS_FLAG_GRP *OSFlagCreate(OS_FLAGS flags,
 INT8U *err);

OS_FLAG_GRP *OSFlagDel(OS_FLAG_GRP *pgrp,
 INT8U opt,
 INT8U *err);

OS_FLAGS OSFlagPend(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U wait_type,
 INT16U timeout,
 INT8U *err);

OS_FLAGS OSFlagPost(OS_FLAG_GRP *pgrp,
 OS_FLAGS flags,
 INT8U operation,
 INT8U *err);

OS_FLAGS OSFlagQuery(OS_FLAG_GRP *pgrp,
 INT8U *err);

OSFlagDel() ‘opt’ argument:

OS_DEL_NO_PEND // Delete only if no task pending
OS_DEL_ALWAYS // Always delete

µC/OS-II User's Manual

747Copyright 2015 Micrium Inc.

Message Mailbox Management

Function Prototypes:

void *OSMboxAccept(OS_EVENT *pevent);

OS_EVENT *OSMboxCreate(void *msg);

OS_EVENT *OSMboxDel(OS_EVENT *pevent, INT8U opt, INT8U *err);

void *OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

INT8U OSMboxPost(OS_EVENT *pevent, void *msg);

INT8U OSMboxPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);

INT8U OSMboxQuery(OS_EVENT *pevent, OS_MBOX_DATA *pdata);

OSMboxDel() ‘opt’ argument:

OS_DEL_NO_PEND // Delete only if no task pending
OS_DEL_ALWAYS // Always delete

OSMboxPostOpt() ‘opt’ argument:

OS_POST_OPT_NONE // POST to a single waiting task
 // (Identical to OSMboxPost())
OS_POST_OPT_BROADCAST // POST to ALL waiting on mailbox

OSMboxQuery() data structure:

typedef struct {
 void *OSMsg; // Pointer to message in mailbox

 INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; // Waiting List
 INT8U OSEventGrp;
} OS_MBOX_DATA;

µC/OS-II User's Manual

748Copyright 2015 Micrium Inc.

Message Queue Management

Function Prototypes:

void *OSQAccept(OS_EVENT *pevent);
OS_EVENT *OSQCreate(void **start, INT16U size);
OS_EVENT *OSQDel(OS_EVENT *pevent, INT8U opt, INT8U *err);
INT8U OSQFlush(OS_EVENT *pevent);
void *OSQPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U OSQPost(OS_EVENT *pevent, void *msg);
INT8U OSQPostFront(OS_EVENT *pevent, void *msg);
INT8U OSQPostOpt(OS_EVENT *pevent, void *msg, INT8U opt);
INT8U OSQQuery(OS_EVENT *pevent, OS_Q_DATA *pdata);

OSQDel() ‘opt’ argument:

OS_DEL_NO_PEND // Delete only if no task pending
OS_DEL_ALWAYS // Always delete
OS_POST_OPT_FRONT // Simulate OSQPostFront()

OSQPostOpt() ‘opt’ argument:

OS_POST_OPT_NONE // POST to a single waiting task
 // (Identical to OSMboxPost())
OS_POST_OPT_BROADCAST // POST to ALL waiting on mailbox

OSQQuery() data structure:

typedef struct {
 void *OSMsg; // Pointer to next message
 INT16U OSNMsgs; // # messages in queue

 INT16U OSQSize; // Size of message queue
 INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; // Waiting List
 INT8U OSEventGrp;
} OS_Q_DATA;

µC/OS-II User's Manual

749Copyright 2015 Micrium Inc.

Memory Management

Function Prototypes:

OS_MEM *OSMemCreate(void *addr,
 INT32U nblks,
 INT32U blksize,
 INT8U *err);
void *OSMemGet(OS_MEM *pmem, INT8U *err);
INT8U OSMemPut(OS_MEM *pmem, void *pblk);
INT8U OSMemQuery(OS_MEM *pmem, OS_MEM_DATA *pdata);

OSMemQuery() data structure:

typedef struct {
 void *OSAddr; // Ptr to start of memory partition
 void *OSFreeList; // Ptr to start free list of memory blocks
 INT32U OSBlkSize; // Size (in bytes) of each memory block
 INT32U OSNBlks; // # blocks in the Partition
 INT32U OSNFree; // # free blocks
 INT32U OSNUsed; // # blocks used
} OS_MEM_DATA;

µC/OS-II User's Manual

750Copyright 2015 Micrium Inc.

TO Utility
TO is a DOS utility that allows you to go to a directory without typing

CD path

or

CD ..\path

TO is probably the DOS utility I use most because it allows me to move between directories

very quickly. At the DOS prompt, simply type TO followed by the name you associated with a

directory, then press Enter:

TO name

where name is a name you associated with a path. The names and paths are placed in an ASCII

file called , which resides in the root directory of the current drive. TO scans forTO.TBL TO.TBL

the name you specified on the command line. If the name exists in , the directory isTO.TBL

changed to the path specified with the name. If name is not found in , the message TO.TBL

 is displayed.Invalid NAME.

The DOS executable is in , an example of the names and paths is in \SOFTWARE\TO\EXE\TO.EXE

, and the source code is in .\SOFTWARE\TO\EXE\TO.TBL \SOFTWARE\TO\SOURCE\TO.C

An example of and its format is shown in Listing D.1. Note that the name must beTO.TBL

separated from the path by a comma.

µC/OS-II User's Manual

751Copyright 2015 Micrium Inc.

A, ..\SOURCE
C, ..\SOURCE
D, ..\DOC
L, ..\LST
O, ..\OBJ
P, ..\PROD
W, ..\WORK
EX1L, \SOFTWARE\uCOS-II\EX1_x86L\BC45 (1)
EX2L, \SOFTWARE\uCOS-II\EX2_x86L\BC45
EX3L, \SOFTWARE\uCOS-II\EX3_x86L\BC45
Ix86L, \SOFTWARE\uCOS-II\Ix86L\BC45
TO, \SOFTWARE\TO\SOURCE
uCOS-II, \SOFTWARE\uCOS-II\SOURCE

Listing - Listing D.1 Example of TO.TBL

You can add an entry to TO.TBL by typing the path associated with a name on the command

line as follows:

TO name path

TO appends this new entry to the end of . This avoids having to use a text editor to add aTO.TBL

new entry. If you type

TO EX1L

TO changes directory to [LD.1(1)].\SOFTWARE\uCOS-II\EX1_x86L\BC45

TO.TBL can be as long as needed, but each name must be unique. Note that two names can be

associated with the same directory. If you add entries in using a text editor, all entriesTO.TBL

must be entered in uppercase. When you invoke TO at the DOS prompt, the name you specify

is converted to uppercase before the program searches through the table. TO searches TO.TBL

linearly from the first entry to the last. For faster response, you may want to place your most

frequently used directories at the beginning of the file although this may not be necessary with

today’s fast computers.

µC/OS-II User's Manual

752Copyright 2015 Micrium Inc.

Bibliography
Allworth, Steve T. 1981. New York:Introduction To Real-Time Software Design.

Springer-Verlag. ISBN 0-387-91175-8.

Bal Sathe, Dhananjay. 1988. Fast Algorithm Determines Priority. (India), September, p.EDN

237.

Chappell, Geoff. 1994. Reading, Massachusetts. Addison-Wesley. DOS Internals. ISBN

0-201-60835-9.

Comer, Douglas. 1984. Englewood Cliffs,Operating System Design, The XINU Approach.

New Jersey: Prentice-Hall. ISBN 0-13-637539-1.

Deitel, Harvey M. and Michael S. Kogan. 1992. Reading, Massachusetts:The Design Of OS/2.

Addison-Wesley. ISBN 0-201-54889-5.

Ganssle, Jack G. 1992. San Diego: AcademicThe Art of Programming Embedded Systems.

Press. ISBN 0-122-748808.

Gareau, Jean L. 1998. Embedded x86 Programming: Protected Mode. Embedded Systems

, April, p. 80–93.Programming

Halang, Wolfgang A. and Alexander D. Stoyenko. 1991. Constructing Predictable Real Time

Norwell, Massachusetts: Kluwer Academic Publishers Group. ISBN 0-7923-9202-7.Systems.

Hunter & Ready. 1986. Palo Alto, California: Hunter & Ready.VRTX Technical Tips.

Hunter & Ready. 1983. Palo Alto, California: HunterDijkstra Semaphores, Application Note.

& Ready.

Hunter & Ready. 1986. Palo Alto, California: Hunter & Ready.VRTX and Event Flags.

Intel Corporation. 1986. SantaiAPX 86/88, 186/188 User’s Manual: Programmer’s Reference.

Clara, California: Intel Corporation.

Kernighan, Brian W. and Dennis M. Ritchie. 1988. 2ndThe C Programming Language,

µC/OS-II User's Manual

753Copyright 2015 Micrium Inc.

edition. Englewood Cliffs, New Jersey: Prentice Hall. ISBN 0-13-110362-8.

Klein, Mark H., Thomas Ralya, Bill Pollak, Ray Harbour Obenza, and Michael Gonzlez. 1993.

A Practioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for

Norwell, Massachusetts: Kluwer Academic Publishers Group. ISBNReal-Time Systems.

0-7923-9361-9.

Laplante, Phillip A. 1992. Real-Time Systems Design and Analysis, An Engineer’s Handbook.

Piscataway, New Jersey: IEEE Computer Society Press. ISBN 0-780-334000.

Lehoczky, John, Lui Sha, and Ye Ding. 1989. The Rate Monotonic Scheduling Algorithm:

Exact Characterization and Average Case Behavior. In: Proceedings of the IEEE Real-Time

Los Alamitos, California. Piscataway, New Jersey: IEEE ComputerSystems Symposium.,

Society, p. 166–171.

Madnick, E. Stuart and John J. Donovan. 1974. New York: McGraw-Hill.Operating Systems.

ISBN 0-07-039455-5.

Ripps, David L. 1989. EnglewoodAn Implementation Guide To Real-Time Programming.

Cliffs, New Jersey: Yourdon Press. ISBN 0-13-451873-X.

Savitzky, Stephen R. 1985. New York: Van NostrandReal-Time Microprocessor Systems.

Reinhold. ISBN 0-442-28048-3.

Tischer, Michael. 1995. Grand Rapids,PC Intern, System Programming 5 Edition. th

Michigan. Abacus, 1995. ISBN 1-55755-282-7.

Villani, Pat. 1996. FreeDOS Kernel, An MS-DOS Emulator for Platform Independence &

Lawrence, Kansas. R&D Technical Books. Embedded Systems Development. ISBN

0-87930-436-7.

Wood, Mike and Tom Barrett . 1990. A Real-Time Primer. ,Embedded Systems Programming

February, p. 20–28.

	µC/OS-II User Manual
	Preface
	Getting Started with µC/OS-II
	Real-Time Systems Concepts
	Kernel Structure
	Task Management
	Time Management
	Timer Management
	Event Control Blocks
	Semaphore Management
	Mutual Exclusion Semaphores
	Event Flag Management
	Message Mailbox Management
	Message Queue Management
	Memory Management
	Porting µC/OS-II
	80x86 Port with Emulated FP Support
	80x86 Port with Hardware FP Support
	Thread Safety of the Compiler’s Run-Time Library
	µC/OS-II API Reference
	µC/OS-II Configuration Manual
	PC Services
	C Coding Conventions
	Licensing Policy for µC/OS-II
	µC/OS-II Quick Reference
	TO Utility
	Bibliography

