

CE

QXXXXE PROCESS SIGNAL WITH EXCITATION DIGITAL PANEL METER

Operator's Manual

Additional products from **NEWPORT** Electronics, Inc.

> Counters Frequency Meters PID Controllers Clock/Timers Printers Process Meters On/Off Controllers Recorders Relative Humidity Transmitters Thermocouples Thermistors Wire

Rate Meters Timers Totalizers Strain Gauge Meters Voltmeters Multimeters Soldering Iron Testers pH pens pH Controllers pH Electrodes RTDs Thermowells Flow Sensors

For Immediate Assistance In the U.S.A. and Canada: 1-800-NEWPORT[®] In Mexico: (95) 800-NEWPORT[™] Or call your local NEWPORT Office.

NEWPORTnet[™] On-Line Service http://www.newportUS.com

Internet e-mail info@newportUS.com

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.

TABLE OF CONTENTS

SAFET	Y CONSIDERATIONS i	ii
QUANT	TA CROSS REFERENCE i	v
MAIN A	ASSEMBLY	
1.0	Specifications Q2000E	1
2.0	Specifications Q9000E	2
3.0	Digital Panel Meter Installation	
	3.1 Unpacking and Inspection	3
	3.2 Safety Instructions	
	3.2 Mechanical Assembly and Installation	4
4.0	Power and Signal Input Connections	
5.0	Configuration Procedure	8
	5.1 Decimal Point Selection	
	5.2 Interface Board Signal Bypass Selection	0
	5.3 Reference Voltage (Q9000E Only)1	
6.0	Main Board Connector Pinouts (J1)	
7.0	Tests and Diagnostics	
8.0	Panel Meter Dimensions for Q2000E / Q9000E1	
9.0	Assembly Drawings for Q2000E / Q9000E	

SIGNAL CONDITIONER BSCE

10.0	Specifications
11.0	Signal Input Connections
12.0	Configuration Procedure
13.0	Configuration Charts
14.0	Calibration for Q2000E / Q9000E
15.0	Power Requirements and Connections
16.0	Signal Input Connections
17.0	Test and Diagnostics
18.0	Drawings for BSCE

ILLUSTRATIONS

Figure 3-1	Exploded View of Quanta Panel Meter
Figure 3-2	Panel Cutout Dimension
Figure 3-3	Label Placement
Figure 8-1	Panel Meter Dimensions
Figure 9-1	Q2000 LED Main Assembly14
Figure 9-2	Q2000 LCD Main Assembly15
Figure 9-3	Q9000 LED Main Assembly16
Figure 13-1	Push-On Jumper Locations
Figure 18-1	BSCE Assembly Diagram

SAFETY CONSIDERATIONS

This device is marked with the international Caution symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

Unpacking & Inspection

Unpack the instrument and inspect for obvious shipping damage. Do not attempt to operate the *Note* unit if damage is found.

This instrument is a panel mount device protected in accordance with Class I of EN 61010 (115/230 AC power connections). Installation of this instrument should be done by Qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuit-breaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall not interrupt the Protective Conductor (Earth wire), and it shall meet the relevant requirements of IEC 947–1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the mains supply cord.

Furthermore, to provide protection against excessive energy being drawn from the mains supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

The **Protective Conductor** must be connected for safety reasons. Check that the power cable has the proper Earth wire, and it is properly connected. It is not safe to operate this unit without the Protective Conductor Terminal connected.

- Do not exceed voltage rating on the label located on the top of the instrument housing.
- Always disconnect power before changing signal and power connections.
- Do not use this instrument on a work bench without its case for safety reasons.
- Do not operate this instrument in flammable or explosive atmospheres.
- Do not expose this instrument to rain or moisture.
- Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
- Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

- Whenever EMC is an issue, always use shielded cables.
- Never run signal and power wires in the same conduit.
- Use signal wire connections with twisted-pair cables.
- Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.

QUANTA CROSS REFERENCE

CONFIGURED MODEL

-				IOD			
Q							MODULE NO.
	2 9					DISPLAY RESOLUTION ±1999 counts (3 1/2 digits) ±9999 counts (4 digits)	BQ2X BQ9X
		0123456789AB				DISPLAY TYPE & METER POWER (LCD is only available on Q2000 models) LED, 120 V ac (50/60 Hz) LCD, 120 V ac (50/60 Hz) LED, 240 V ac (50/60 Hz) LCD, 240 V ac (50/60 Hz) LCD, 9-32 V dc (isolated) LCD, 9-32 V dc (isolated) LCD, 5 V dc LCD, 5 V dc LCD, 24 V ac LCD, 24 V ac LCD, 24 V ac LCD, 26-56 V dc (isolated)	BQ20 or BQ90 BQ21 BQ22 or BQ92 BQ23 BQ24 or BQ94 BQ25 BQ26 or BQ96 BQ27 BQ28 or BQ98 BQ29 BQ2A or BQ9A BQ2B
			0 1 2 3 4 5			ANALOG OUTPUTS ±1 or ±2 V (standard, all models) 0-5 V dc 0-10 V dc 0-1 mA, source or sink 4-20 mA, source or sink 4-20 mA, sink (high-compliance)	None BA01 BA01 BA01 BA01 BA02
				0 1 2 3 4 5		CONTROL OUTPUTS None Dual-setpoint 10 A relays Proportional 4-20 mA control, source or sink, plus drive for time-proportional solid-state relay Proportional 4-20 mA control, source or sink, plus time-proportional solid-state 2 A relay Parallel BCD (isolated) Single-setpoint 10 A relay	None BDT1 BDP1 BDP2 BDD2 BDS1
					ABCDFGIJXHZEZOFMØN	SIGNAL-CONDITIONER INPUTS DC voltage DC current AC voltage AC current True RMS voltage True RMS current Frequency/rate Type J thermocouple (°C or °F) Type K thermocouple (°C or °F) Type T thermocouple (°C or °F) RTD, normal resolution (°C or °F) RTD, high resolution (°C or °F) 3-wire ratio (potentiometer) 2- or 4-wire resistance Process signal (e.g., 4-20 mA, 1-5 V) Process signal plus excitation Strain gauge/low-level input Prototyping	BSCA BSCC BSCC BSCF BSCF BSCH1 BSCJ BSCK BSCT BSCK BSCT BSCC BSCC BSCC BSCC BSCC BSCC BSCC

1.0 MAIN ASSEMBLY - Q2000E SPECIFICATIONS

1.1 GENERAL

The Q2000 main assemblies are identified by an initial designator (BQ2) plus a power/display option numeral, zero thru nine (0-9).

The following table identifies the main assembly types:

•	Display Type	120 V ac	240 V ac	9-32 V dè	5 V ac	24 V ac
	LED	BQ20	BQ22	BQ24	BQ26	BQ28
	LCD	BQ21	BQ23	BQ25	BQ27	BQ29

The QUANTA Digital Panel Meter/Controller consists of a main assembly, signal conditioner and interface options (if ordered) all housed in a 1/8 DIN case.

The main assembly consists of a main board and a display board which is permanently attached to it at a 90 degree angle.

The main board provides mounting for the power supply, circuit components, and connectors for plugging in the signal conditioner, optional analog card, and optional controller/communications interface card (requires removal of a bypass push-on jumper).

The display board includes the analog-to-digital converter, the LED or LCD display and the push-on jumper for programming the decimal points. Decimal point programming may also be done from the main board connector (J1).

1.2 POWER

AC Models: Common Mode Voltage: DC Models:	24/120/240 V +10/-15% 47-63 Hz 1500 Vp test (354 Vp per IEC spacing) 5 V ±5% (5 V return common to signal LO) 9-32 V (300 V isolation from 9-32 V return to signal LO)
Source Impedance:	3 ohms
Ripple:	250 mV maximum
Power Consumption:	5 watts maximum

1.3 DISPLAY

LED:	14.2 mm (0.56 in), 7-segment light emitting diode
Lens color:	" Red
LCD:	12.7 mm (0.50 in), 7-segment liquid
₩	crystal
Lens color:	Clear
Range:	0 to ±1999
Overload Indication:	Three least-significant digits blanked, "1" or "-1" displayed

1.4 CONVERSION

Auto-zero, dual slope, average value Technique: Signal Integration Period: 100 ms, nominal 2.5/s, nominal Reading Rate:

1.5 ENVIRONMENTAL

Operating Temperature		
(Ambient):	0-60°C	
Storage Temperature:	-40 to 85°C	
Humidity:	To 95% RH, non-condensing,	0-40°C

1.6 MECHANICAL

Case Material:	UL-rated 94V-0, polycarbonate
Weight:	0.57 kg (with interface board)

2.0 MAIN ASSEMBLY - Q9000E SPECIFICATIONS

2.1 GENERAL

QUANTA Q9000 main assemblies are identified by an initial designator (BQ9) plus a power/display option numeral: 0, 2, 4, 6 or 8.

The following table identifies the main assembly types:

Display Type	120 V ac	240 V ac	9-32 V dc	5 Vac	24 V ac
LED	BQ90	BQ92	BQ94	BQ96	BQ9 8

The QUANTA <u>Digital Panel Meter/Controller</u> consists of a main assembly, signal conditioner and interface options (if ordered) all housed in a 1/8 DIN case.

The main assembly consists of a main board and a display board which is permanently attached to it at a 90 degree angle.

The <u>main board</u> provides mounting for the power supply, circuit components, and connectors for plugging in the signal conditioner, optional analog card, and optional controller/communications interface card (requires removal of a bypass push-on jumper).

The display board includes the analog-to-digital converter, the LED display and the push-on jumper for programming the decimal points. Decimal point programming may also be done from the main board connector (J1).

2.2 POWER

AC Models: Common Mode Voltage:	24/120/240 V +10/-15% 47-63 Hz 1500 Vp test (354 Vp per IEC spacing)
DC Models:	5 V ±5% (5 V return common to signal LO) 9-32 V (300 V isolation from 9-32 V return to signal LO)
Source Impedance:	3 ohms
Ripple:	250 mV maximum
Power Consumption:	5 watts maximum

2.3 DISPLAY

	LED:	14.2 mm (0.56 in), 7-segment light emitting diode
	Lens color:	Red
	Range:	0 to ±9999, digits flash from 10K-20K counts
	Overload Indication:	Four digits flash zeros at 20K and above
2.4	CONVERSION	
	Technique: Signal Integration	Auto-zero, dual slope, average value
	Period:	100 ms, nominal
	Reading Rate:	2.5/s, nominal
2.5	ENVIRONMENTAL	
	Operating Temperature (Ambient):	0 to 60°C

	(Ambient):	0 to 60°C
	Storage Temp.:	-40 to 85°C
	Humidity:	To 95% RH, non-condensing, 0-40°C
2.6	MECHANICAL	
	Case Material:	UL-rated 94V-0, polycarbonate
	Weight:	0.57 kg (with interface board)

3.0 DIGITAL PANEL METER INSTALLATION

IMPORTANT:

For proper installation, electrical connections must be made according to the model number on the meter label. Write the model number in the following space and use the appropriate instructions for your model number.

.--- Power requirement . : .--- Analog output (see Analog Output Manual) : : : : .--- Control output (see Controller/ . • Interface Manual) : : : : : .--- Signal input : : : : : Model number Q2 Model number Q9

3.1 UNPACKING & INSPECTION

Your QUANTA digital panel meter was systematically inspected and tested, then carefully packed before shipment.

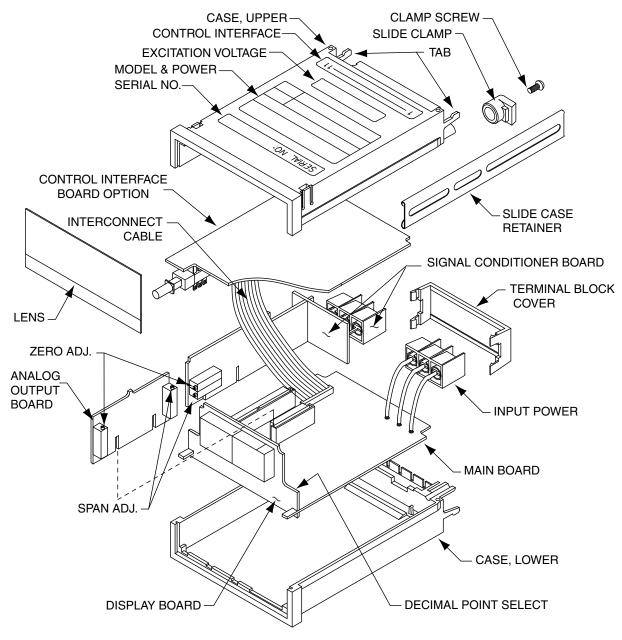
Unpack the instrument and inspect for obvious shipping damage. Notify the freight carrier immediately upon discovery of any shipping damage.

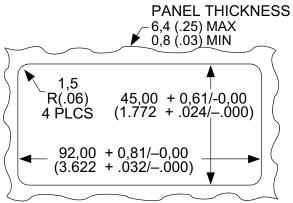
3.2 SAFETY INSTRUCTIONS

As delivered from the factory/distributor, this instrument complies with required safety regulations. In order to maintain this condition and to ensure safe operation, the following instructions should be followed.

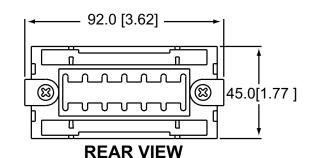
- 1. Unpacking After visual inspection, do not attempt to operate the unit if damage is found.
- 2. Power Voltage This instrument is delivered with mains (AC power) connection for 120 V in the U.S.A., and for 240 V in Europe (unless the instrument is fitted with DC drive capability). Check that the instrument is connected for the power voltage rating that will be used. If not, make the required changes as called out in the technical manual.
- 3. Mounting This instrument is designed for mounting in a metal panel, as specified in the technical data. Check the dimensions of the panel cutout and observe the mounting instructions in the manual.
- 4. Power Wiring This instrument has no mains switch; it will be in operation as soon as the power is connected.

The meter must be grounded (earthed) in accordance with the latest local safety regulations. Check that the power cable has the proper ground (earth) wire and that this wire is properly connected to an adequate ground (earth) point.

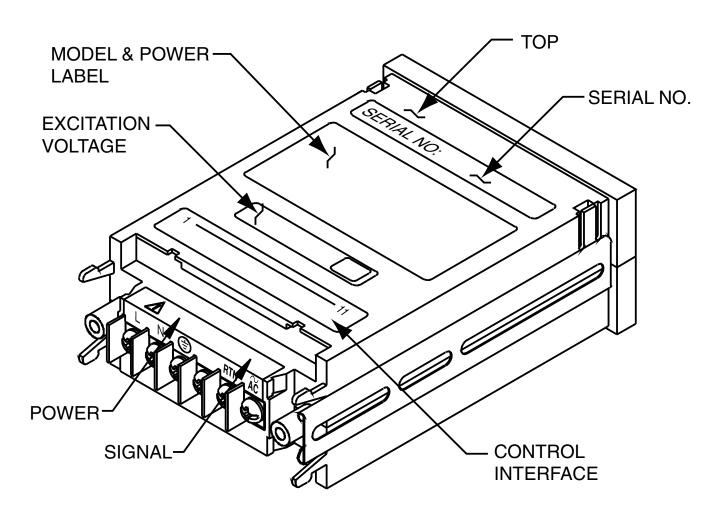

This instrument is protected according to Class I (Protective Earth) of the IEC (International Electrotechnical Commission) 348 and the VDE 0411 regulations. The power cable must contain a protective ground (earth) conductor which is not disconnected (open) either inside or outside the instrument. No extension cables without grounding (earthing) wires shall be used.


5. Signal Wiring - Do not make signal wiring connections or changes when power is applied to the instrument; make signal connections before power is applied and, if reconnection is required, disconnect the AC (mains) power before such rewiring is attempted.

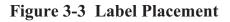
3.3 MECHANICAL ASSEMBLY AND INSTALLATION


- 1. Insure that the panel cutout dimensions are as shown on Figure 3-2.
- 2. Refer to Figure 3-1. Remove the lower printed circuit board edge connector, (if installed) J1, by pushing two molded plastic tabs away from the connector body and pulling the connector off the printed circuit board. Remove the printed circuit board edge connector, J2, if upper-board output option was ordered.

- 3. Loosen two clamp screws on the rear of the case, enough to rotate the two slide clamps.
- 4. Slide the two slide retainers toward the rear of the case and remove them.
- 5. From the front of the panel, insert the meter into the panel cutout.
- 6. Slide the slide retainers back onto the case and push up tightly against the rear of the panel.
- 7. Rotate the slide clamps back into their original position and tighten enough to hold the case in place. Overtightening can break the clamps.
- 8. Install the lower printed circuit board edge connector, if supplied, by pushing it on to the printed circuit board connector. Install the upper printed circuit board edge connector, if used.



NOTE: Dimensions in Millimeters (Inches)



(TERMINAL BLOCK COVER AND BEZEL NOT SHOWN FOR CLARITY) SLIDE CLAMPS ROTATED AND SLIDE RETAINERS REMOVED AS SHOWN FOR INSTALLATION.

Figure 3-2 Panel Cutout Dimension

Note: Read labels from the Rear

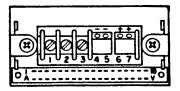
4.0 POWER AND SIGNAL INPUT CONNECTIONS

WARNING: Incorrect power input can damage your QUANTA PANEL METER

4.1 POWER CONNECTIONS

01 <u></u> 0

Terminal	AC	Wire
Connection	Versions	<u>Color</u>
1	AC power HI	Black
2	AC power LO (neutral)	White
3	AC power GND	Green


REAR TERMINAL VIEW

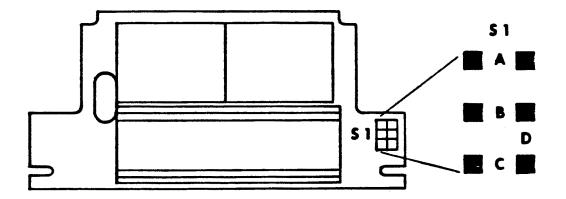
n N	Terminal Connection	DC Versions
	1 2 3	No connection DC power + DC power - (return)

4.2 SIGNAL INPUT CONNECTIONS

0 Å

REAR TERMINAL VIEW

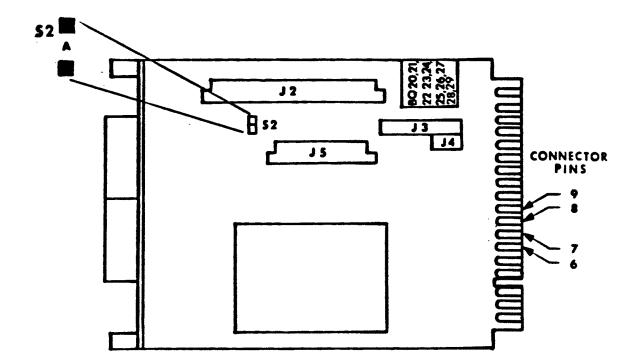
Terminal Connection	6 Terminal Versions Signal
4	Analog GND
5	Signal LO
6	Signal HI

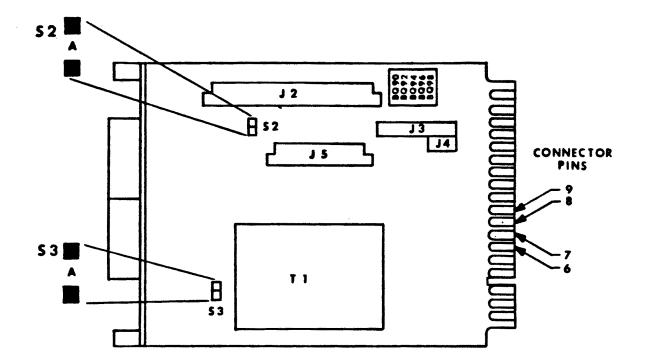

Terminal	7 Terminal Versions
Connection	Signal
4	-E (Excitation return)
5	-S (Signal LO input)
6	+S (Signal HI input)
7	+E (Excitation output)

5.0 CONFIGURATION PROCEDURE

This procedure is used to set the decimal point of the display and interface board signal bypass selections. For the configuration of the QUANTA Q2XXXX, use power options BQ20 through BQ29; use power options BQ90 through BQ98 for configurations of the QUANTA Q9XXXX.

The main assembly's configuration can be changed by using the push-on jumpers provided. (They may already be positioned on the pin-forests.) Pin-forest designations are shown below.


5.1 DECIMAL POINT SELECTION


Step 1: Remove all push-on jumpers not used in the desired configuration(s).		
Step 2: Select the desired configuration from the chart below, the push-on jumpers indicated.		
Decimal Point Selection	S1	Alternate Decimal Point Selection Using Main Assembly Board (J1) Connector
Decimal Point (1.999)	A	Connect J1-K/9 to J1-6
Decimal Point (19.99)	В	Connect J1-J/8 to J1-6
Decimal Point (199.9)	С	Connect J1-H/7 to J1-6
No Decimal Point (1999)	D	No. Connection

5.1.2 Q9XXXE Decimal Point Selection Chart

Step 1: Remove all push-on jumpers not used in the desired configuration(s).		
Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.		
Decimal Point Selection	S1	Alternate Decimal Point Selection Using Main Assembly Board (J1) Connector
Decimal Point (9.999)	A	Connect J1-K/9 to J1-6
Decimal Point (99.99)	В	Connect J1-J/8 to J1-6
Decimal Point (999.9)	С	Connect J1-H/7 to J1-6
No Decimal Point (9999)	D	No connection

Step	1:	Check your QUANTA part number for position; Q2XXOX or Q9XXOX. If the that position, interface board sign	ere is a zero (0) in
Step	2:	Remove all push-on jumpers configuration(s).	not used in the desired
Step	3:	Select the desired configuration fr then install the push-on jumpers in	
In	tei	face Board Signal Configuration	S2
In	ter	face Board Signal Bypass	Α

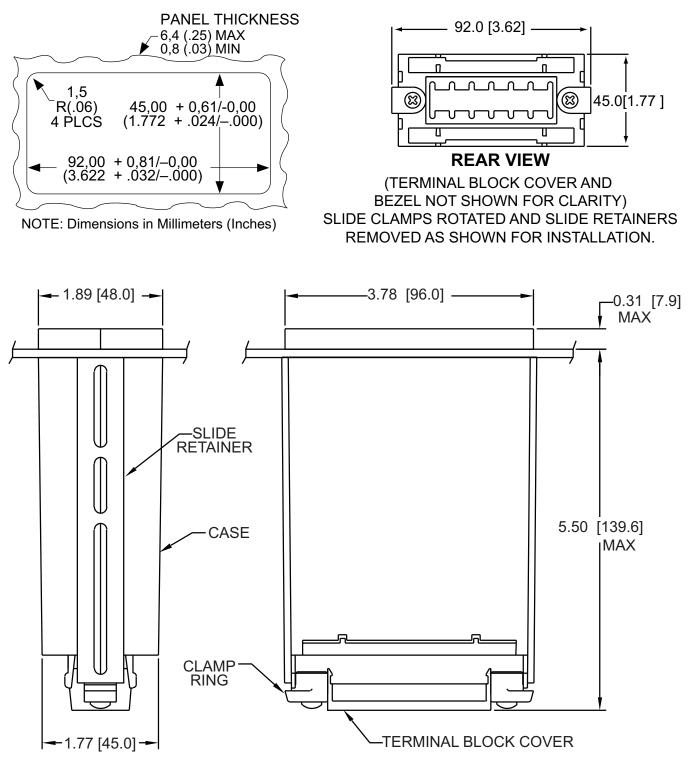
Step 1:	Remove all push-on jumpers not used in configuration(s).	the desired
Step 2:	Select the desired configuration from then install the push-on jumpers indica	
	ence Voltage Configuration	S 3
Refer	suce foreage couriganation	
Refer RV1	1 Volt.	A

6.0 MAIN BOARD CONNECTOR PINOUTS (J1)

(Left to right, looking at rear of case)

Connection	Function
A - 1	Spare
B	Oscillator
2	-8.2 V dc Analog power
°C - 3	Spare
D	+ Pol (sign)
4	HOLD (LED version only)
E - 5 F	Spare
	Buffer Integrator output
6	Digital Ground
н – 7	99.9 (Decimal point)
J - 8	9.99 (Decimal point)
K - 9	.999 (Decimal point)
L - 10	Test (LED version only)
M - 11	+5 V dc Analog & digital power
N - 12	Analog output
P - 13	Spare
R - 14	Spare (- Excitation sense)
S - 15	Analog Ground
T - 16	Analog Option - Return
U	Analog Option - Out
17	+30 V dc Unregulated power
V - 18	Spare (+ Excitation sense)
-	Indicates common pin

50 mA maximum power available from all internal sources.


7.0 TESTS & DIAGNOSTICS

7.1 TEST CONFIGURATION REQUIREMENTS

The QUANTA main assembly is designed to function with a signal conditioner board as a minimum configuration. There is no provision for testing a main assembly alone.

7.2 SIGNAL INPUT REQUIREMENTS

Signal input requirements for your configuration are identified in the signal conditioner section of this manual.

Notes: Dimensions are in inches ±0.01" with millimeters in [] ±0.25 mm.

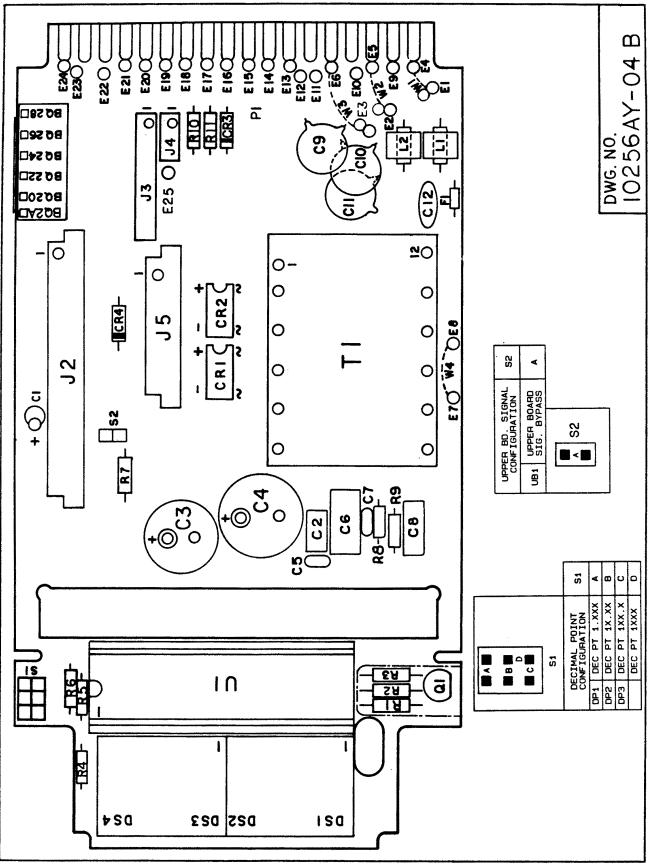


Figure 8-1 Q2000 LED Main Assembly

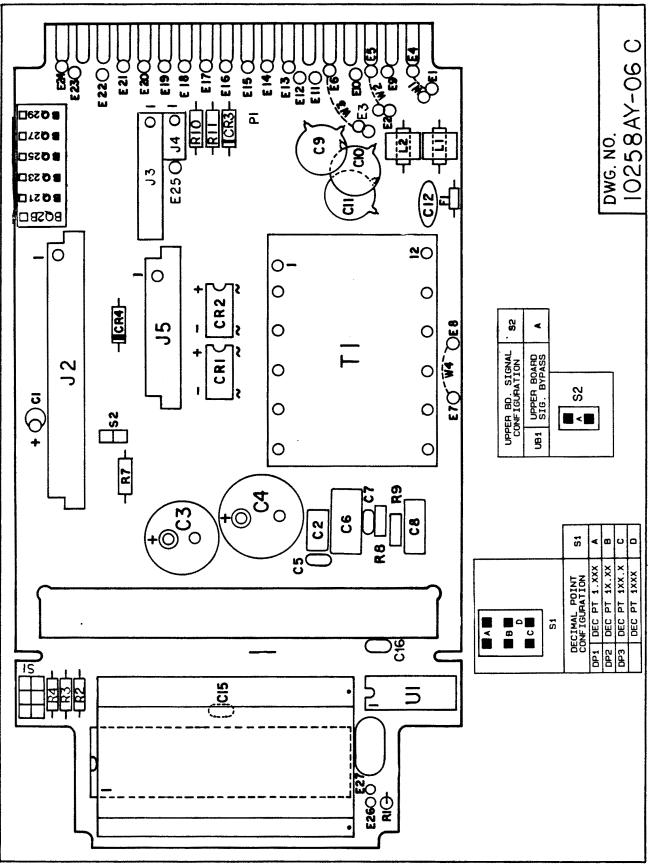


Figure 8-3 Q2000 LCD Main Assembly

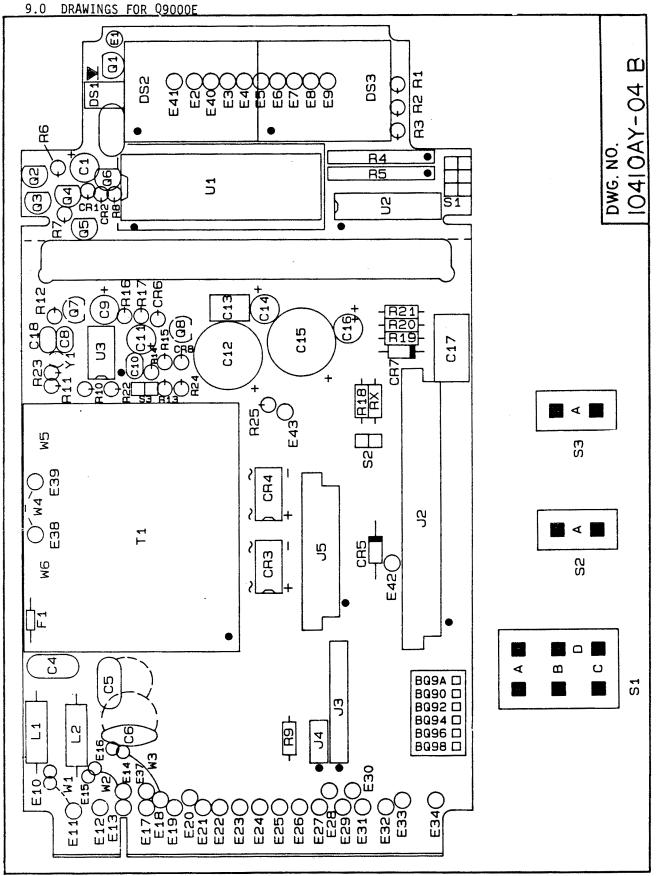


Figure 9-1 Q9000 LED Main Assembly

10.0 SPECIFICATIONS: BSCE PROCESS SIGNAL CONDITIONER WITH EXCITATION

10.1 GENERAL

This option board, identified as BSCE (Q2000E or Q9000E), provides extensive offset and scaling capability, permitting a wide selection of readout span for input current spans of 1 to 50 mA FS or for input voltage spans of 0.5 to 20 V FS. The Q2000 or Q9000 prefix is determined by the main assembly board used with the BSCE input board.

In addition to the above input capabilities, two excitation supply voltages are available for powering transducers. Supply voltages of 10 V with up to 50 mA or 15 V with up to 25 mA can be selected with push-on jumpers.

Selection of gain and offset ranges is made by push-on jumpers between 0.025" square pins on 0.1" centers. Six current ranges and six voltage ranges are provided, as well as push-on jumpers for offset and polarity to preserve the resolution and adjustability of the offset and gain potentiometers.

Formulas and computation procedures are supplied for calculating the proper model number based on the desired HI and LO input values and the top and bottom readout values chosen.

The BSCE has a restricted common-mode range: the BSCS strain gauge signal conditioner is recommended for signals with sizeable common-mode levels.

10.2 Q2000E & Q9000E: PROCESS SIGNAL INPUT SPECIFICATIONS

Configuration	Single-ended, meter ground common to input LO			
Polarity	Bipolar			
Span Ranges	Internally selectable by push-on jumpers			
	0 to 25% 25 to 50% 50 to 75% 75 to 100%			
Zero Offset Ranges	Internally selectable by push-on jumpers			
	-215 to -77 mV -77 to +54 mV +54 to +190 mV +165 to +295 mV			
Fine Zero Offset	50% of full scale minimum (front panel adjustment by potentiometer)			

VOLTAGE RECEIVER

Readout Range			-1999	to +	1999	(Q2000E)	
Readout Range			-9999	to +	9999	(Q9000E)	
Input Range	0.5	1.0	2.0	5.0	10.0	20.0	V FS
Input Impedance	0.10	0.25	0.50	1.09	1.04	1.02	M ohms
Bias Current	100	50	25	13	13	13	рA
NMR at 50/60 Hz	60	56	54	50	50	50	đB

Maximum Voltage: 250 Vp

DC CURRENT RECEIVER

Readout Range			-1999	to +1	999 (Q2000E)	
Readout Range		-	-9999	to +9	999 (29000E)	
Input Range	1.0	2.0	5.0	10.0	20.0	50.0	mAFS
Maximum Current	16	22	35	50	70	112	mA
Shunt Resistance	499	249	100	49.9	24.9	10.0	ohms
Full Scale Voltage Drop	0.5	0.5	0.5	0.5	0.5	0.5	V FS
NMR at 50/60 Hz	60	60	60	60	60	60	dB

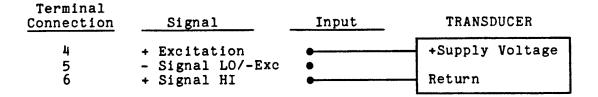
Common Mode

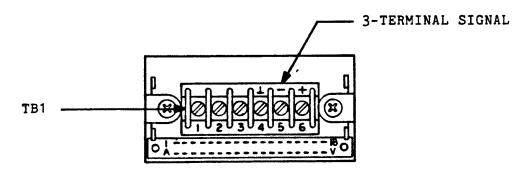
Analog ground to AC power ground

CMR at DC to 60 Hz	120 dB
CMV at DC to 60 Hz	±1500 Vp per HV test ±354 Vp per IEC spacing
Accuracy at 25°C Maximum Errors	
Q2000E	±0.05 R ±1 count
Q9000E	±0.01 R ±2 counts
Reading Tempco	±0.005 R/°C
Zero Tempco	±0.2 counts °C
Warmup to rated accuracy	Less than 10 minutes

10.3 EXCITATION SUPPLY SPECIFICATIONS

Output Voltage	10 or 15 V ±5% internally selectable by push-on jumper
Output Current	50 mA max at 10 V and 25 mA at 15 V without any current output from other options
Load Regulation	0.5% max from zero to max load
Line Regulation	0.2% max for 10% change of AC line power voltage
Ripple at 50/60 Hz	0.01%


11.0 SIGNAL INPUT CONNECTIONS (TB1)


The signal input connections for the BSCE process signal conditioner are made at the standard 3-terminal barrier strip:

Signal input connections and excitation supply output connection for an amplified voltage output transducer:

Terminal Connection	Signal	Input	TRANSDUCER
4	+ Excitation		+Supply Voltage
5	- Signal LO/-Exc		Common
6	+ Signal HI		Signal Output

Signal input connections for an amplified current output transducer:

REAR TERMINAL VIEW

12.0 BSCE CONFIGURATION PROCEDURES

Use this procedure to determine the configuration of the BSCE Process Signal Option.

Configure the unit using push-on jumpers provided separately or already positioned on the pin forests. Pin-forest designations are shown with the configuration charts.

12.1 DEFINITION OF TERMS

S01-2	Signal Output Polarity
EV1-2	There are two excitation voltage ranges, EV1 has an output of 10 V and EV2 has an output of 15 V.
ZON	Zero Offset Number
LI	Lower Input Number
UI	Upper Input Number
LD	Lower Display Number
UD	Upper Display Number
G	Gain in Counts/Input
AM1-18	Ammeter. Range selection is 1 to 18.
VM1-15	Voltmeter. Range selection is 1 to 15.
VR1-24	Voltage Receiver. Range selection is 1 to 24.
CR1-24	Current Receiver. Range selection is 1 to 24.

12.2 VOLTMETER RANGE SELECTION

1.

Specify the	magnitude	of the	largest	+ or -	input voltage:
Q2000E:	: VM =			Volts	(For a 2000 count reading)
Q9000E:	: VM =			Volts	(For a 10000 count reading)

2. Select the lowest range where VM (from step 1) is equal to or less than the limit of that range.

VM1 = 0.235 VVM6 = 1.030 VVM11 = 4.500 VVM2 = 0.350 VVM7 = 1.500 VVM12 = 5.100 VVM8 = 1.800 V VM9 = 2.500 V VM3 = 0.450 VVM13 = 6.500 VVM4 = 0.580 VVM14 = 9.600 VVM5 = 0.850 V VM10 = 3.100 VVM15 = 11.00 VThis selection will be used in VM =configuring the meter.

3. Proceed to Installation.

* Range Selection assumes that the meter has an offset range (ZO3) selected which allows a shorted input to read 000 on the Q2000E display and 0000 on the Q9000E display.

- 12.3 AMMETER RANGE SELECTION
 - 1. Specify the magnitude of the largest + or input current.

 Q2000E = AM = ______ mA (For a 2000 count reading)
 - Q9000E = AM = _____ mA (For a 10000 count reading)
 - 2. Select the highest current range where AM is equal to or less than the limit of that range.

AM1 = 0.470 mAAM7 = 2.350 mAAM13 = 9.400 mAAM14 = 14.00 mAAM2 = 0.700 mAAM8 = 3.500 mAAM9 = 4.000 mAAM3 = 0.800 mAAM15 = 19.10 mAAM10 = 4.700 mA $AM\bar{4} = 0.940 mA$ AM16 = 23.50 mAAM5 = 1.400 mA AM11 = 7.000 mA AM17 = 35.00 mA AM18 = 51.00 mAAM6 = 1.910 mA AM12 = 7.800 mA _____ This selection will be used in AM =

configuring the meter:

- 3. Proceed to Installation.
- 12.4 VOLTAGE RECEIVER SELECTION
 - 1. Using the Input Span Range and the required display readings, calculate the zero offset required (with polarity).

(LI)	Lower	Input =		
(UI)	Upper	Input =		
		Display		
(UD)	Upper	Display	Ξ	

2. When specifying the lower input (LI) and upper input (UI), the maximum display reading for a Q2000E is ± 1999 . The maximum display for a Q9000E is ± 9999 .

 $ZON = (LD \times UI) - (UD \times LI). = (UI - LI)$

3. Select a Zero Offset Range (ZO) from the appropriate QUANTA series where the Zero Offset Number (ZON) falls between the minimum and maximum numbers of that range.

9	2000E	Q9000E	
	-3000/-1895 -1900/-600 -605/+870 +865/+2100	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Z0 =	<u></u>	This selection will be used in configuring the meter.	n

Using the same LI, UI, LD, and UD numbers, calculate the Gain
 (G) in Counts/Input.

 $Gain (G) = \frac{(UD - LD)}{(UI - LI)} =$

- 5. Select the group of four VR ranges under the Input Span Range required from the following chart.
- 6. Select one from this group which contains the Gain (G) number calculated in Step 4.

Voltage Receiver	Input	Count Outpu	t Range	
Selection	Span	Q2000E	Q9000E	
VR1	0/0.5 V	80/2850	400/14250	
VR2	0/0.5 V	2840/5500	14200/27500	
VR3	0/0.5 V	5490/8170	27450/40850	
VR4	0/0.5 V	8160/10600	40800/53000	
VR5	0/1.0 V	40/1260	200/6300	
VR6	0/1.0 V	1255/2440	6275/12200	
VR7	0/1.0 V	2430/3605	12150/18025	
VR8	0/1.0 V	3595/4700	17975/23500	
VR9	0/2.0 V	20/750	100/3750	
VR10	0/2.0 V	745/1452	3725/7260	
VR11	0/2.0 V	1450/2157	7250/10785	
VR12	0/2.0 V	2155/2750	10775/13750	
VR13	0/5.0 V	8/231	40/1155	
VR14	0/5.0 V	230/449	1150/2245	
VR15	0/5.0 V	448/667	2240/3335	
VR16	0/5.0 V	666/860	3330/4300	
VR17	0/10.0 V	4/114.5	20/572	
VR18	0/10.0 V	114/223	570/1115	
VR19	0/10.0 V	222.5/331	1117/1655	
VR20	0/10.0 V	330.5/428	1652/2140	
VR21	0/20.0 V	2/56.8	10/284	
VR22	0/20.0 V	56.5/110.3	282/551	
VR23	0/20.0 V	110/164.4	550/822	
VR24	0/20.0 V	164.2/220	821/1100	
VR =	(c	· · · · · · · ·	This selection wil d in configuration	

Proceed to Installation.

12.5 CURRENT RECEIVER SELECTION

•

1. Using the Input Span Range and the required Display Reading, calculate the zero offset required (with polarity).

(LI)	Lower	Input =		
(UI)	Upper	Input =		
(LD)	Lower	Display	=	
(UD)	Upper	Display	H	

- 2. When specifying the Lower Input (LI) and Upper Input (UI), the maximum display reading for a Q2000E is ±1999. The maximum reading for a Q9000E is ±9999.
 - $ZON = (LD \times UI) (UD \times LI)$ (UI LI)
 - 3. Select a Zero Offset Range (ZO) from the appropriate QUANTA series where the calculated Zero Offset Number (ZON) falls between the minimum and maximum numbers of that range.

Q2000E	Q9000E	
Z01 = -3000/-1895 Z02 = -1900/-600 Z03 = -605/+870 Z04 = +865/+2100	Z01 = -15000/-9475 Z02 = -9500/-3000 Z03 = -3025/+4350 Z04 = +4325/+10500	
Z0 =	This selection will be used in	

4. Using the same LI, UI, LD and UD numbers used, calculate the Gain (G) in Counts/Input.

configuring the meter.

Gain (G) = (UD - LD) = (UI - LI)

- 5. Select the group of four CR ranges under the Input Span Range required from the following chart.
- 6. Select one of the four ranges which contains the Gain (G) number calculated in Step 4.

Current Receiver	Input	Count Outpu	t Range
Selection	Span	Q2000E	Q9000E
CR1	0.2/1.0 mA	50/1405	250/7025
CR2	0.2/1.0 mA	1400/2730	7000/13650
CR3	0.2/1.0 mA	2725/4055	13625/20275
CR4	0.2/1.0 mA	4050/5264	20250/26320
CR5	0.4/2.0 mA	25/702	125/3510
CR6	0.4/2.0 mA	700/1365	3500/6825
CR7	0.4/2.0 mA	1363/2027	6815/10135
CR8	0.4/2.0 mA	2025/2632	10125/13160
CR9	1.0/5.0 mA	10/282.5	50/1413
CR10	1.0/5.0 mA	281.5/550	1408/2750
CR11	1.0/5.0 mA	548/816	2740/4080
CR12	1.0/5.0 mA	815/1059	4075/5295
CR13	2.0/10.0 mA	5/141	25/705
CR14	2.0/10.0 mA	140.5/274.5	702/1372
CR15	2.0/10.0 mA	274/407.5	1370/2037
CR16	2.0/10.0 mA	407/529	2036/2645
CR17	4.0/20.0 mA	2.5/70.4	13/352
CR18	4.0/20.0 mA	70.2/137	351/685
CR19	4.0/20.0 mA	136.6/203.4	683/1017
CR20	4.0/20.0 mA	203/264	1015/1320
CR22 1 CR23 1	10.0/50.0 mA 10.0/50.0 mA 10.0/50.0 mA 10.0/50.0 mA	1/28.2 28.1/55 54.8/81.6 81.5/106	5/141 141/275 274/408 408/530
CR =		-	selection will be in configuration.

7. Proceed to Installation.

12.6 BSCE INSTALLATION

If unit is to be configured as a voltmeter (VM1-15) or an ammeter (AM1-18), then zero offset (ZO3) is required.

Select the Voltmeter (VM1-15), Ammeter (AM1-18), Voltage Receiver (VR1-24), Current Receiver (CR1-24), Zero Offset (Z01-4), Signal Output Polarity (S01-2) and/or the excitation supply (EV1-2) required.

Install the push-on jumpers, as per the configuration section, depending upon which range is required.

12.6.1 Reference Voltage (Q9000E only)

Select reference RV2 by removing any jumpers on position S3 as per Section 5.3 in Main Assembly.

12.6.2 Decimal Point

If a decimal point is required, refer to the appropriate Main Assembly Section for location and configuration procedure.

13.0 CONFIGURATION CHARTS

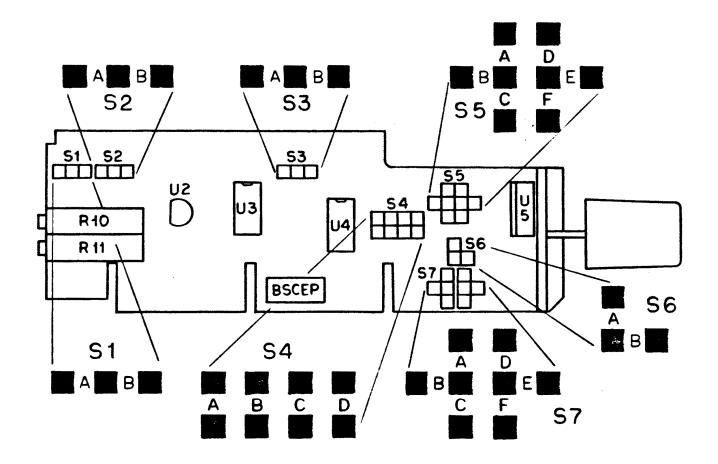


Figure 13-1 Push-On Jumper Locations

Step 1	Step 1: Remove all push-on jumpers not used in the desired configuration(s).							
Step 2	Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.							
	oltmeter figuration *	3 2	S	.4	s	5	Input Resistance	
VM1	±190/235 mV	A	С	D	С	-	100 k ohms	
VM2	±233/350 mV	A	A	D	С	-	100 k ohms	
VM3	±348/450 mV	A	B	с	С	-	100 k ohms	
VM4	±440/580 mV	A	С	D	В	-	230 k ohms	
VM5	±575/850 mV	A	A	D	В	-	230 k ohms	
VM6	±800/1030 mV	A	С	D	E	-	385 k ohms	
VM7	±1.0/1.5 V	A	A	D	E	-	385 k ohms	
VM8	±1.4/1.8 V	A	С	D	A	Е	325 k ohms	
V M9	±1.7/2.5 V	A	A	D	A	Е	325 k ohms	
VM10	±2.4/3.1 V	A	С	D	F	-	1 M ohm	
VM11	±3.0/4.5 V	A	A	D	F	-	1 M ohm	
VM12	±4.4/5.1 V	A	В	С	F	- 1 -	1 M ohm	
VM13	±5.0/6.5 V	A	С	D	A	-	1 M ohm	
VM14	±6.4/9.6 V	A	A	D	A	-	1 M ohm	
VM15	±9.5/11.0 V	A	В	С	A	-	1 M ohm	

* Used on the Q2000E or Q9000E

Step 1: Remove all push-on jumpers not used in the desired configuration(s).									
Step 2:	Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.								
A Conf	S 2	- s	;4	S 5	S7	Input Resistance			
AM1	±370/470 uA	A	С	D	С	F	490 ohms		
AM2	±460/700 uA	A	A	D	с	F	490 ohms		
AM3	±690/800 uA	A	В	с	с	F	490 ohms		
AM4	±790/940 uA	A	С	D	с	E	240 ohms		
AM5	±935/1400 uA	A	A	D	С	E	240 ohms		
AM6	±1.39/1.91 mA	A	В	С	с	E	240 ohms		
AM7	±1.90/2.35 mA	A	С	D	с	D	100 ohms		
AM8	±2.33/3.50 mA	A	A	D	с	D	100 ohms		
AM9	±3.48/4.00 mA	A	В	С	С	D	100 ohms		
AM10	±3.90/4.70 mA	A	С	D	С	A	50 ohms		
AM11	±4.65/7.00 mA	A	A	D	С	A	50 ohms		
AM12	±6.90/7.80 mA	A	В	С	С	A	50 ohms		
AM13	±7.70/9.40 mA	A	С	D	С	В	25 ohms		
AM14	±9.35/14.0 mA	A	A	D	С	В	25 ohms		
AM15	±13.9/19.1 mA	A	В	С	С	В	25 ohms		
AM16	±19.0/23.5 mA	A	С	D	С	С	10 ohms		
AM17	±23.3/35.0 mA	A	A	D	с	с	10 ohms		
AM18	±34.0/51.0 mA	A	В	С	С	С	10 ohms		

* Used on the Q2000E or Q9000E

13.3 VOLTAGE RECEIVER (VR1-24)

Ste	Step 1: Remove all push-on jumpers not used in the desired configuration(s).								
Ste	Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.								
	oltage Receiver Configuration	S 5	Counts/Volt Q2000E	Counts/Volt Q9000E					
VR1	-0.5 V Input	A	В	С	80/2850	400/14250			
VR2	0.5 V Input	В	: C	C	2840/5500	14200/27500			
VR3	0.5 V Input	A	D	С	5490/8170	27450/40850			
VR4	0.5 V Input	С	D	В	8160/10600	40800/53000			
VR5	1.0 V Input	A	В	В	40/1260	200/6300			
VR6	1.0 V Input	В	С	В	1255/2440	6275/12200			
VR7	1.0 V Input	A	D	В	2430/3605	12150/18025			
VR8	1.0 V Input	С	D	В	3595/4700	17975/23500			
VR9	2.0 V Input	A	В	E	20/750	100/3750			
VR10	2.0 V Input	В	С	E	745/1452	3725/7260			
VR11	2.0 V Input	A	D	Е	1450/2157	7250/10785			
VR12	2.0 V Input	С	D	E	2155/2750	10775/13750			
VR13	5.0 V Input	A	В	F	8/231	40/1155			
VR14	5.0 V Input	В	С	F	230/449	1150/2245			
VR15	5.0 V Input	A	D	F	448/667	2240/3335			
VR16	5.0 V Input	С	D	F	666/860	3330/4300			
VR17	10.0 V Input	A	В	A	4/114.5	20/572			
VR 18	10.0 V Input	В	С	A	114/223	570/1115			
VR19	10.0 V Input	Ă	D	A	222.5/331	1110/1655			
VR20	10.0 V Input	С	D	A	330.5/428	1652/2140			
VR21	20.0 V Input	A	В	D	2/56.8	10/284			
VR22	20.0 V Input	В	С	D	56.5/110.3	2 82/551			
VR23	20.0 V Input	A	D	D	110/164.4	550/822			
VR24	20.0 V Input	С	D	D	164.2/220	820/1100			

13.4 CURRENT RECEIVER (CR1-24)

Step 1: Remove all push-on jumpers not used in the desired configuration(s).									
Ste	Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.								
	Current Receiver Configuration	s	4	S 5	S7	Counts/mA Q2000E	Counts/mA Q9000E		
CR1	0.2/1.0 mA Input	A	В	С	F	50/1405	2 50/7025		
CR2	0.2/1.0 mA Input	В	С	С	F	1400/2730	7000/3650		
CR3	0.2/1.0 mA Input	A	D	С	F	2725/4055	13625/20275		
CR4	0.2/1.0 mA Input	С	D	С	F	4050/5264	20250/26320		
CR5	0.4/2.0 mA Input	A	В	С	Е	25/702	125/3510		
CR6	0.4/2.0 mA Input	В	С	С	E	700/1365	3500/6825		
CR7	0.4/2.0 mA Input	A	D	С	E	1363/2027	6815/10135		
CR8	0.4/2.0 mA Input	С	D	С	Е	2025/2632	10125/13160		
CR9	1.0/5.0 mA Input	A	В	С	D	10/282.5	50/1412		
CR10	1.0/5.0 mA Input	В	С	С	D	281.5/550	1407/2750		
CR11	1.0/5.0 mA Input	A	D	С	D	548/816	2740/4080		
CR12	1.0/5.0 mA Input	С	D	С	D	815/1059	4075/5295		
CR13	2.0/10.0 mA Input	A	В	С	A	5/141	25/705		
CR14	2.0/10.0 mA Input	В	С	С	A	140.5/274.5	702/1372		
CR15	2.0/10.0 mA Input	A	D	с	A	274/407.5	1370/2037		
CR16	2.0/10.0 mA Input	С	D	С	A	407/529	2035/2645		
CR17	4.0/20.0 mA Input	A	В	С	В	2.5/70.4	12/352		
CR18	4.0/20.0 mA Input	В	С	С	В	70.2/137	351/685		
CR19	4.0/20.0 mA Input	A	D	С	В	136.6/203.4	683/1017		
CR20	4.0/20.0 mA Input	С	D	С	В	203/264	1015/1320		
CR21	10.0/50.0 mA Input	A	В	С	С	1/28.2	5/141		
CR22	10.0/50.0 mA Input	В	С	с	С	28.1/55	140/275		
CR23	10.0/50.0 mA Input	A	D	С	С	54.8/81.6	274/408		
CR24	10.0/50.0 mA Input	С	D	С	С	81.5/106	407/530		

13.5 ZERO OFFSET (201-4)

Step 1	Remove all push-o configuration(s).	n jumpers not used in	the desi	red				
Step 2		d configuration from t push-on jumpers indica		below,				
	Zero Offset Configuration Q2000E Q9000E S1 S2							
Z 01	-3000/-1895 counts	-15000/-9475 counts	В	-				
Z 02	-1900/-600 counts	-9500/-3000 counts	A	-				
Z03	-605/+870 counts	-3025/+4350 counts	-	A				
Z04	+865/+2100 counts	+4325/+10500 counts	-	В				

13.6 EXCITATION VOLTAGE (EV1-2)

Step 1:	Remove all push-on jumpers no configuration(s).	t used in the desired
Step 2:	Select the desired configurat then install the push-on jump	
Excitati	on Voltage Configuration	S6
EV1	10 Volts	В
EV2	15 Volts	Α

13.7 SIGNAL OUTPUT POLARITY (SO1-2)

Step 1:	Remove all push-on jumpers no configuration(s).	t used in the desired
Step 2:	Select the desired configurat then install the push-on jump	ion from the chart below, ers indicated.
Signal Ou	tput Configuration	\$3
S01	Non Inverted	A
S02	Inverted	В

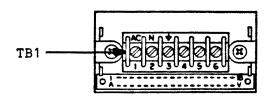
14.0 CALIBRATION FOR Q2000E and Q9000E

NOTE: The numbers used below are derived from the selection in Section 12, BSCE Configuration.

14.1 VOLTMETER (VM1-15)

- 1. Apply a short to the input terminals and adjust the zero (Z) pot (R10) to make the display read 000 (Q2000E) or 0000 (Q9000E).
- 2. Apply an Input Voltage equal to the largest (+) magnitude of the VM range selected and adjust the span (S) pot (R11) to make the display read the appropriate number.
- 3. Repeat above steps as required to set the display to within ±1 count.

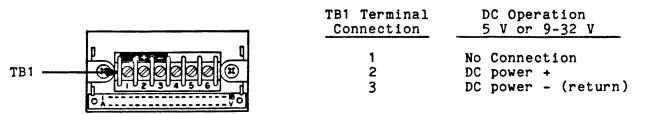
14.2 AMMETER (AM1-18)


- 1. Apply a short to the input terminals and adjust the zero (Z) pot (R10) to make the display read 000 (2000E) or 0000 (Q9000E).
- 2. Apply an Input Current equal to the largest (+) magnitude of the AM range selected and adjust the span (S) pot (R11) to make the display read the appropriate number.
- 3. Repeat above steps as required to set the display to within ±1 count.
- 14.3 VOLTAGE RECEIVER (VR1-24)
 - Apply a short to the input terminals and adjust the zero (Z) pot (R10) to make the display read the Zero Offset Number (ZON) calculated.
 - 2. Apply an Input Voltage equal to the Upper Input (UI) number used and adjust the span (S) pot (R11) to make the display read that number.
 - 3. Repeat above steps as required to set the display readings to within ± 1 count.
- 14.4 CURRENT RECEIVER (CR1-24)
 - 1. Apply a short to the input terminals and adjust the zero (Z) pot (R10) to make the display read the zero offset number (ZON) calculated.
 - 2. Apply a Input Current equal to the Upper Input (UI) number used and adjust the span (S) pot (R11) to make the display read that number.
 - 3. Repeat above steps as required to set the display to within ± 1 count.

15.0 POWER REQUIREMENTS AND CONNECTIONS (TB1)

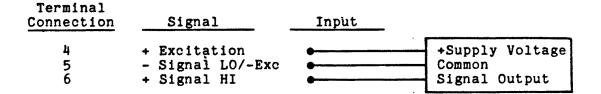
The standard meter is wired to operate from one of five power sources.

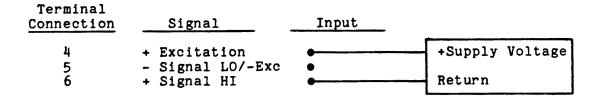
Models	Power Requirements		
Q20XXX, Q21XXX, Q9 0 XXX	120 V:ac (50-60 Hz)		
Q22XXX, Q23XXX, Q92XXX	240 V ac (50-60 Hz)		
Q24XXX, Q25XXX, Q94XXX	9-32 V dc		
Q26XXX, Q27 XXX, Q96XXX	5 V de		
Q28XXX, Q29XXX, Q98XXX	24 V ac (50-60 Hz)		

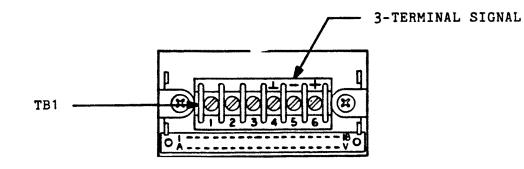

Regardless of the power source used, connections are made to the same terminal barrier strip, TB1, as follows:

.

TB1 Terminal Connection	AC Operation 24 V,120 V,240V	Wire Color
1	AC power HI	Black
2	AC power LO	White
	(neutral)	
3	AC power GND	Green


REAR TERMINAL VIEW


16.0 SIGNAL INPUT CONNECTIONS (TB1)


The signal input connections for the BSCE process signal conditioner are made at the standard 3-terminal barrier strip:

Signal input connections and excitation supply output connection for an amplified voltage output transducer:

Signal input connections for an amplified current output transducer:

REAR TERMINAL VIEW

17.0 TESTS AND DIAGNOSTICS

The <u>signal conditioner board BSCE</u> is designed to function with a main assembly as a minimum configuration. There is no provision for testing a signal conditioner board alone.

Signal input requirements for your configuration are identified in the specifications for the BSCE signal conditioner, Section 10.0.

Operating power and connections for your configuration are Identified in the Main Assembly Sections of this manual.

17.1 FUNCTIONAL ELECTRICAL TESTING

Perform this test after your meter has been configured.

1. Apply proper power for your configuration to terminals 1, 2 and 3 on barrier strip (TB1). Display will read approximately the zero offset number (ZON) from Section 12.

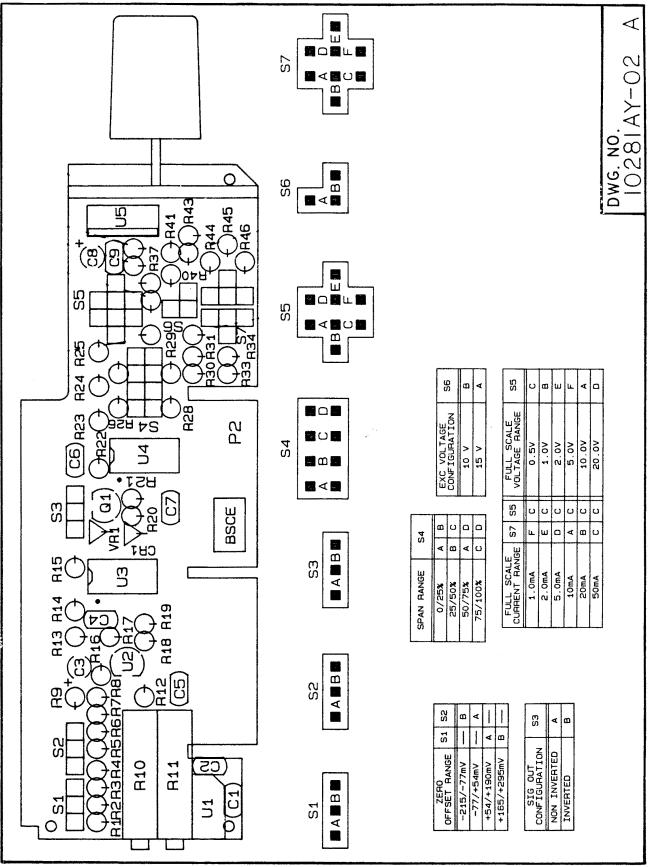


Figure 18-1 BSCE Assembly Diagram

NOTES

Warranty/Disclaimer

NEWPORT ELECTRONICS, INC. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from date of purchase. In addition to NEWPORT's standard warranty period, NEWPORT ELECTRONICS will extend the warranty period for one (1) additional year if the warranty card enclosed with each instrument is returned to NEWPORT.

If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, NEWPORT assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

Return Requests/Inquiries

Direct all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR **WARRANTY** RETURNS, please have the following information available BEFORE contacting NEWPORT:

- 1. P.O. number under which the product was PURCHASED,
- 2. Model and serial number of the product under warranty, and
- 3. Repair instructions and/or specific problems relative to the product.

FOR <u>NON-WARRANTY</u> REPAIRS, consult NEWPORT for current repair charges. Have the following information available BEFORE contacting NEWPORT:

1. P.O. number to cover the COST of the repair,

3. Repair instructions and/or specific

relative to the product.

- 2. Model and serial number of product, and
- problems

NEWPORT's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

NEWPORT is a registered trademark of NEWPORT ELECTRONICS, INC.

© Copyright 2009 NEWPORT ELECTRONICS, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT ELECTRONICS, INC.

For immediate technical or application assistance please call:

1-800-6397678° 1-800-NEWPORT

Newport Electronics, Inc. 2229 South Yale Street • Santa Ana, CA • 92704 • U.S.A. TEL: (714) 540-4914 • FAX: (203) 968-7311 Toll Free: 1-800-639-7678 • www.newportUS.com • e-mail:info@newportUS.com ISO 9001 Certified

Newport Technologies, Inc. 976 Bergar • Laval (Quebec) • H7L 5A1 • Canada TEL: (514) 335-3183 • FAX: (514) 856-6886 Toll Free: 1-800-639-7678 • www.newport.ca • e-mail:info@newport.ca

Newport Electronics, Ltd. One Omega Drive • River Bend Technology Centre Northbank, Irlam • Manchester M44 5BD • United Kingdom Tel: +44 161 777 6611 • FAX: +44 161 777 6622 Toll Free: 0800 488 488 • www.newportuk.co.uk • e-mail:sales@newportuk.co.uk

Newport Electronics B.V. - Benelux TEL: +31 20 3472121 • FAX: +31 20 6434643 Toll Free: 0800 0993344 • www.newport.nl • e-mail: info@newport.nl

Newport Electronics spol s.r.o. Frystatska 184, 733 01 Karviná • Czech Republic TEL: +420 59 6311899 • FAX: +420 59 6311114 Toll Free: 0800-1-66342 • www.newport.cz • e-mail: info@newport.cz

Newport Electronics GmbH Daimlerstrasse 26 • D-75392 Deckenpfronn • Germany TEL: 49 7056 9398-0 • FAX: 49 7056 9398-29 Toll Free: 0800 / 6397678 • www.newport.de • e-mail: sales@newport.de

Newport Electronique S.A.R.L. - France TEL: +33 1 61 37 29 00 • FAX: +33 1 30 57 54 27 Toll Free: 0800 466 342 • www.newport.fr • e-mail: sales@newport.fr

> Mexico and Latin America FAX: 001 (203) 359-7807 TEL En Español: 001 (203) 359-7803

NEWPORTnet[™] On-Line ServiceInternet e-mailwww.newportUS.cominfo@newportUS.com

10281ML-01 Rev H