Clock OSC

Input voltage

SG5032CAN

Product name SG5032CAN Product Number / Ordering code

28.636360 MHz TJGA X1G0044510084xx

_

Please refer to the 8.Packing information about xx (last 2 digits)

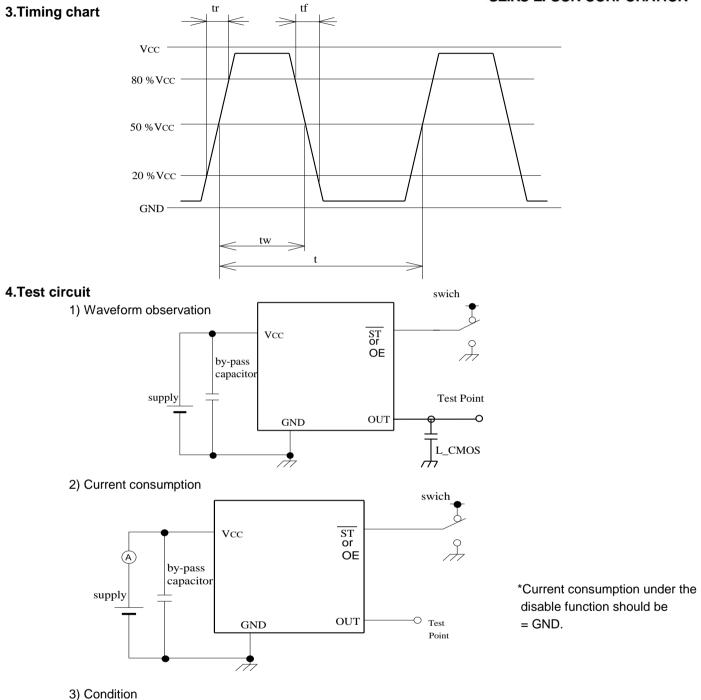
V

ST terminal

Vcc+0.3

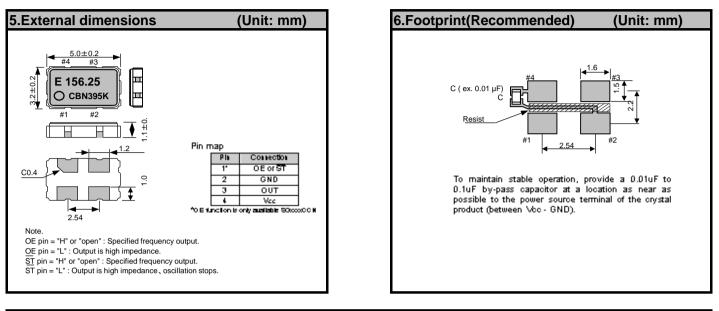
Output waveform CMOS

Pb free / Complies with EU RoHS directive ight Ty

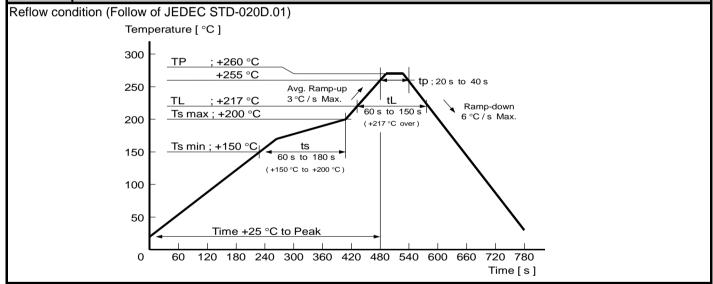

Reference weight Typ. 52 mg						
1.Absolute maximum ratings	5					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks
Maximum supply voltage	Vcc-GND	-0.3	-	4	V	-
Storage temperature	T_stg	-40	-	+125	°C	Storage as single product
						- · ·

-0.3

Vin


2.Specifications(charac			-		1 11 14		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks	
Dutput frequency	fO		28.6364		MHz		
Supply voltage	Vcc	1.6	-	3.6	V	-	
Operating temperature	T_use	-40	-	+85	°C	-	
Frequency tolerance	f_tol	-50	-	50	x10 ⁻⁶	T_use	
Current consumption	lcc	-	-	3	mA	No load condition	
Stand-by current	I_std	-	-	2.7	μA	ST = GND	
Disable current	I_dis	-	-	-	mA	-	
Symmetry	SYM	45	-	55	%	50% Vcc Level L_CMOS=<15pF	
Dutput voltage	V _{OH}	Vcc-0.4	-	-		-	
	V _{OL}	-	-	0.4		-	
Dutput load condition	L_CMOS	-	-	15	pF	CMOS Load	
nput voltage	V _{IH}	0.8Vcc	-	-		ST terminal	
1	V _{IL}	-	-	0.2Vcc		ST terminal	
Rise time	t _r	-	-	4	ns	Vcc1.6V : 0.2Vcc to 0.8Vcc Level, L_CMOS=15pF	
Fall time	tf	-	-	4	ns	Vcc1.6V : 0.2Vcc to 0.8Vcc Level, L_CMOS=15pF	
Start-up time	t_str	-	-	3	ms	t = 0 at 0.9Vcc	
Jitter	t _{DJ}	-	0	-	ps	Deterministic Jitter Vcc=3.3V	
	t _{RJ}	-	2.4	-	ps	Random Jitter Vcc=3.3V	
	t _{RMS}	-	2.3	-	ps	δ(RMS of total distribution) Vcc=3.3V	
	t _{p-p}	-	20	-	ps	Peak to Peak Vcc=3.3V	
	t _{acc}	-	2.5	-	ps	Accumulated Jitter(δ) n=2 to 50000 cycles, Vcc=3.3V	
Phase jitter	t _{PJ}	-	0.35	-	ps	Off set Frequency: 12kHz to 20MHz, Vcc=3.3V	
Phase noise	L(f)	-	-	-	dBc/Hz	-	
		-	-95	-	dBc/Hz	Off set 10Hz Vcc=3.3V	
		-	-123	-	dBc/Hz	Off set 100Hz Vcc=3.3V	
		-	-145	-	dBc/Hz	Off set 1kHz Vcc=3.3V	
		-	-155	-	dBc/Hz	Off set 10kHz Vcc=3.3V	
		-	-158	-	dBc/Hz	Off set 100kHz Vcc=3.3V	
		-	-159	-	dBc/Hz	Off set 1MHz Vcc=3.3V	
Frequency aging	f_age	-3	-	3	x10 ⁻⁶	@+25°C first year	
		_	_	-	×	-	

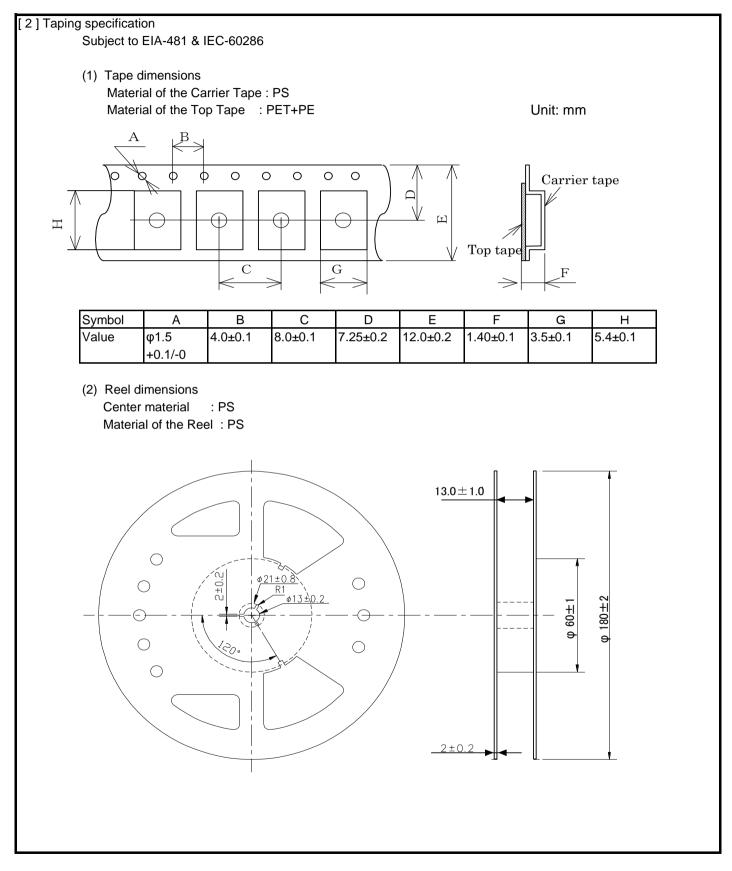
SEIKO EPSON CORPORATION



- (1) Oscilloscope
- Band width should be minimum 5 times higher (wider) than measurement frequency.
- · Probe earth should be placed closely from test point and lead length should be as short as possible
- * Recommendable to use miniature socket. (Don't use earth lead.)
- (2) L_CMOS also includes probe capacitance.
- (3) By-pass capacitor (0.01 μ F to 0.1 μ F) is placed closely between VCC and GND.
- (4) Use the current meter whose internal impedance value is small.
- (5) Power supply
- \cdot Start up time (0 %VCC to 90 %VCC) of power source should be more than 150 $\mu s.$
- \cdot Impedance of power supply should be as lowest as possible.

SEIKO EPSON CORPORATION

7.Reflow profile



8.Packing information

[1]Product number last 2	digits	code(xx)	description
	X1G0044510	084	<i>,</i>	

The recommended code is "00"

Code	Condition	Code	Condition	
01	Any Q'ty vinyl bag(Tape cut)	13	500pcs / Reel	
11	Any Q'ty / Reel	00	1000pcs / Reel	
12	250pcs / Reel			

	This material is subject to change without notice.
	Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.
	The information about applied data, circuitry, software, usage, etc. written in this material is intended for reference only.
	Seiko Epson does not assume any liability for the occurrence of customer damage or infringing on any patent or copyright of a third party.
	This material does not authorize the licensing for any patent or intellectual copyrights.
	When exporting the products or technology described in this material, you should comply with the applicable
	export control laws and regulations and follow the procedures required by such laws and regulations.
	You are requested not to use the products (and any technical information furnished, if any) for the development
	and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that
	you
	would not make the products available to any third party who may use the products for such prohibited
	purposes.
	These products are intended for general use in electronic equipment. When using them in specific applications
Ī	hat require
	extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance.
	/ Space equipment (artificial satellites, rockets, etc.)
	/ Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.)
	/ Medical instruments to sustain life
	/ Submarine transmitters
	/ Power stations and related
	/ Fire work equipment and security equipment
	/ Traffic control equipment
	/ And others requiring equivalent reliability.

10.Contact us

http://www5.epsondevice.com/en/contact/