

NXE1 Series

Isolated 1W Single Output SM DC/DC Converters

FEATURES

- Patents pending
- Lower Profile
- UL60950 Recognition pending
- ANSI/AAMI ES60601-1 Recognition pending
- 3kVDC Isolation "Hi Pot Test"
- Substrate Embedded Transformer
- Automated Manufacture
- Industry Standard Footprint
- Short Circuit Protection³
- Halogen Free

PRODUCT OVERVIEW

The NXE1 series is a new range of low cost, lower profile, fully automated manufacture surface mount DC/DC converters. The NXE1 series automated manufacturing process with substrate Embedded Transformer, offers increased product reliability and repeatability of performance in a halogen free, iLGA inspectable package. The NXE1 series, industry standard footprint is compatible with existing designs.

The NXE1 series has a MSL rating 2, and is compatible with a peak reflow solder temperature of 245°C as per J-STD-020 and J-STD-075.

SELECTION GUIDE												
Order Code ¹	Nominal Input Voltage	Output Voltage	Input Current	Output Current	Load Regulation (Typ)	Load Regulation (Max)	Output Ripple & Noise (Typ)	Output Ripple & Noise (Max)	Efficiency (Min)	Efficiency (Typ)	Isolation Capacitance	MTTF2
	V	V	mA	mA	%	%	mVp-p	mVp-p	%	%	pF	kHrs
NXE1S0303MC	3.3	3.3	415	303	11.5	15	55	70	63	66	3	4074
NXE1S0305MC	3.3	5	415	200	9.5	13	40	55	67	70	3	3667
NXE1S0505MC	5	5	303	200	6	8	30	45	64	67.5	3	6384

INPUT CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Voltage range	Continuous operation, 3.3V input types	2.97	3.3	3.63	V	
voitage range	Continuous operation, 5V input types	4.5	5.0	5.5		
Input reflected ripple current	All variants		7.5	15	mA p-p	

ISOLATION CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Isolation voltage	Flash tested for 1 second	3000			VDC	
Resistance	Viso= 1000VDC	10			GΩ	

GENERAL CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
	NXE1S0303MC		75				
Switching frequency	NXE1S0305MC		85		kHz		
	NXE1S0505MC		120				

OUTPUT CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Rated power	T _A =-40°C to 85°C			1.0	W	
Voltage set point accuracy	See tolerance envelopes					
Line regulation	High V _{IN} to low V _{IN}		1.1	1.2	%/%	

TEMPERATURE CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Specification	All output types	-40		85	
Storage		-50		125	°C
Case temperature rise above ambient	All output types		22		
Cooling	Free air convection				

ABSOLUTE MAXIMUM RATINGS	
Input voltage V _{IN} , NXE1S03 types	5.5V
Input voltage V _{IN} , NXE1S05 types	7V

- 1. Components are supplied in tape and reel packaging, please refer to package specification section. Orderable part numbers are NXE1S0505MC-R7 (180 pieces per reel), or NXE1S0505MC-R13 (800 pieces per reel).
- $2. \ \ Calculated \ using \ MIL-HDBK-217 \ FN2 \ calculation \ model \ with \ nominal \ input \ voltage \ at \ full \ load.$
- 3. Please refer to short circuit application notes.
- All specifications typical at Ta= 25° C, nominal input voltage and rated output current unless otherwise specified.

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NXE1 series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 3kVDC for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

For a part holding no specific agency approvals, such as the NXE1 series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

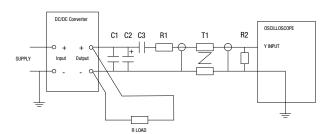
REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NXE1 series has a PCB embedded isolated transformer, using FR4 as an insolation barrier between primary and secondary windings. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the FR4 insulation properties. Any material, including FR4 is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage should be reduced by 20% from specified test voltage.

This consideration equally applies to agency recognized parts rated for better than functional isolation where the insulation is always supplemented by a further insulation system of physical spacing or barriers.

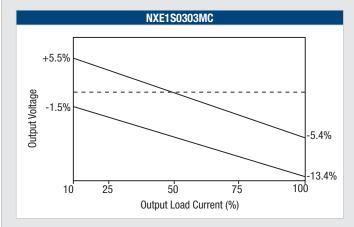
ROHS COMPLIANCE, MSL AND PSL INFORMATION

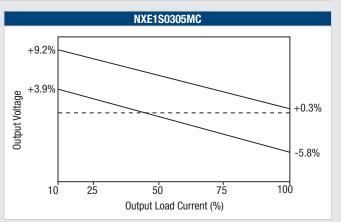
This series is compatible with Pb-Free soldering systems and is also backward compatible with Sn/Pb soldering systems. The NXE1 series has a process, moisture, and reflow sensitivity classification of MSL2 PSL R7F as defined in J-STD-020 and J-STD-075. This translates to: MSL2 = 1 year floor life, PSL R7F = Peak reflow temperature 245°C with a limitation on the time above liquidus (217°C) which for this series is 90sec max. The pin termination finish on this product series is Gold with a plating thickness of 0.12 microns.

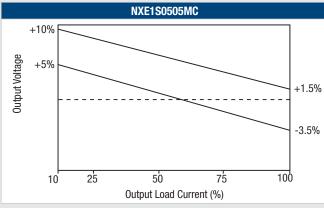

CHARACTERISATION TEST METHODS

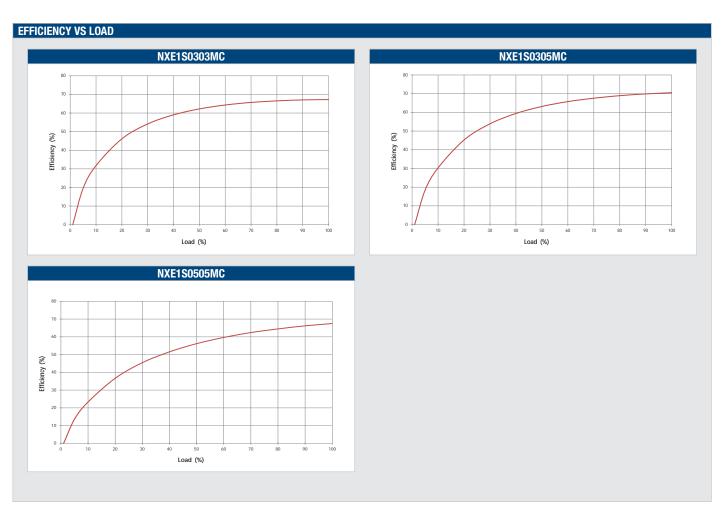
Ripple & Noise Characterisation Method

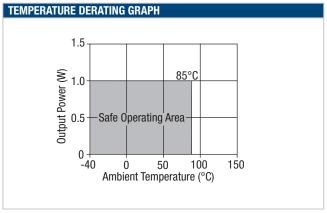
Ripple and noise measurements are performed with the following test configuration.


C1	1μF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter
C2	$10\mu F$ tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than $100 \text{m}\Omega$ at 100kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450Ω resistor, carbon film, $\pm 1\%$ tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires
Measured va	lues are multiplied by 10 to obtain the specified values


Differential Mode Noise Test Schematic




TOLERANCE ENVELOPES

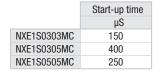

The voltage tolerance envelopes show typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading and set point accuracy.

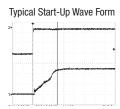
APPLICATION NOTES

Short Circuit Performance

NXE1 series offers short circuit protection which is continious with nominal input voltage at low ambient temperatures. At higher ambient temperatures of 65 °C and above short circuit duration will be limited.

Advisory Notes


The NXE1 series is not hermetically sealed, customers should ensure that parts are fully dried before input power application.

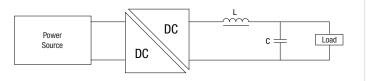

Minimum Load

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Capacitive Loading & Start Up

Typical start up times for this series, with a typical input voltage rise time of $2.2\mu s$ and output capacitance of $10\mu F$, are shown in the table below. The product series will start into a capacitance of $47\mu F$ with an increased start time, however, the maximum recommended output capacitance is $10\mu F$.

Output Ripple Reduction

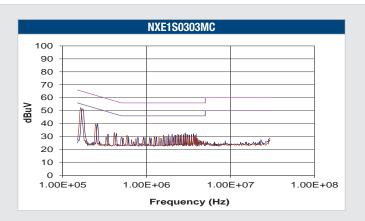

By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max.

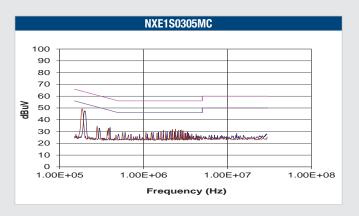
Component selection

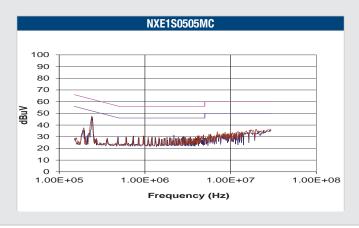
Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter.

Inductor: The rated current of the inductor should not be less than that of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF (Self Resonant Frequency) should be >20MHz.

		Capacitor		
	L, µH	SMD	Through Hole	C, µF
NXE1S0303MC	15	82153C	11R153C	10
NXE1S0305MC	22	82223C	11R223C	4.7
NXE1S0505MC	22	82223C	11R223C	4.7

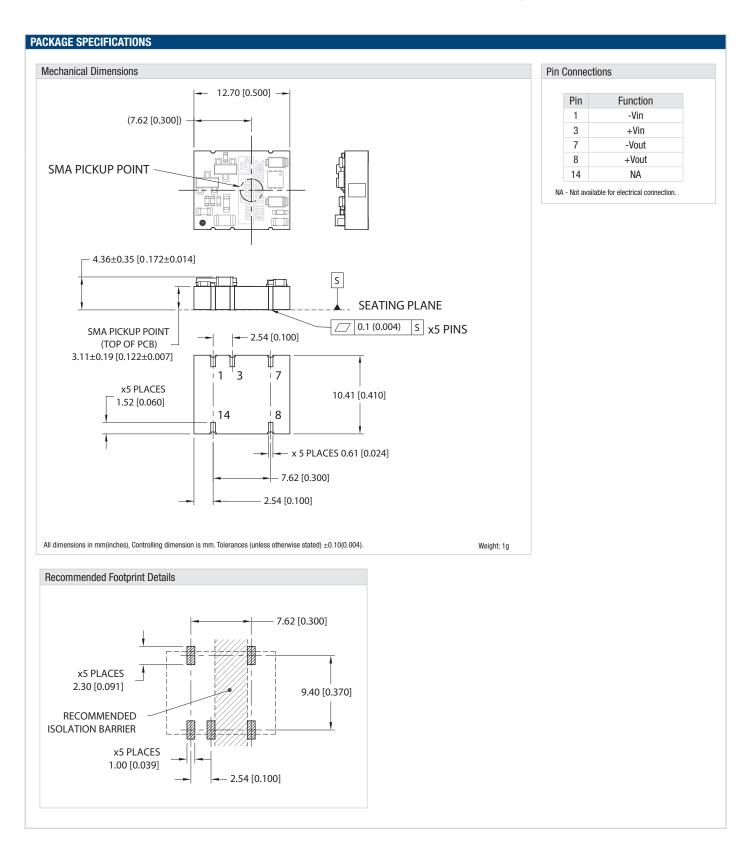


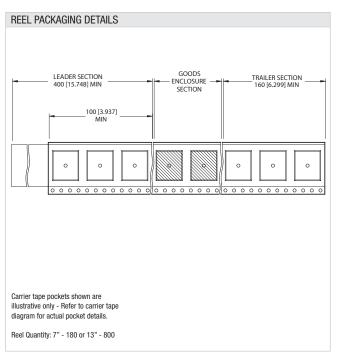

EMC FILTERING AND SPECTRA

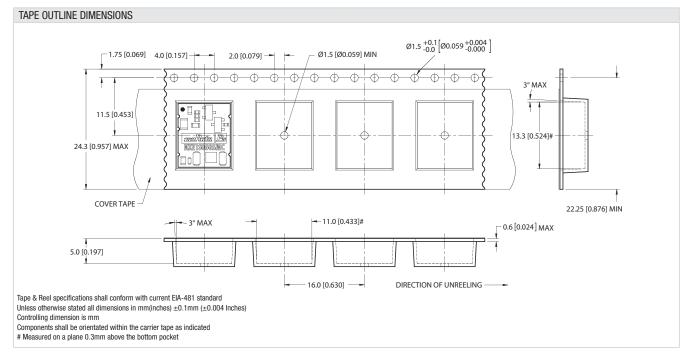

FILTERING

The following table shows the additional input capacitor and input inductor typically required to meet EN 55022 Curve B Quasi-Peak EMC limit, as shown in the following plots.

Part Number	Capacitor	Inductor
NXE1S0303MC	4.7μF	15µH
NXE1S0305MC	4.7μF	15µH
NXE1S0505MC	3.3µF	15µH







TAPE & REEL SPECIFICATIONS REEL OUTLINE DIMENSIONS **REEL PACKAGING DETAILS** Ø332 [13.071] MAX OR — Ø180 [7.087] MAX $\emptyset 13.0^{+0.5}_{-0.2} \left[\emptyset 0.512^{+0.020}_{-0.008} \right]$ LEADER SECTION 400 [15.748] MIN 0.40 [1.197] MAX # 1.50 [0.059] 0 Ø20.20 [Ø0.795] Tape & Reel specifications shall conform with current EIA-481 standard Carrier tape pockets shown are Unless otherwise stated all dimensions in mm(inches) illustrative only - Refer to carrier tape Controlling dimension is mm diagram for actual pocket details. # Measured at hub Reel Quantity: 7" - 180 or 13" - 800 ## Six equi-spaced slots on 180mm/7" reel TAPE OUTLINE DIMENSIONS Ø1.5 [Ø0.059] MIN 1.75 [0.069] 4.0 [0.157] 2.0 [0.079] \oplus -Ф-Ф -Ф--(Ð--(ħ) -(ħ) Ф

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject unange without notice.