

Midas Components Limited
Electra House
32 Southtown Road
Great Yarmouth
Norfolk
NR31 0DU
England

Telephone Fax Email Website +44 (0)1493 602602 +44 (0)1493 665111 sales@midasdisplays.com www.midasdisplays.com

Specification					
Part Number:	MCT035J12W320480PML				
Version:	1				
Date:	20/08/2014				
Revision					

design • manufacture • supply

1 Features

The LCM is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This TFT LCD panel has a 3.5 inch diagonally measured active display area with HVGA resolution (320 horizontal by 480 vertical pixels array).

- (1) Construction: 3.5" TFT-LCD, White LED driver, Backlight and PCB.
- (2) Main LCD:
 - 1. 3.5" TFT-LCD Panel
 - 2. Supported HVGA Resolution
 - 3. Compatible with ROHS Standard
 - 4. LCD Driver:ILI9488
- (3) Interface: LVDS Interface

2 Mechanical specifications

Item	Specification			
LCD size	3.5 inch(Diagonal)			
Resolution	320 (RGB) X 480			
Driver IC	ILI9488			
Display mode	Normally White			
Display Type	Transmissive			
Dot pitch	0.153 (W) X 0.153(H) mm			
Active area	48.96(W) X 73.44(H)			
Module size	58.0X 87.0 X 5.12			
Color Filter Structure	Stripe RGB			
Interface	LVDS			
View Direction	12 o'clock			
Response Time	(30)(Typ.)ms			
Contrast Ratio	(500)(Typ.)			
NTSC	(60)(Typ.)%			

3 Absolute max. ratings and environment

3-1 Absolute max. ratings

Ta=25°C GND=0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power voltage	VDD – GND	-0.3	+4.6	V	
Power voltage	VLED -GND	-0.3	+6.5	V	
Input voltage	VIN	-0.5	VDD+0.3	V	

3-2 Environment

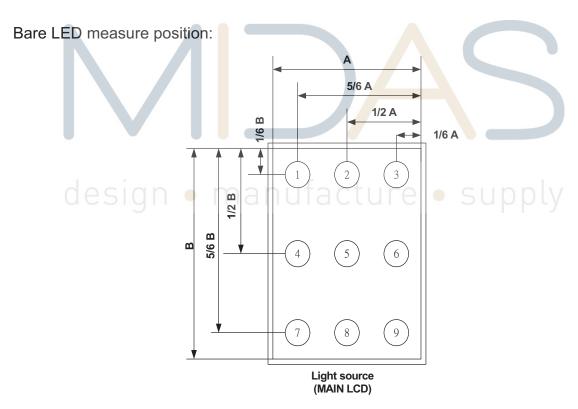
Item	Specifications	Remarks
Storage temperature	Max. +80 °C Min30 °C	Note 1: Non-condensing
Operating temperature	Max. +70 °C Min20 °C	Note 1: Non-condensing

Note 1:

Ta≤+40 °C · · · · Max.85%RH

Ta>+40 °C · · · The max. humidity should not exceed the humidity with 40 °C 85%RH.

4 Electrical specifications


4-1 Electrical characteristics of LCM

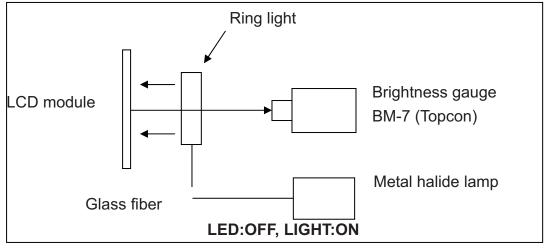
(Ta=25 °C) Symbol Conditions MIN. MAX. TYP. Unit Item Input power V_{DD} V GND=0 2.5 2.8 3.3 voltage LED driver input V_{LED} GND=0 2.5 3.3 5.5 V voltage High-level input V_{IHC} GND=0 $0.8V_{DD}$ V_{DD} V voltage Low-level input V V_{ILC} GND=0 0 $0.2V_{DD}$ voltage Consumption LED OFF T.B.D mΑ I_{DD} current of VDD Consumption $V_{LED}=3.3V$ 140 mA I_{LED} current of VLED

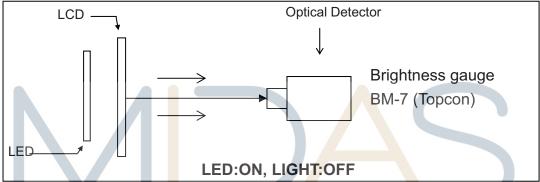
 ^{1. 1/480} duty.

4-2 LED back light specification

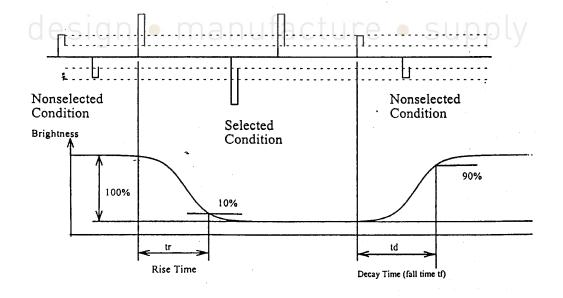
Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Forward voltage	V_{f}	I _f =15mA	21	22.4	24.5	V	
Reverse voltage	Vr		-	-	30	V	
Forward current	I _f	7-chip Serial	10	15	20	mA	
Power Consumption	P _{BL}	I _f =15mA	-	336	-	mW	
Uniformity (with L/G)	-	I _f =15mA	75%*1	-	-		
Bare LED Luminous intensity	I _f	I _f =15mA	3750	-	-	cd/m ²	
Color coordinate	Х	1 =15mΛ	0.275	-	0.345		
(Center point)	Υ	I _f =15mA	0.275	-	0.345		
Luminous color	White						
Chip connection	7 chip Serial connection						

*1 Uniformity (LT): $\frac{Min(P1 \sim P9)}{Max(P1 \sim P9)} \times 100 \ge 80\%$

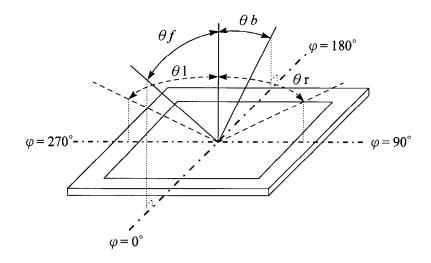

5 Optical characteristics

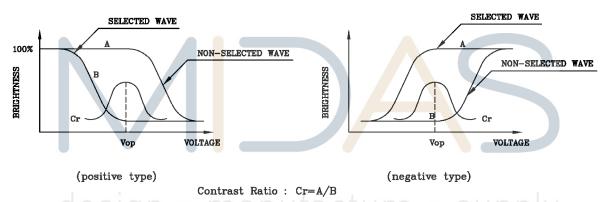

The optical characteristics are measured under stable conditions as following notes.

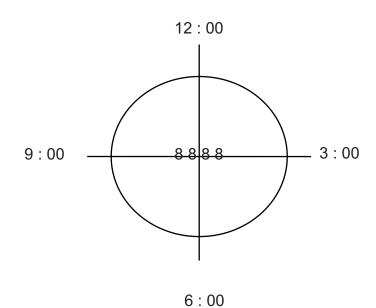
Item	Condition	าร	Min.	Тур.	Max.	Unit	Conditions
	Horizontal	θх+	-	(70)	-		
Viewing Angle	Horizoniai	θх-	-	(70)	-		(1),(2)
(CR>10/5)	Vertical	θу+	-	(70)	-	deg.	(1),(2)
	vertical	θу-	-	(60)	-		
Contrast ratio	Center		-	(500)	-	-	(1)
Response Time	Rising + Fa	lling	-	(30)	-	Ms	(1),(3)
	Red x		0.562	0.612	0.662		
	Red y		0.268	0.318	0.368		
CF Color	Green	(0.090	0.14	0.190		
Chromaticity	Green y	/	0.109	0.159	0.209		
(CIE1931)	Blue x		0.086	0.136	0.186		
(OIL 1331)	Blue y		0.092	0.142	0.192		
	White x	(0.249	0.299	0.349		
	White y	'	0.284	0.334	0.384		
NTSC	CIE1931		-	(60)	-	%	(1)
Transmittance	-		(5.1)	(5.5)	-	%	(1),(4)
Brightness	Temp 25	°C	360	450			



NOTE 1: Optical characteristic measurement system



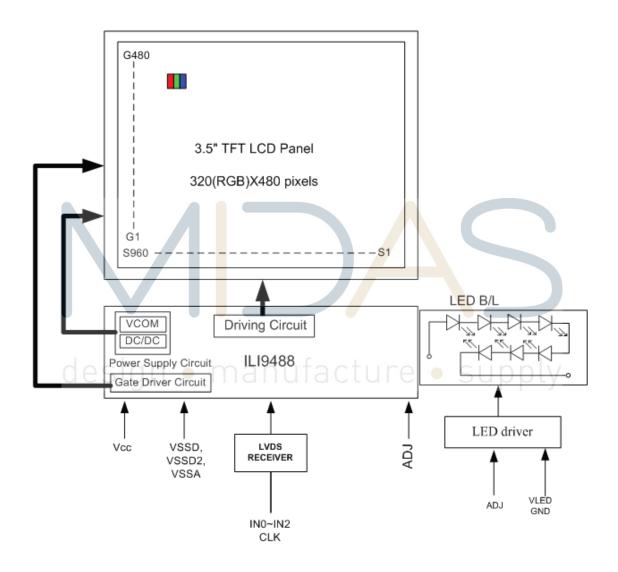

NOTE 2: Response tome definition


NOTE 3: $\phi \cdot \theta$ definition

NOTE 4: Contrast definition

NOTE 5: Visual angle direction priority

6 Block Diagram

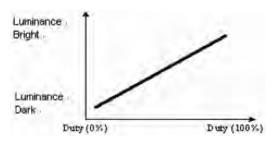

Block diagram (Main LCD)

Display format : Transmissive ,Normally White

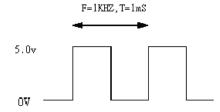
Display composition : 320 x RGB x 480 dots

LCD Driver : ILI9488

Back light : White LED x 7

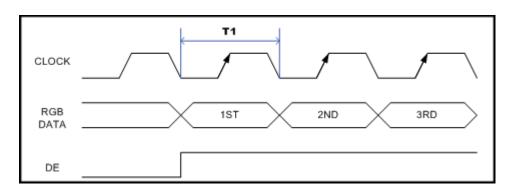

7 Electrical Specifications

7.1 TFT LCD Panel FPC Descriptions


Pin No	Symbol	Function
1	VDD	POWER SUPPLY
2	VDD	POWER SUPPLY
3	GND	Power Ground
4	GND	Power Ground
5	INO-	Transmission Data of Pixels
6	IN0+	Transmission Data of Pixels
7	GND	Power Ground
8	IN1-	Transmission Data of Pixels 1
9	IN1+	Transmission Data of Pixels 1
10	GND	Power Ground
11	IN2-	Transmission Data of Pixels 2
12	IN2+	Transmission Data of Pixels 2
13	GND	Power Ground
14	CLK-	Sampling Clock
15	CLK+	Sampling Clock
16	GND	Power Ground
17	ADJ	Adjust for LED brightness
18	VLED	Power supply for LED
19	GND	Power Ground
20	GND	Power Ground

Note1: The module is with a MCU 48R05/06. The MCU will send the initial code to LCD Driver IC when power ON.

1. ADJ adjust brightness to control Pin , Pulse duty the bigger the brighter.

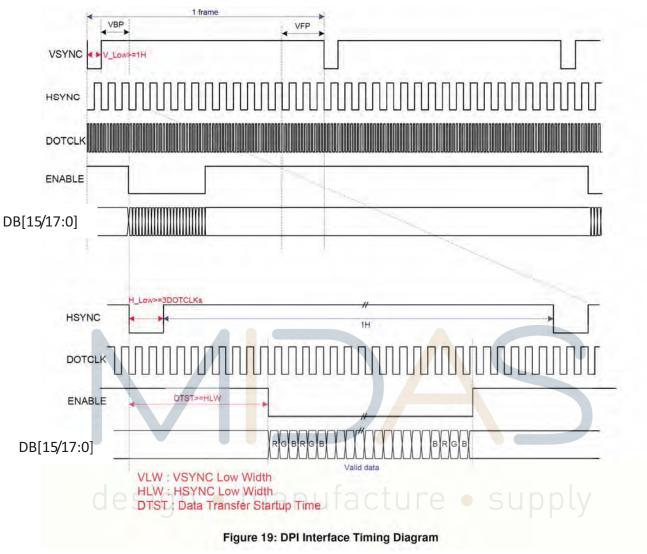

2. ADJ signal = $0 \sim 5.0V$, operation frequency : $100Hz\sim200KHz$

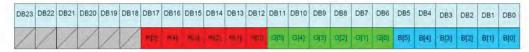


3. GND Pin must ground contact, can not be floating.

8. Electrical Characteristics

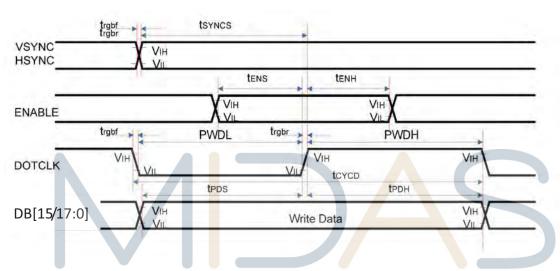
8.1 Progressive Scan Timing condition for Generic TFT LCD controller.



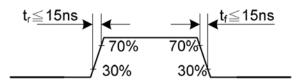

ITEM	SYMBOL	MIN	TYP	MAX	UNIT
Clock Frequency	1/T1		20		MHz
HSYNC Plus Wide	T2	3	15	-	clocks
HSYNC to DE	T3	6	15	-	Clocks
Horizontal Display Period	T4		320		Clocks
Horizontal total Period	T5		450	-	Clocks
VSYNC Plus Wide	T2		2		Lines
VSYNC to DE	T6		2		Lines
Vertical Display Period	T7		480		Lines
Vertical total Period	T8		485		Lines

8.2.1RGB Interface Timing

The timing chart of 16/18 bit DPI interface mode is illustrated in Figure 19.



18-bit DPI interface connection (DB [17:0] is used): set pixel format DPI [2:0] = 3'h6


16-bit DPI interface connection (DB [15:0] is used): set pixel format DPI [2:0] = 3'h5

DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
/	1	1	1	/	1	1	1	2(4)	Mili	वग	202	79	G[5]	G[4]	G[3]	5(2)	GIII	G[0]	B[4]	B[3]	B[2]	B[1]	B[0]

Signal	Symbol	Parameter	min	max	Unit	Description
VSYNC/	t _{SYNCS}	VSYNC/HSYNC setup time	15	-	ns	
HSYNC	tsynch	VSYNC/HSYNC hold time	15	<u> </u>	ns	Innlv
ENABLE .	t _{ENS}	ENABLE setup time	15	· -	ns	ppcy
ENABLE t _{ENH}		ENABLE hold time	15	-	ns	
	t _{POS}	Data setup time	15	-	ns	16/18 bit bus
DB[15/17:0]	t _{PDH}	Data hold time	15	-	ns	RGB interface mode
	PWDH	DOTCLK high-level period	20	-	ns	
DOTOLI	PWDL	DOTCLK low-level period	20	-	ns	
DOTCLK	t _{CYCD}	DOTCLK cycle time	50	-	ns	
	t _{rgbr} , t _{rgbf}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns	

Note: Ta = -30 to 70 $^{\circ}$ C, IOVCC = 1.65V to 3.3V, VCI = 2.5V to 3.3V, AGND = DGND = 0V

8.2.2 LVDS Signal

switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{su}	Setup time, D0–D20 to CLKOUT↓	0 0-5 0 5 5	5			ns
t _h	Data hold time, CLKOUT↓ to D0–D20	C _L = 8 pF, See Figure 5	5			ns
t(RSKM)	Receiver input skew margin§ (see Figure 7)	t _C = 15.38 ns (±0.2%), Input clock jitter < 50 ps¶,	550	700		ps
t _d	Delay time, CLKIN↑ to CLKOUT↓ (see Figure 7)	V _{CC} = 3.3 V, t _c = 15.38 ns (±0.2%), T _A = 25°C	3	5	7	ns
t _{en}	Enable time, SHTDN to phase lock	See Figure 7		1		ms
t _{dis}	Disable time, SHTDN to off state	See Figure 8		400		ns
t _t	Transition time, output (10% to 90% t _r or t _f) (data only)	C _L = 8 pF		3		ns
t _t	Transition time, output (10% to 90% t_Γ or t_f) (clock only)	C _L = 8 pF		1.5		ns
t _W	Pulse duration, output clock			0.50 t _C		ns

I | Input clock jitter| is the magnitude of the change in input clock period.

PARAMETER MEASUREMENT INFORMATION

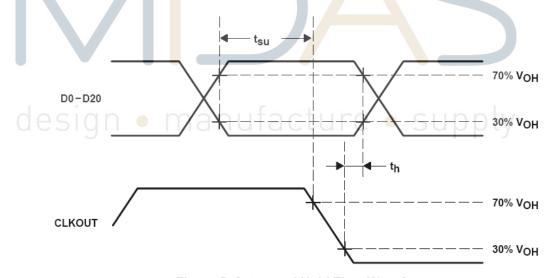


Figure 5. Setup and Hold Time Waveforms

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. § The parameter $t_{(RSKM)}$ is the timing margin available to allocate to the transmitter and interconnection skews and clock jitter. The value of this parameter at clock periods other than 15.38 ns can be calculated from $t_{RSKM} = tc/14 - 550$ ps.

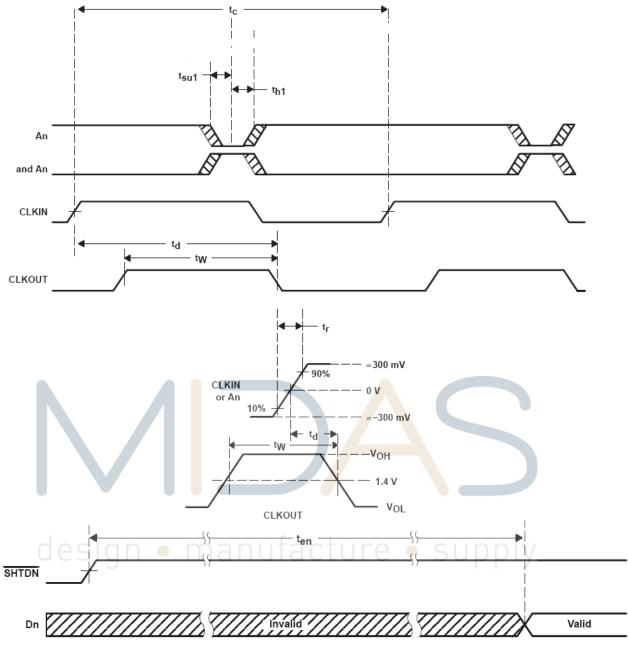


Figure 7. Enable Time Waveforms

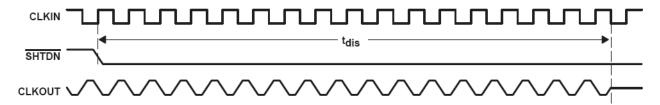
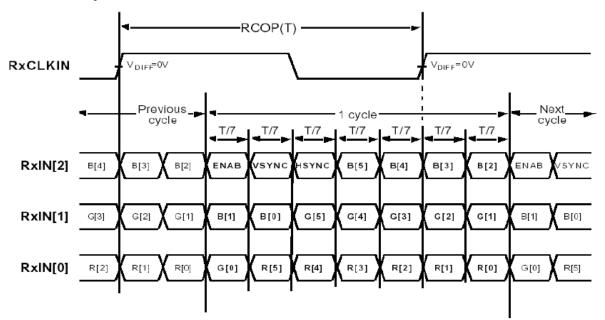



Figure 8. Disable Time Waveforms

8.2.3 The Input Data Format

Note : R/G/B[5]s are MSBs and R/G/B[0]s are LSBs

Signal Name	Description	Remark
R7	Red Data 7	Red-pixel Data
R6	Red Data 6	
R5	Red Data 5	For 8Bits LVDS input
R4	Red Data 4	MSB: R7 ; LSB: R0
R3	Red Data 3	5 00% 13/00%
R2	Red Data 2	For 6Bits LVDS input
R1	Red Data 1	MSB: R5 ; LSB: R0
R0	Red Data 0 Green Data 7	Croon nivel Data
G6 UEST	Green Data 6	Green-pixel Data
G5	Green Data 5	For 8Bits LVDS input
G4	Green Data 4	MSB: G7 ; LSB: G0
G3	Green Data 3	MOD. O7 , EGD. G0
G2	Green Data 2	For 6Bits LVDS input
G1	Green Data 1	MSB: G5 ; LSB: G0
G0	Green Data 0	·
B7	Blue Data 7	Blue-pixel Data
B6	Blue Data 6	
B5	Blue Data 5	For 8Bits LVDS input
B4	Blue Data 4	MSB: B7 ; LSB: B0
B3	Blue Data 3	5 0D' 11/DO: /
B2	Blue Data 2	For 6Bits LVDS input
B1	Blue Data 1	MSB: B5 ; LSB: B0
B0 RxCLKIN	Blue Data 0	
	LVDS Data Clock	Miles of the signal is bight the given date
DE	Data Enable Signal	When the signal is high, the pixel data
		shall be valid to be displayed.

9. RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-20±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Humidity Test	40°C , Humidity 90%, 72 hrs	1,2
Thermal Shock Test	-30°C ~ 25°C ~ 80°C 30 min. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Vibration Test (Packing)	Sweep frequency: 10~55~10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

Note 1: Condensation of water is not permitted on the module.

Note 2: The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

design • manufacture • supply

10 USE PRECAUTIONS

10-1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

10-2 Installing precautions

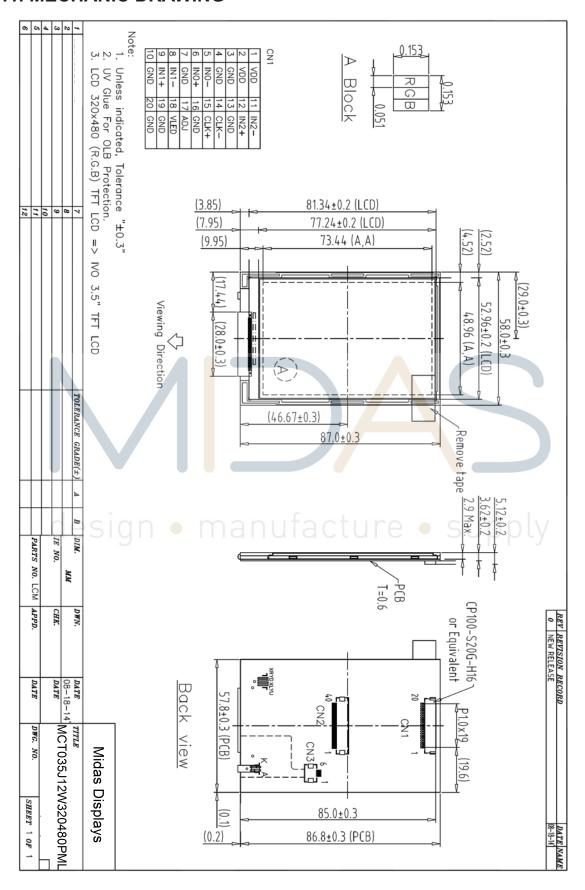
- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

10-3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

10-4 Operating precautions

- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.


8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

10-5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) Midas will provide one year warrantee for all products and three months warrantee for all repairing products.

11. MECHANIC DRAWING

