
November 2015 DocID026253 Rev 3 1/22

1

UM1754
User manual

Getting started with STM32CubeL0 firmware package
for STM32L0 series

Introduction

The STM32Cube™ initiative was originated by STMicroelectronics to ease developers life
by reducing development efforts, time and cost. STM32Cube™ covers the STM32 portfolio.

STM32Cube Version 1.x includes:

 The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization code using graphical wizards

 A comprehensive embedded software platform, delivered per series (such as
STM32CubeL0 for STM32L0 series)

– The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across the STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, STMTouch and
FatFS

– All embedded software utilities coming with a full set of examples.

This user manual describes how to get started with the STM32CubeL0 firmware package.

Section 1 describes the main features of STM32CubeL0 firmware, part of the STM32Cube™
initiative.

Section 2 and Section 3 provide an overview of the STM32CubeL0 architecture and
firmware package structure.

www.st.com

http://www.st.com

Contents UM1754

2/22 DocID026253 Rev 3

Contents

1 STM32CubeL0 main features . 5

2 STM32CubeL0 architecture overview . 6

3 STM32CubeL0 firmware package overview . 9

3.1 Supported STM32L0 devices and hardware . 9

3.2 Firmware package overview .11

4 Getting started . 15

4.1 Running your first example . 15

4.2 Developing your own application . 16

4.3 Using STM32CubeMX to generate the initialization C code 19

4.4 Getting STM32CubeL0 release updates . 19

4.4.1 Installing and running the STM32CubeUpdater program 19

5 FAQs . 20

6 Revision history . 21

DocID026253 Rev 3 3/22

UM1754 List of tables

3

List of tables

Table 1. Macros for STM32L0 series . 9
Table 2. STM32 Nucleo boards for STM32L0 series . 10
Table 3. Number of available examples, applications and demonstrations 14
Table 4. Document revision history . 21

List of figures UM1754

4/22 DocID026253 Rev 3

List of figures

Figure 1. STM32Cube™ firmware components. 5
Figure 2. STM32CubeL0 firmware architecture . 6
Figure 3. STM32CubeL0 firmware package structure . 11
Figure 4. STM32CubeL0 example overview . 13

DocID026253 Rev 3 5/22

UM1754 STM32CubeL0 main features

21

1 STM32CubeL0 main features

STM32CubeL0 gathers together, in a single package, all the generic embedded software
components required to develop an application on STM32L0 microcontrollers. In line with
the STM32Cube™ initiative, this set of components is highly portable, not only within the
STM32L0 series but also to other STM32 series.

STM32CubeL0 is fully compatible with STM32CubeMX code generator that allows the user
to generate initialization code. The package includes a low level hardware abstraction layer
(HAL) that covers the microcontroller hardware, together with an extensive set of examples
running on STMicroelectronics boards. The HAL is available in an open-source BSD license
for user convenience.

STM32CubeL0 package also contains a set of middleware components with the
corresponding examples. They come with very permissive license terms:

 Full USB Device stack supporting many classes.

– Device Classes: HID, MSC, CDC, DFU

 CMSIS-RTOS implementation with FreeRTOS open source solution

 FAT File system based on open source FatFS solution

 STMTouch touch sensing solutions

A demonstration implementing all these middleware components is also provided in the
STM32CubeL0 package.

Figure 1. STM32Cube™ firmware components

STM32CubeL0 architecture overview UM1754

6/22 DocID026253 Rev 3

2 STM32CubeL0 architecture overview

The STM32CubeL0 firmware solution is built around three independent levels that can
easily interact with each other as described in the Figure 2 below:

Figure 2. STM32CubeL0 firmware architecture

Level 0: This level is divided into three sub-layers:

 Board Support Package (BSP): this layer offers a set of APIs related to the hardware
components on the hardware boards (LCD drivers, Micro SD. etc…) and composed of
two parts:

– Component: is the driver related to the external device on the board and not
related to the STM32, the component driver provides specific APIs to the BSP
driver’s external components and can be ported to any board.

– BSP driver: it enables the component driver to be linked to a specific board and
provides a set of user-friendly APIs. The API naming rule is
BSP_FUNCT_Action(): ex. BSP_LED_Init(),BSP_LED_On()

It is based on a modular architecture that allows it to be ported easily to any hardware
by just implementing the low level routines.

 Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the
hardware interfacing methods to interact with the upper layers (application, libraries
and stacks). It provides generic, multi instance and function-oriented APIs which allow
to offload the user application implementation by providing ready-to-use processes. For

DocID026253 Rev 3 7/22

UM1754 STM32CubeL0 architecture overview

21

example, for the communication peripherals (I2S, UART…) it provides APIs allowing to
initialize and configure the peripheral, manage data transfer based on polling, interrupt
or DMA process, and manage communication errors that may raise during
communication. The HAL Drivers APIs are split in two categories, generic APIs which
provides common and generic functions to all the STM32 series and extension APIs
which provides specific and customized functions for a specific family or a specific part
number.

 Basic peripheral usage examples: this layer contains examples of basic operation of
the STM32L0 peripherals using only the HAL and BSP resources.

Level 1: This level is divided into two sub-layers:

 Middleware components: a set of Libraries covering USB Device Libraries,
STMTouch touch sensing library, FreeRTOS and FatFS. Horizontal interactions
between the components of this layer are done directly by calling the feature APIs while
the vertical interaction with the low level drivers is done through specific callbacks and
static macros implemented in the library system call interface. For example, the FatFs
implements the disk I/O driver to access microSD drive or the USB Mass Storage
Class.

The main features of each Middleware component are as follow:

USB Device Library

– Several USB classes supported (Mass-Storage, HID, CDC, DFU, MSC)

– Supports multi packet transfer features: allows sending big amounts of data
without splitting them into max packet size transfers.

– Uses configuration files to change the core and the library configuration without
changing the library code (Read Only).

– RTOS and Standalone operation

– The link with low-level driver is done through an abstraction layer using the
configuration file to avoid any dependency between the Library and the low-level
drivers.

FreeRTOS

– Open source standard

– CMSIS compatibility layer

– Tickless operation during low-power mode

– Integration with all STM32Cube Middleware modules

FAT File system

– FATFS FAT open source library

– Long file name support

– Dynamic multi-drive support

– RTOS and standalone operation

– Examples with microSD.

STM32 Touch Sensing Library

– Robust STMTouch capacitive touch sensing solution supporting proximity,
touchkey, linear and rotary touch sensor using a proven surface charge transfer
acquisition principle.

STM32CubeL0 architecture overview UM1754

8/22 DocID026253 Rev 3

 Examples based on the Middleware components: each Middleware component
comes with one or more examples (called also Applications) showing how to use it.
Integration examples that use several Middleware components are provided as well.

Level 2: This level is composed of a single layer which is a global real-time and graphical
demonstration based on the Middleware service layer, the low level abstraction layer and
the applications that make basic use of the peripherals for board-based functions.

DocID026253 Rev 3 9/22

UM1754 STM32CubeL0 firmware package overview

21

3 STM32CubeL0 firmware package overview

3.1 Supported STM32L0 devices and hardware

STM32Cube™ offers a highly portable Hardware Abstraction Layer (HAL) built around a
generic and modular architecture allowing the upper layers, Middleware and Application, to
implement their functions without in-depth knowledge of the MCU being used. This
improves the library code re-usability and guarantees an easy portability from one device to
another.

The STM32CubeL0 offers full support for all STM32L0 Series devices. The user only has to
define the right macro in stm32l0xx.h.

Table 1 below lists the macro to define depending on the STM32L0 device in use. Note that
the macro must also be defined in the compiler preprocessor.

Table 1. Macros for STM32L0 series

Macro defined in
stm32l0xx.h

STM32L0 devices

STM32L011xx
STM32L011K4, STM32L011G4, STM32011F4, STM32L011E4,
STM32L011D4

STM32L021xx STM32L021K4

STM32L031xx
STM32L031C6, STM32L031K6, STM32L031G6, STM32L031E6,
STM32L031F6, STM32L031C4, STM32L031K4, STM32L031G4,
STM32L031E4, STM32L031F4

STM32L041xx
STM32L041C6, STM32L041K6, STM32L041G6, STM32L041F6,
STM32L041C4

STM32L051xx
STM32L051K8, STM32L051C6, STM32L051C8, STM32L051R6,
STM32L051R8

STM32L052xx
STM32L052K6, STM32L052K8, STM32L052C6, STM32L052C8,
STM32L052R6, STM32L052R8

STM32L053xx STM32L053C6, STM32L053C8, STM32L053R6, STM32L053R8, ,

STM32L062xx STM32L062K8

STM32L063xx STM32L063C8, STM32L063R8

STM32L071xx
STM32L071V8, STM32L071K8, STM32L071VB, STM32L071RB,
STM32L071CB, STM32L071KB, STM32L071VZ, STM32L071RZ,
STM32L071CZ, STM32L071KZ

STM32L072xx
STM32L072V8, STM32L072VB, STM32L072RB, STM32L072CB,
STM32L072VZ, STM32L072RZ, STM32L072CZ

STM32L073xx
STM32L073V8, STM32L073VB, STM32L073RB, STM32L073VZ,
STM32L073RZ

STM32L082xx STM32L082KBU, STM32L082KZU

STM32L083xx
STM32L083V8, STM32L083VB, STM32L083RB, STM32L083VZ,
STM32L083RZ

STM32CubeL0 firmware package overview UM1754

10/22 DocID026253 Rev 3

STM32CubeL0 features a rich set of examples and applications making it easy to
understand and use any HAL driver and/or Middleware components. These examples can
be run on any of the STMicroelectronics board as listed in Table 2 below:

As for all other STM32 Nucleo boards, the NUCLEO-L053R8 and NUCLEO-L073RZ feature
a reduced set of hardware components (one user Key button and one user LED). To enrich
the middleware support offer for STM32CubeL0 firmware package, an LCD display Adafruit
Arduino shield was chosen, which embeds in addition to the LCD a µSD connector and a
Joystick. The NUCLEO-L031K6 and NUCLEO-L011K4 boards are Nucleo-32 boards, a new
format for 32 pins component.

The STM32CubeL0 family supports now both Nucleo-32 and Nucleo-64 boards.

 Nucleo-64 boards support Adafruit LCD display Arduino™ UNO shields which
embedded microSD connector and a joystick in addition to the LCD.

 Nucleo-32 boards support Gravitech 7-segment display Arduino™ NANO shield which
allows displaying up to four-digit numbers and characters.

The Arduino™ shield drivers are provided within the BSP component. Their usage is
illustrated by a demonstration firmware.

In the BSP component the dedicated drivers, for that Arduino shield are available and their
use is illustrated through either the provided BSP example or in the Demonstration
firmware, without forgetting the FatFS middleware application.

The STM32CubeL0 firmware is able to run on any compatible hardware. The users can
simply update the BSP drivers to port the provided examples to their own board, providing it
has the same hardware functions (for example LED, pushbuttons).

Table 2. STM32 Nucleo boards for STM32L0 series

Board STM32L0 devices supported

NUCLEO-L053R8 STM32L053x8

STM32L053-DISCO STM32L053C8

NUCLEO-L073RZ STM32L073RZ

STM32L073Z_EVAL STM32L073VZ

NUCLEO-L031K6 STM32L031K6

NUCLEO-L011K4 STM32L011K4

DocID026253 Rev 3 11/22

UM1754 STM32CubeL0 firmware package overview

21

3.2 Firmware package overview

The STM32CubeL0 firmware solution is provided in a single zip package with the structure
shown in Figure 3 below.

Figure 3. STM32CubeL0 firmware package structure

For each board, a set of examples are provided with pre-configured projects for EWARM,
MDK-ARM and either TrueSTUDIO or SW4STM32 toolchains.

Figure 4 shows the project structure for the STM32L073Z_EVAL board. The structure is
identical for any other additional supported board.

The examples are classified depending on the STM32Cube level they apply to, and are
named as follows:

 Examples in level 0 are called Examples, that use HAL drivers without any Middleware
component

 Examples in level 1 are called Applications, that provide typical use cases of each
Middleware component

 Examples in level 2 are called Demonstration, that implement all the HAL, BSP and
Middleware components

A template project is provided to users for the quick build of any firmware application on a
given board.

STM32CubeL0 firmware package overview UM1754

12/22 DocID026253 Rev 3

All examples have the same structure,

 \Inc folder that contains all header files

 \Src folder for the sources code

 \EWARM, \MDK-ARM and either \SW4STM32 or \TrueSTUDIO folders containing the
pre-configured project for each toolchain.

 readme.txt describing the example behavior and the required environment to make it
work

DocID026253 Rev 3 13/22

UM1754 STM32CubeL0 firmware package overview

21

Figure 4. STM32CubeL0 example overview

STM32CubeL0 firmware package overview UM1754

14/22 DocID026253 Rev 3

Table 3 provides the number of Examples, Applications and Demonstrations available for
the NUCLEO-L053R8, NUCLEO-L053RZ, NUCLEO-L031K6, NUCLEO-L011K4,
STM32L053-DISCO, STM32L073Z_EVAL boards.

All the examples are developed and optimized to consider power consumption constraints,
which explains the choice a default system clock configuration to MSI, unless higher
frequencies required by some given peripherals (for example USB, RNG).

Table 3. Number of available examples, applications and demonstrations

Board Examples Applications Demos

NUCLEO-L053R8 71 14 1

STM32L053-DISCO 57 13 1

NUCLEO-L073RZ 61 10 1

STM32L073Z_EVAL 75 17 1

NUCLEO-L031K6 56 10 1

NUCLEO-L011K4 48 0 1

DocID026253 Rev 3 15/22

UM1754 Getting started

21

4 Getting started

4.1 Running your first example

This section explains how to run a first example with STM32CubeL0., using as illustration
the generation of a simple LED toggle running on the STM32L053R8 Nucleo board:

1. Download the STM32CubeL0 firmware package. Unzip the package into a directory of
your choice. Make sure not to modify the package structure shown in Figure 3.

2. Browse to \Projects\STM32L053R8-Nucleo\Examples.

3. Open the \GPIO folder, then open the \GPIO_EXTI folder.

4. Open the project with your preferred toolchain.

5. Rebuild all files and load your image into target memory.

6. Run the example: each time you press the Key push button, the LED2 toggles (for
more details, refer to the example readme file).

Getting started UM1754

16/22 DocID026253 Rev 3

Below is a quick overview on how to open, build and run an example with the supported
toolchains.

 EWARM

– Under the example folder, open the \EWARM sub folder

– Open the Project.eww workspace(a)

– Rebuild all files: Project->Rebuild all

– Load the project image: Project->Debug

– Run the program: Debug->Go (F5)

 MDK-ARM

– Under the example folder, open the \MDK-ARM sub folder

– Open the Project.uvproj workspace(a)

– Rebuild all files: Project->Rebuild all target files

– Load the project image: Debug->Start/Stop Debug Session

– Run the program: Debug->Run (F5)

 SW4STM32

– Open the \SW4STM32 toolchain

– Click File->Switch Workspace->Other and browse to the SW4STM32
workspace directory

– Click File->Import, select General->Existing Projects into Workspace and then
click Next

– Browse to the SW4STM32 workspace directory and select the project

– Rebuild all project files: select the project in the “Project explorer” window then
click the Project->build project menu

– Run program: Run->Debug (F11)

 TrueSTUDIO

– Open the TrueSTUDIO toolchain

– Select on File->Switch Workspace->Other and browse to the TrueSTUDIO
workspace directory

– Click on File->Import, select General->'Existing Projects into Workspace' and
then click “Next”.

– Browse to the TrueSTUDIO workspace directory, select the project

– Rebuild all project files: Select the project in the “Project explorer” window then
click on Project->build project menu.

– Run the program: Run->Debug (F11)

4.2 Developing your own application

This section describes the successive steps to create your own application using
STM32CubeL0.

1. Creating your project: to create a new project you can either start from the Template
project provided for each board under \Projects\<STM32xx_xxx>\Templates or

a. The workspace name may change from one example to another

DocID026253 Rev 3 17/22

UM1754 Getting started

21

from any available project under \Projects\<STM32xx_xxx>\Examples or
\Projects\<STM32xx_xxx>\Applications (<STM32xx_xxx> refers to the board
name, for example STM32L053R8).

The Template project provides an empty main loop function. It is a good starting point
to get familiar with the project settings for STM32CubeL0. It has the following
characteristics:

a) It contains sources of the HAL, CMSIS and BSP drivers which are the minimum
required components to develop code for a given board.

b) It contains the include paths for all the firmware components.

c) It defines the STM32L0 device supported, allowing to set the configuration for the
CMSIS and HAL drivers respectively.

d) It provides ready-to-use user files pre-configured as follows:

- HAL is initialized

- SysTick ISR implemented for HAL_Delay() purpose

- System clock is configured with the minimum frequency of the device (MSI) and
though for an optimum power consumption.

Note: If you copy an existing project to another location make sure to update the include paths.

2. Adding the necessary Middleware to your project (optional): the available
Middleware stacks are: USB Device Libraries, STMTouch touch library, FreeRTOS and
FatFS. To find out which source files you need to add to the project files list, refer to the
documentation provided for each Middleware. You can also look at the applications
available under \Projects\STM32xx_xxx\Applications\<MW_Stack>
(<MW_Stack> refers to the Middleware stack, for example USB_Device) to get a better
idea of the source files to be added and the include paths.

3. Configuring the firmware components: the HAL and Middleware components offer a
set of build time configuration options using macros declared with “#define” in a header
file. A template configuration file is provided within each component, which you have to
copy to the project folder (usually the configuration file is named xxx_conf_template.h.
Make sure to remove the word “_template” when copying the file to the project folder).
The configuration file provides enough information to know the effect of each
configuration option. More detailed information is available in the documentation
provided for each component.

4. Starting the HAL Library: after jumping to the main program, the application code
needs to call HAL_Init() API to initialize the HAL Library and do the following:

a) Configure the Flash prefetch, instruction and data caches (user-configurable by
macros defined in stm32l0xx_hal_conf.h)

b) Configure the Systick to generate an interrupt every 1 msec, which is clocked by
the MSI, this the default configuration after reset

c) Call the HAL_MspInit() callback function defined in the user file
stm32l0xx_hal_msp.c to do the global low level hardware initialization

5. Configuring the system clock: the system clock configuration is set by calling the two
following APIs

a) HAL_RCC_OscConfig(): configures the internal and/or external oscillators, PLL
source and factors. The user can choose to configure one oscillator or all

Getting started UM1754

18/22 DocID026253 Rev 3

oscillators. The user can also skip the PLL configuration if there is no need to run
the system at high frequency

b) HAL_RCC_ClockConfig(): configures the system clock source, Flash latency and
AHB and APB prescalers

Note: Prior to configuring the system clock, it is recommended to enable the power controller
clock, and to configure the appropriate voltage scaling, and therefore to optimize the power
consumption when the system is clocked below the maximum allowed frequency.

6. Peripheral initialization

a) Start by writing the peripheral HAL_PPP_MspInit function. For this function,
please proceed as follows:

 i. Enable the peripheral clock.

 ii. Configure the peripheral GPIOs.

 iii. Configure DMA channel and enable DMA interrupt (if needed).

 iv. Enable peripheral interrupt (if needed).

b) Edit the stm32xxx_it.c to call required interrupt handlers (peripheral and DMA), if
needed

c) Write process complete callback functions if you plan to use peripheral interrupt or
DMA

d) In your main.c file, initialize the peripheral handle structure then call the function
HAL_PPP_Init() to initialize your peripheral

7. Developing your application process: at this stage, your system is ready and you
can start developing your application code.

a) The HAL provides intuitive and ready-to-use APIs to configure the peripheral, and
supports polling, interrupt and DMA programming models, to accommodate any
application requirements. For more details on how to use each peripheral, refer to
the extensive set of examples provided.

b) If your application has some real-time constraints, you can find a large set of
examples showing how to use FreeRTOS and integrate it with all Middleware
stacks provided in STM32CubeL0. This can be a good starting point for your
development.

Caution: In the default HAL implementation, Systick timer is the source of time base. It is used to
generate interrupts at regular time intervals. Take care if HAL_Delay() is called from
peripheral ISR process. The SysTick interrupt must have higher priority (numerically lower)
than the peripheral interrupt. Otherwise, the caller ISR process is blocked.
Functions affecting time base configurations are declared as __Weak to make override
possible in case of other implementations in user file (using a general purpose timer for
example or other time source), for more details please refer to HAL_TimeBase example.

DocID026253 Rev 3 19/22

UM1754 Getting started

21

4.3 Using STM32CubeMX to generate the initialization C code

An alternative to steps 1 to 6 described in Section 4.2 consists in using the STM32CubeMX
tool to generate code for the initialization of the system, the peripherals and middleware
(Steps 1 to 5 above) through a step-by-step process:

 Select the STMicroelectronics STM32 microcontroller that matches the required set of
peripherals.

 Configure each required embedded software thanks to a pinout-conflict solver, a clock-
tree setting helper, a power consumption calculator, and the utility performing MCU
peripheral configuration (for example GPIO, USART) and middleware stacks (for
example USB).

 Generate the initialization C code based on the configuration selected. This code is
ready to use within several development environments. The user code is kept at the
next code generation.

For more information, please refer to UM1718.

4.4 Getting STM32CubeL0 release updates

The STM32CubeL0 firmware package comes with an updater utility: STM32CubeUpdater,
also available as a menu within STM32CubeMX code generation tool.

The updater solution detects new firmware releases and patches available from st.com and
proposes to download them to the user’s computer.

4.4.1 Installing and running the STM32CubeUpdater program

 Double-click on the SetupSTM32CubeUpdater.exe file to launch the installation.

 Accept the license terms and follow the different installation steps.

Upon successful installation, STM32CubeUpdater becomes available as an
STMicroelectronics program under Program Files and is automatically launched.

The STM32CubeUpdater icon appears in the system tray:

 Right-click the updater icon and select Updater Settings to configure the Updater
connection and whether to perform manual or automatic checks (see STM32CubeMX
User guide - UM1718 section 3 - for more details on Updater configuration).

FAQs UM1754

20/22 DocID026253 Rev 3

5 FAQs

What is the license scheme for the STM32CubeL0 firmware?

The HAL is distributed under a non-restrictive BSD (Berkeley Software Distribution) license.

The Middleware stacks made by ST (USB Device Libraries, STMTouch touch library) come
with a licensing model allowing easy reuse, provided it runs on an ST device.

The Middleware based on well-known open-source solutions (FreeRTOS and FatFs) have
user-friendly license terms. For more details, refer to the license agreement of each
Middleware.

What boards are supported by the STM32CubeL0 firmware package?

The STM32CubeL0 firmware package provides BSP drivers and ready-to-use examples for
the NUCLEO-L053R8, NUCLEO-L073RZ, NUCLEO-L011K4, NUCLEO-L031K6,
STM32L073Z_EVAL and STM32L053-DISCO boards.

For the up-to-date list of supported boards, please refer to the firmware package release
notes.

Does the HAL take benefit from interrupts or DMA? How can this be
controlled?

Yes. The HAL supports three API programming models: polling, interrupt and DMA (with or
without interrupt generation).

Are any examples provided with the ready-to-use toolset projects?

Yes. STM32CubeL0 provides a rich set of examples and applications (please refer to
Table 3). They come with the pre-configured project of several toolsets: IAR, Keil and GCC.

How are the product/peripheral specific features managed?

The HAL offers extended APIs, i.e. specific functions as add-ons to the common API to
support features available on some products/lines only.

How can STM32CubeMX generate code based on embedded software?

STM32CubeMX has a built-in knowledge of STM32 microcontrollers, including their
peripherals and software. This enables the tool to provide a graphical representation to the
user and generate *.h/*.c files based on user configuration.

How to get regular updates on the latest STM32CubeL0 firmware releases?

The STM32CubeL0 firmware package comes with an updater utility, STM32CubeUpdater,
that can be configured for automatic or on-demand checks for new firmware package
updates (new releases or/and patches).

STM32CubeUpdater is integrated as well within the STM32CubeMX tool. When using this
tool for STM32L0 configuration and initialization C code generation, the user can benefit
from STM32CubeMX self-updates as well as STM32CubeL0 firmware package updates.

For more details, refer to Section 4.4.

DocID026253 Rev 3 21/22

UM1754 Revision history

21

6 Revision history

Table 4. Document revision history

Date Revision Changes

24-Apr-2014 1 Initial release.

27-Feb-2015 2

Extended the applicability to STM32L073Z-EVAL and
NUCLEO-L073RZ boards for STM32L073xx and
STM32L083xx device families, respectively.

Updated:

– Table 1: Macros for STM32L0 series,

– Table 2: STM32 Nucleo boards for STM32L0 series

– the list of available STM32 Nucleo boards in
Section 3.1: Supported STM32L0 devices and
hardware,

– Figure 3: STM32CubeL0 firmware package structure,

– the sentence introducing Figure 4,

– Figure 4: STM32CubeL0 example overview,

– the sentence introducing Table 3,

– Table 3: Number of available examples, applications
and demonstrations.

13-Nov-2015 3

Introduction of the STM32L031xx and STM32L011xx
devices. Addition of new boards: NUCLEO-L031K6,
NUCLEO-L011K4.

Updated:

– Table 1: Macros for STM32L0 series

– Table 2: STM32 Nucleo boards for STM32L0 series

– Figure 3: STM32CubeL0 firmware package structure

– Table 3: Number of available examples, applications
and demonstrations.

UM1754

22/22 DocID026253 Rev 3

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 STM32CubeL0 main features
	Figure 1. STM32Cube™ firmware components

	2 STM32CubeL0 architecture overview
	Figure 2. STM32CubeL0 firmware architecture

	3 STM32CubeL0 firmware package overview
	3.1 Supported STM32L0 devices and hardware
	Table 1. Macros for STM32L0 series
	Table 2. STM32 Nucleo boards for STM32L0 series

	3.2 Firmware package overview
	Figure 3. STM32CubeL0 firmware package structure
	Figure 4. STM32CubeL0 example overview
	Table 3. Number of available examples, applications and demonstrations

	4 Getting started
	4.1 Running your first example
	4.2 Developing your own application
	4.3 Using STM32CubeMX to generate the initialization C code
	4.4 Getting STM32CubeL0 release updates
	4.4.1 Installing and running the STM32CubeUpdater program

	5 FAQs
	6 Revision history
	Table 4. Document revision history

