
Introduction

The EVAL-ADICUP360 is an Arduino-like platform based on the ADUCM360 fully integrated, 3.9
kSPS, 24-bit data acquisition system that incorporates dual high performance, multichannel
sigma-delta (Σ-Δ) analog-to-digital converters (ADCs), a 32-bit ARM Cortex™-M3 processor, and
Flash/EE memory on a single chip. The platform has an Arduino-Due form factor and has two
additional PMOD connectors. An Eclipse based development environment is provided for code
development and debugging. The base platform is accompanied by a set of shields provided by
Analog Devices but it can also work with 3rd party Aduino shields.

This guide is structured as follows:

Hardware - Contains hardware-related information about the base board and the various shields●

Quick Start Guides - Provides all the necessary steps to get the software environment up and●

running
Reference Designs - Contains detailed descriptions of the software reference designs available for●

the base board and the shields
Help and Support - Provides info on where to get support on any questions you might have●

regarding the hardware or the software

Tool Chain Guides

This chapter provides all the necessary steps to get the software environment up and running.

It contains two main sections:

Tool Chain Download & Installation Guide - Provides all the necessary instructions on how to●

download and install the customized software development environment for ADuCM360 based on
Eclipse IDE.
Tool Chain Setup & User Guide - Provides information about using the customized Eclipse IDE, in●

particular, the process of importing, building, debugging, and creating user applications for the
ADuCM360 microcontroller.

Using EVAL-ADICUP360 with IAR and Keil IDEs - Provides detailed information how to use the●

EVAL-ADICUP360 board with other IDEs than Eclipse, such as IAR Embedded Workbench and Keil
µVision.

Tool Chain for EVAL-ADICUP360

This page provides all the necessary steps to get the customized Eclipse software environment up
and running in either Windows or Linux.

The software development environment for EVAL-ADICUP360 is based on open source tools, and
includes the following features and components:

ADuCM360 customized Eclipse IDE for C/C+ + Developers●

GNU Tools for ARM Embedded Processors (GCC toolchain for ARM processors)●

GNU ARM Eclipse Plug-ins, Copyright © 2009 Liviu Ionescu, A family of Eclipse CDT extensions and●

tools for GNU ARM development (open source ARM debug and build tools)
GNU ARM Eclipse Build Tools, Copyright © 2009 Liviu Ionescu (GNU make & busybox: sh, rm and●

echo)
OpenOCD with support for ADuCM360 microcontroller (open source SWD)●

Mbed CMSIS-DAP/Serial drivers (for Windows)●

The Windows IDE compared to Linux IDE is pretty much the same. So if the documentation mainly
references the Windows version, things directly apply to the Linux version as well.

The EVAL-ADICUP360 Toolchain is based on Eclipse IDE, but because the MBED platform provides
CMSIS-DAP interface to connect to the board, the EVAL-ADICUP360 can be used without problems
together with IAR Embedded Workbench IDE or Keil µVision IDE.

Pre-Requisites and Requirements List

There are a few things that you will need for the tools and software to work properly.

PC or laptop computer●

(2) Micro USB to USB cables●

Both USB cables needs to have ALL data lines connected, can't use a charging only micro USB cable.

Terminal Program to interface your PC with the EVAL-ADICUP360●

Putty❍

Tera Term❍

Or other favorite Terminal program❍

Detailed ADuCM360 User Guide●

Windows Tool Chain Installer Instructions

Windows Tool Chain Installer is a tool that facilitates the installation of the entire tool chain. It's an
single executable file which will either automatically download or install bundled packs of all of the
necessary tool chain components. The following open source components are included in the tool
chain installer:

Customize ADuCM360 Eclipse IDE for C/C+ + Developers●

OpenOCD with ADuCM360 support●

GNU Tools for ARM Embedded Processors●

GNU Eclipse Build Tools for ARM Processors●

Mbed Windows serial port driver●

DURING INSTALLATION ONLY CONNECT HARDWARE DEVICE WHEN YOUR ARE PROMPTED
BY THE DRIVER INSTALLER. WAIT TO ENSURE THAT THE HARDWARE DRIVERS ARE
COMPLETELY (AND SUCCESSFULLY) INSTALLED BEFORE MOVING FORWARD WITH THE
SOFTWARE INSTALL

EVAL-ADICUP360 Tool Chain Installer for Windows

The executable installs the components to a default local directory structure which can be found
below.

ADuCM360 Eclipse IDE installs to C:\Analog Devices\ADuCM360-IDE\Eclipse (also creates links in●

the Start menu)
The customized ADuCM360 Eclipse IDE includes the required Eclipse plug-ins for ARM processor❍

and for the debug tools.
OpenOCD is saved in C:\Analog Devices\ADuCM360-IDE\openocd\usr\bin●

GNU ARM Processor Tools will be saved to C:\Program Files (x86)\GNU Tools ARM●

Embedded\4.9 2014q4\arm-none-eabi
GNU ARM Eclipse Build Tools will be save to C:\Program Files (x86)\GNU ARM●

Eclipse\Build_Tools

Linux Tool Chain Installer Instructions

There are two methods to get Linux Tool Chain Installer:

Debian packages for 32-bits and 64-bits●

Tarball packages for 32-bits and 64-bits●

The preferred way is to use the debian packages (.deb). You may be asked if you want to install
them while there are being downloaded. If not, you can use your file browser. The debian package is
typically recognized and associated with your distribution package management system. In any case
you can also install them from the command line using following command:

 # sudo dpkg -i DEB_PACKAGE

The alternative way is to download the self-contained and relocateable tarball packages (.tar.gz).
The only advantage is that unlike the debian package is installed system wide. You can extract the
tarball anywhere including your HOME directory:

 # tar xzf TAR_PACKAGE

The tarball package also includes some simple shell scripts that installs a symplic link to the
aducm360-ide executable into /usr/local/bin , copies the udev rules for the OpenOCD debugger,
installs a application launcher with icon etc.

Depending on your system (32-bits or 64 bits) you should pick one of the available versions:

EVAL-ADICUP360 Tool Chain Installer for Linux 32-bit (debian package)
EVAL-ADICUP360 Tool Chain Installer for Linux 64-bit (debian package)
EVAL-ADICUP360 Tool Chain Installer for Linux 32-bit (tarball package)
EVAL-ADICUP360 Tool Chain Installer for Linux 64-bit (tarball package)

Tool Chain Setup User Guide

This page provides detailed information about using the ADuCM360 customized Eclipse IDE, in
particular, the process of importing, building, debugging, and creating user applications for the
ADuCM360 microcontroller.

This page will outline:

How to import existing projects into your workspace1.
How to build the .elf files, for programming the ADuCM3602.
How to configure the debug session for a particular user application3.
How to start a debug session4.
How to create a new project5.

Workspace and Projects

The workspace is a folder where Eclipse can access local copies of user application projects. When
starting Eclipse, a prompt will ask you for a location of this folder. This is the location where all the
ADuCM360 user applications will be stored.

Using the Tool Chain

The instructions below have been tested in Windows XP and Windows 7, on both 32-/64-bit machines.

Importing a Project

There are 2 methods for importing existing programs:

Examples that come with the installer package.●

Examples which are in our GIT repository (most up to date content).●

Only one method is needed to get started with the EVAL-ADICUP360.

How to Import Existing Projects within the Installer Package

From the menu located in the tool bar, select the File → Import option.1.
A window will pop-up with several importing options, select General → Existing Projects into2.

Workspace.
Select Browse in the dialog window and search for the local copy of where the ADuCM360-IDE3.
examples are. If you used the default directory that can be found here: C:\Analog
Devices\ADuCM360-IDE\Examples
Make sure that the check-box Copy projects into workspace is checked (this creates a local copy4.
of the projects and preserves the original versions) and press Finish .

If you imported the example programs from the installer, you can skip ahead to “Building the
.ELF/.HEX Files” section. The only time you will need to import from the GIT repository, is if you want
to look for newly released/updated programs.

How to Import Existing Projects from the GIT Repository

Open the GIT perspective window by navigating the menu near the tool bar. File → Perspective →1.
Open Perspective → Other → GIT and the press “OK”.

Clone the Git repository which contains all the latest code and projects associated with the2.
ADuCM360. Populate the URI field with the following address.

URI: - https://github.com/analogdevicesinc/EVAL-ADICUP360.git1.
Click Next → Next → Finish2.

In the Git Repositories window, Right Click on Projects folder and select the Import option.3.

Select the radio button for Import existing Eclipse projects and click on the projects folder as the4.
destination.

Click Next → Finish 5.

Building the .ELF/.HEX Files

It's important to build your project before setting up the debug configuration. This will allow the debug
configuration to automatically populate the appropriate fields.

Starting on the C/C+ + perspective, select the project you want to debug in the Projects Explorer 1.
Window.
Right click on the project and select the Build Project option.2.

Could also go up to the tool bar and click on the Hammer icon .❍

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/hammer.png?id=resources:eval:user-guides:eval-adicup360:quickstart:eclipse_user_guide

Setting up a Debug Configuration for the Project

A new debug configuration must be set up for EACH application you intend on developing/debugging.
So you will have many different debug configurations, depending on the number of programs you
create/debug.

Go to the menu bar and follow this path, Run → Debug Configurations…1.
Alternatively, locate the small bug icon in the tool bar and click the small downward facing❍

arrow to the right, and select the Debug Configurations… option from the menu.
Double click the GDB OpenOCD Debugging configuration from window.2.

The necessary input fields should be populated, assuming that you built your project in the3.
previous step. The following images should be used as a reference if some of the fields are blank.

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/bug.png?id=resources:eval:user-guides:eval-adicup360:quickstart:eclipse_user_guide

Next, switch to the Debugger tab and ensure the following required GDB commands are present.4.

Finally, click the checkbox in the Common tab --> Display in Favorites Menu to make the created5.
debug configuration appearing in the Debug Configurations section of the menu: Click “Apply”,
then “Close”.

Debugging an Application

Make sure the EVAL-ADICUP360 board is connected to the computer via the DEBUG USB port.1.
(The micro USB connector closest to the DC barrel jack)
Using the tool bar, navigate to the small Debug icon and click on the downward arrow to the2.
right. Select the debug configuration you want to download to the ADuCM360.

If this is the first time you have launched OpenOCD, a pop-up window will display asking for access.3.

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/bug.png?id=resources:eval:user-guides:eval-adicup360:quickstart:eclipse_user_guide

Click on “Allow Access”.
If everything goes fine, in the Console window, you will see a report without errors.4.

As a reference, the full text should be similar to:Open On-Chip Debugger❍

0.10.0-dev-00025-g81cc011-dirty (2015-08-17-13:23)
Licensed under GNU GPL v2

For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : only one transport option; autoselect 'swd'
adapter speed: 5000 kHz
adapter_nsrst_delay: 100
cortex_m reset_config vectreset
init_aducm
Started by GNU ARM Eclipse
Info : CMSIS-DAP: SWD Supported
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : CMSIS-DAP: FW Version = 1.0
Info : SWCLK/TCK = 0 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : clock speed 5000 kHz
Info : SWD IDCODE 0x2ba01477
Info : aducm360.cpu: hardware has 6 breakpoints, 4 watchpoints
Info : accepting 'gdb' connection on tcp/3333
 The relevant EEPROM sectors of ADuCM360 are erased and the microcontroller is programmed.❍

You can follow the progress in the Console window. As an approximate reference you will see
something similar to:target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x81000000 pc: 0x00000a94 msp: 0x20001fe0
semihosting is enabled
RESET: ADI halt after bootkernel
breakpoint set at 0x000001f5
Warn : Only resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or
configure hardware srst support.
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x000001f4 msp: 0x20002000, semihosting
flash 'aducm360' found at 0x00000000
Info : Padding image section 0 with 3 bytes
RESET: ADI halt after bootkernel
breakpoint set at 0x000001f5
Warn : Only resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or
configure hardware srst support.
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x000001f4 msp: 0x20002000, semihosting
RESET: ADI halt after bootkernel
breakpoint set at 0x000001f5
Warn : Only resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or
configure hardware srst support.
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x000001f4 msp: 0x20002000, semihosting
===== arm v7m registers
(0) r0 (/32): 0x40002800
(1) r1 (/32): 0x00000001

(2) r2 (/32): 0x00000064
(3) r3 (/32): 0x00000000
(4) r4 (/32): 0x00000000
(5) r5 (/32): 0x00000000
(6) r6 (/32): 0x00000000
(7) r7 (/32): 0x00000000
(8) r8 (/32): 0x00000000
(9) r9 (/32): 0x00000000
(10) r10 (/32): 0x00000000
(11) r11 (/32): 0x00000000
(12) r12 (/32): 0x00000000
(13) sp (/32): 0x20002000
(14) lr (/32): 0xFFFFFFFF
(15) pc (/32): 0x000001F4
(16) xPSR (/32): 0x01000000
(17) msp (/32): 0x20002000
(18) psp (/32): 0x6A850410
(19) primask (/1): 0x00
(20) basepri (/8): 0x00
(21) faultmask (/1): 0x00
(22) control (/2): 0x00
===== Cortex-M DWT registers
(23) dwt_ctrl (/32)
(24) dwt_cyccnt (/32)
(25) dwt_0_comp (/32)
(26) dwt_0_mask (/4)
(27) dwt_0_function (/32)
(28) dwt_1_comp (/32)
(29) dwt_1_mask (/4)
(30) dwt_1_function (/32)
(31) dwt_2_comp (/32)
(32) dwt_2_mask (/4)
(33) dwt_2_function (/32)
(34) dwt_3_comp (/32)
(35) dwt_3_mask (/4)
(36) dwt_3_function (/32)

 The user application execution is then stopped automatically at the first breakpoint at the5.
beginning of main() loop. From this point on, you can use the debug functions and features of the
Eclipse environment. (Such as stepping through, breakpoints, register reads, variable values, etc.)

 When finished, the debugger has to be stopped. Click on red Stop button up in the tool bar, then6.
right click on the debug application in the “Debug” window, and select the Terminate and Remove
option.

Creating a New Project

 The customized Eclipse IDE that you installed for EVAL-ADICUP360 offer the possibility to create 2
types of projects: Empty Project and Hello World Project. Both C and C++ formats.

 The idea of these templates is to have at the end a functional ADuCM360 project which can be run on
the target. The basic system configuration is the same for both:

 - startup code

 - memory map and linker script

 - system clock configuration

 - disabling watchdog

 - enabling clocks for all peripherals

 - low drivers libraries for ADuCM360 microcontroller

The differences are regarding the complexity of the main() function: the Empty template provide an
empty main() function, being in this way a good choose when you want to start your ADuCM360
project from the scratch; the Hello World template is for more complex projects. It provide 1 sec
time base and different possibilities to display an output message to the user.

See below how to create the C projects for EVAL-ADICUP360 board. The same steps being available
for C++ projects as well.

 To create a new project, go to the menu bar and find File → New → C Project.1.

 Provide a name for your project, and then choose Project Type: Executable → ADuCM36x C/C+ +2.
Project , with the Toolchains: Cross ARM GCC. Press Next.

 Choose as Processor core: ADuCM360.3.

 Select which type of project do you want: Content: Empty (add your own content) or Hello World4.
(with 1s timer).

 The Use system calls and Trace output options are available for Hello World template only.5.

 You can select various settings for your project (which can be changed later, in the project settings,6.
or as different pre-processor definitions).

 Select both the configuration check boxes you want to deploy on.7.

 On the next page select the compiler toolchain. It should will automatically selected, just check or8.
enter the right path to it.

 Finally, press Finish and the project will be created and you can begin programming.9.

Options available for "Hello World" template only

 Use system calls available options are (see GNU ARM Eclipse support page):

 Freestanding - a typical embedded configuration, that does not use the POSIX system calls (open,●

close, read, write, etc).
 POSIX (retargetting) - a more elaborate embedded configuration where the application makes use●

of these calls, but redirects the file descriptors to local devices or files, by providing custom
implementations for the system calls (like _open, _close, _read, _write etc). This configuration allows
to port POSIX programs easier.

 Semihosting - a special testing configuration, that bridges all system calls to the host operating
system where the GDB server runs. This configurations is particularly interesting for running test
programs that can leave the test results in a file stored on the host, for automated integration in a
test suite.

 Trace output available options are:

 None (no trace output) - a basic configuration that doesn't use trace output messages.●

 ARM ITM (via SWO) - a specific configuration that help to print information via SWO pin when using●

J-Link.
 Semihosting STDOUT stream - a more complex configuration that configure stdout to use a physical●

serial connection as UART or any other peripherals that offer the possibility to output messages.
 Semihosting DEBUG channel - a debug specific configuration which enable semihosting in DEBUG●

mode and offer the possibility to use resources from the development platform n the embedded
target via debugger. This can help the user to send trace stream to debugger console (like
trace_printf, trace_puts etc).

Assign Device to the Project using Packs

 This step will allow you to access the ADuCM360 registers in debugger mode. In order to see the
device list it is required to have Packs plug-ins installed. This is already done by the installer, however
you do need to update the Packs list, and then install a particular family of devices.

 To update your Packs library, go to the menu and Choose Window→ Perspective → Open1.
Perspective → Other
 Click on “Packs”. Once open, find the Packs window, and click on the Update arrow in the2.
upper-righthand corner.
 After updating has completed, find the folder for Analog Devices and navigate down to the latest3.
version of ADuCM36x and right click and hit Install.

 To assign device to your project:

 - Select your project in the Project explorer view

 - Go to Project tab from Eclipse menu and select Properties

 - Go to C/C+ + Build→ Settings

 - Select the desired configuration

 - Click on Device tab and expand the Analog Devices node

 - Select ADuCM360 as a device and press OK

Hardware

This chapter contains hardware-related information about the base board and the various shields.
Each sub-section contains a general description of the board, detailed description of the connectors,
jumpers, and buttons (if any). It also provides links to the Schematics, Bill of materials, design
projects, and Technical documentation. It also gives internal links to the provided example demo
software projects.

The following boards are currently available:

EVAL-ADICUP360 Base Board●

EVAL-CN0216-ARDZ Shield●

EVAL-CN0357-ARDZ Shield●

EVAL-ADICUP360 Base Board

The EVAL-ADICUP360 base board consists of two basic blocks:

A fully integrated, 3.9 kSPS, 24-bit data acquisition system that incorporates dual high performance,●

multichannel sigma-delta (Σ-Δ) analog-to-digital converters (ADCs), a 32-bit ARM Cortex™-M3
processor, and Flash/EE memory, realized on a single chip ADuCM360 microcontroller.

An on-board SWD interface, based on the OpenSDA platform, which is implemented with the●

Freescale's К20DX128 microcontroller. This block allows using a free Software Development
Toolchain to program and debug the ADuCM360 microcontroller part.

This page describes the hardware connectors, the jumpers and switches configuration options, the
USB connectors, and links to download the schematics and the layout.

Connectors

The following connectors are populated on the base board:

DC Power Jack: Core positive, accepts +7V to +12V DC supply voltage;●

DEBUG USB: Used for flash programming and debug interface;●

USER USB: Provides a Virtual serial port connection to ADuCM360 microcontroller;●

PMOD_SPI: 12-pin SPI PMOD connector;●

PMOD_I2C: 8-pin I2C PMOD connector;●

Six Arduino connectors described in the table below.●

Connector Pin
No. Pin Name ADuCM360 pin or other function Arduino Due

Pin Name

PWMH

10 SCL P2.0/SCL/UARTCLK SCL1
9 SDA P2.1/SDA/UARTDCD SDA1
8 AREF VREF+ AREF
7 GND AGND (Analog ground) GND
6 SCK P0.1/SCLK1/SCL/SIN PWM13
5 MISO P0.0/MISO1 PWM12
4 MOSI P0.2/MOSI1/SDA/SOUT PWM11
3 SS P0.3/IRQ0/CS1 PWM10
2 P0.4 P0.4/RTS/ECLKO PWM9
1 P0.5 P0.5/CTS/IRQ1 PWM8

Connector Pin
No. Pin Name ADuCM360 pin or other function Arduino Due

Pin Name

PWML

8 PWM5 P2.2/BM PWM7
7 PWM4 P1.4/PWM2/MISO0 PWM6
6 PWM3 P1.3/PWM1/DSR PWM
5 PWM2 P1.2/PWM0/RI PWM4
4 PWM1 P1.1/IRQ4/PWMTRIP/DTR PWM3
3 PWM0 P1.0/IRQ3/PWMSYNC/EXTCLK PWM2
2 TX P0.7/POR/SOUT TX0
1 RX P0.6/IRQ2/SIN RX0

COMMUNICATION

8 P0.2 P0.2/MOSI1/SDA/SOUT TX3
7 P0.1 P0.1/SCLK1/SCL/SIN RX3
6 P1.7 P1.7/IRQ7/PWM5/CS0 TX2
5 P1.6 P1.6/IRQ6/PWM4/MOSI0 RX2
4 P1.5 P1.5/IRQ4/PWM3/SCLK0 TX1
3 P1.4 P1.4/PWM2/MISO0 RX1
2 SDA P2.1/SDA/UARTDCD SDA
1 SCL P2.0/SCL/UARTCLK SCL

ADCH

1 A8 AIN8/EXTREF2IN- A8
2 A9 AIN9/DACBUFF+ A9
3 A10 AIN10 A10
4 A11 AIN11/VBIAS1 A11
5 DAC DAC DAC0
6 G_SW GND_SW DAC1
7 VREF+ VREF+ CANRX
8 VREF- VREF- CANTX

ADCL

1 A0 AIN0 A0
2 A1 AIN1 A1
3 A2 AIN2 A2
4 A3 AIN3 A3
5 A4 AIN4/IEXC A4
6 A5 AIN5/IEXC A5
7 A6 AIN5/IEXC A6
8 A7 AIN7/VBIAS0/IEXC/EXTREF2IN+ A7

POWER

1 NC - not connected - NOT USED
2 IOREF DVdd (+3.3V) IOREF
3 RESET RESET RESET
4 3.3V DVdd (+3.3V) 3V3
5 5V +5V 5V
6 GND DGND (Digital Ground) GND
7 GND DGND (Digital Ground) GND

8 Vin The input line of the +5V linear voltage
regulator VIN

Connector Pin
No. Pin Name ADuCM360 pin or other function Arduino Due

Pin Name

SPI

1 MISO P0.0 MISO
2 +5 +5 +5
3 SCLK P0.1 SCLK
4 MOSI P0.2 MOSI
5 RESET RESET RESET
6 GND DGND GND

SPI_PMOD

1 CS P1.7 CHIP SELECT
2 MOSI P1.6 MOSI
3 MISO P1.4 MISO
4 SCLK P1.5 SCLK
5 GND DGND GND
6 VDD DVDD VDD
7 INT P1.0 INT
8 RESET P1.1 RESET
9 GPIO P1.2 GPIO
10 GPIO P2.2 GPIO
11 GND DGND GND
12 VDD DVDD VDD

I2C_PMOD

1 SCL P2.0 SCL
2 SCL P2.0 SCL
3 SDA P2.1 SDA
4 SDA P2.1 SDA
5 GND DGND GND
6 GND DGND GND
7 VDD DVDD VDD
8 VDD DVDD VDD

Jumper Configuration

There are 3 jumpers groups on the EVAL-ADICUP360 base board:

Jumper P12

Configuration Function

ADuCM360 is powered from the linear voltage regulator on the baseboard

ADuCM360 is not powered from the baseboard and may be powered from the
application shield

Jumper REFnSel

Configuration Function

ADuCM360 VREF- pin connected to Analog GND

ADuCM360 VREF- pin connected to the ADCH connector, pin 8

Jumpers J1, J2, J3, J4, J5

Configuration Function

ADuCM360's UART pins are connected to the Virtual serial port of the Debug
adapter

ADuCM360's UART pins are not connected to the Virtual serial port of the
Debug adapter

ADuCM360's SWD lines are connected to the Debug adapter. ADuCM360 can
be programmed

ADuCM360's SWD lines are not connected to the Debug adapter. ADuCM360
cannot be programmed

ADuCM360's RESET line is connected to the Debug adapter. The button B1 can
be used to invoke the Debug adapter's Bootloader.

ADuCM360's RESET line is not connected to the Debug adapter. The button B1
is just an ADuCM360 reset button.

USB/Connector Multiplexer

There are 4 switches on the EVAL-ADICUP360 base board, which are used to multiplex pairs of pins
(P0.1/P0.2, and P0.6/P0.7) to various different connectors on the board. Depending on how the
pins are configured you may route them to the USB ports, use them for SPI communication or for
UART communication.

Switches S1, S2, S3, S4

The S1, S2, S3, S4 switches are used to route the P0.1/SCLK1/SCL/SIN, P0.2/MOSI1/SDA/SOUT,
P0.6/IRQ2/SIN and P0.7/POR/SOUT pins when they have been assigned a UART function to either the
Arduino I/O and the PMOD connectors or to the Virtual Serial ports implemented via the USER USB
or the DEBUG USB connectors. Each pin can be routed separately, but the routing is usually done for
the pairs TxD/RxD.

Most commonly used configurations are given in the table below. For any other more 'exotic'
configuration, consult with the Schematics and the Layout of the board.

ADuCM360's pair of pins Required connection Configuration

P0.1/SCLK1/SCL/SIN
P0.2/MOSI1/SDA/SOUT

to the User USB (FT232RL)

to the Debug USB (mbed's Serial Port)

to the Arduino PWMH (pin 6, pin 3)
and
the SPI header (pin 1, pin 3)

ADuCM360's pair of pins Required connection Configuration

P0.6/IRQ2/SIN
P0.7/POR/SOUT

to the User USB (FT232RL)

to the Arduino PWML (pin 1, pin 2)

Switch Schematic

Here is the schematic of the switching network, the switches allow to route the P0.1/P0.2 and
P0.6/P0.7 signals to multiple connector depending how you want to configure the pins. Above are the
common configurations, but for complete details please reference the diagram.

Buttons

The EVAL-ADICUP360 base board provides two buttons RESET and BOOT.

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/hardware/switch_p6_7_gpio.png?id=resources:eval:user-guides:eval-adicup360:hardware:base_board

Button Function

RESET
Provides a hardware RESET to ADuCM360 microcontroller. If the RESET line is connected to
the Debug adapter, this button can be used to invoke the Debug adapter's Bootloader, see
section Jumper Configuration.

BOOT
When BOOT is held down during the reset and after, the ADuCM360 microcontroller enters
UART download mode via P0.1 and P0.2. In this case, the user can download program via
DEBUG USB or USER USB, depending on the jumpers settings, see section Jumper
Configuration. BOOT button should be held press while a reset from the button is performed.

EVAL-CN0216-ARDZ Shield

CN-0216 is a precision weigh scale signal conditioning system. It uses the AD7791, a low power
buffered 24-bit sigma-delta ADC along with dual external ADA4528-2 zero-drift amplifiers. This
solution allows for high dc gain with a single supply.

Ultralow noise, low offset voltage, and low drift amplifiers are used at the front end for amplification of
the low-level signal from the load cell. The circuit yields 15.3 bit noise-free code resolution for a load
cell with a full-scale output of 10 mV.

This circuit allows great flexibility in designing a custom low-level signal conditioning front end that
gives the user the ability to easily optimize the overall transfer function of the combined
sensor-amplifier-converter circuit. The AD7791 maintains good performance over the complete output
data range, from 9.5 Hz to 120 Hz, which allows it to be used in weigh scale applications that operate
at various low speeds.

Connectors and Jumper Configurations

PICTURE OF THE BOARD FILE with JUMPERS AND CONNECTORS HIGHLIGHTED

Sensor Connector

Pin Number Pin Function
Pin 1 Not Used
Pin 2 - Excitation
Pin 3 + Signal
Pin 4 - Sense
Pin 5 + Sense
Pin 6 - Signal
Pin 7 + Excitation
Pin 8 Not Used

Bridge Configuration

NOTE - Any 4 or 6 wire load cells can be used with the
EVAL-CN0216-ARDZ.
The Tedeah Huntleigh Model 1042 load cell was used during testing.

 Position “0” (shown below) is used for
6-wire resistive bridges

P2 - Connects REFIN+ to Sensor +Sense pin●

P3 - Connects REFIN- to Sensor -Sense pin●

Position “1” is used for 4-wire resistive bridges

P2 - Connects REFIN+ to 5V supply●

P3 - Connects REFIN- to GND●

EVAL-CN0357-ARDZ Shield

CN0357 single-supply, low noise, portable gas detector circuit using an electrochemical sensor. The
Alphasense CO-AX carbon monoxide sensor is used in this example. Electrochemical sensors offer
several advantages for instruments that detect or measure the concentration of many toxic gases.
Most sensors are gas specific and have usable resolutions under one part per million (ppm) of gas
concentration.

The circuit shown in below uses the ADA4528-2, dual auto zero amplifier, which has a maximum offset
voltage of 2.5 µV at room temperature and an industry leading 5.6 µV/√Hz of voltage noise density. In
addition, the AD5270-20 programmable rheostat is used rather than a fixed transimpedance resistor,
allowing for rapid prototyping of different gas sensor systems, without changing the bill of materials.
The ADR3412 precision, low noise, micropower reference establishes the 1.2 V common-mode,
pseudo ground reference voltage with 0.1% accuracy and 8 ppm/°C drift. For applications where
measuring fractions of ppm gas concentration is important, using the ADA4528-2 and the ADR3412
makes the circuit performance suitable for interfacing with a 16-bit ADC, such as the AD7790.

Connectors and Jumper Configurations

PICTURE OF THE BOARD FILE with JUMPERS AND CONNECTORS HIGHLIGHTED

Sensor Footprint

NOTE - Three electrode electrochemical toxic gas sensors can be used
with the EVAL-CN0357-ARDZ The footprint can accommodate 3
different sizes of sensors.
The Alphasense CO-AX electrochemical gas sensor was used during
testing and programming.

Recommended PCB Sockets(for Alphasense Sensors)

A Series Sensors - Mill-Max 0364-0-15-15-13-27-10-0●

B Series Sensors - Mill-Max 0294-0-15-15-06-27-10-0●

D Series Sensors - Mill-Max 0667-0-15-15-30-27-10-0●

The sensor may be connected to the M1 footprint using the appropriate pin sockets●

Jumper P1 Settings

“0” position - Sensor output connected to ADC(defualt)●

“1” position - Sensor output connected to A1 pin of ANALOG header, for connection to external ADCs●

Reference Designs

This chapter contains various reference designs available for the base board and the various shields.
Each sub-section describes the demo program, how to setup the hardware, how to obtain the source
code, and finally, how to import the project in the Eclipse workspace and to run it.

The following reference designs are currently available:

Blinking LEDs Demo - Shows the basic steps of creating a new project for the EVAL-ADICUP360●

base board, running and debugging the software.
Command Line Interpreter Demo - A Command Line Interpreter (CLI) demo project for the●

EVAL-ADICUP360 base board.
Accelerometer Demo - Illustrates the functionality of the ADXL362 3-axes accelerometer. It works●

with the EVAL-ADXL362-ARDZ Shield.
Weigh Scale Demo - Weigh Scale measurement example for 4-/6-wire bridge sensors. It works●

with the EVAL-CN0216-ARDZ Shield.
pH Measurement Demo - pH Measurement System with Temperature Compensation that works●

with the EVAL-CN0326-PMDZ Pmod.
Data Acquisition for Input Current Demo - Handles data of the acquisition system for 4-20 mA●

inputs current that works with the EVAL-CN0336-PMDZ Pmod.
RTD Temperature Measurement Demo - RTD temperature measurement example that works●

with the EVAL-CN0337-PMDZ Pmod.
Carbon Dioxide Gas Detection Demo - Non Dispursive Infrared Gas Detection that works with the●

EVAL-CN0338-ARDZ Shield.
Toxic Gas(CO) Detection Demo - Measuring toxic gases using electrochemical sensors that work●

with the EVAL-CN0357-ARDZ Shield.

Blinking LEDs demo

The ADuCM360_demo_blink is the simplest possible demo project for the EVAL-ADICUP360, created
using the GNU ARM Eclipse Plug-ins in Eclipse environment.

General description

The project includes basic initialization - stopping the watchdog, configuring the system clock,
disabling the clocks for all peripherals and setting two digital outputs for driving the two LEDs on the
board: LED2 and LED3. The automatically generated code by the GNU ARM Eclipse Plug-ins provide a
system tick interrupt at 1ms intervals and a simple delay function.

This project uses the low level drivers available for ADuCM360 microcontroller. It provide the
possibility to choose the LEDs blinking method: use the delay function or use timer interrupt service.

When the project is compiled and run, the two LEDs flash alternatively in predefined intervals (1
second for delay function method and 0.5 seconds for timer interrupt method).

Setting up the hardware

To program the EVAL-ADICUP360, set the jumpers as shown in the next figure. The important●

jumpers are highlighted in red.

Connect the PC to the EVAL-ADICUP360 via DEBUG USB●

Load the program and run it.●

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

To learn how to import the ADuCM360_demo_blink project from the projects examples in the Git

repository, please click on How to import existing projects from the GIT Repository.

The source code and include files for the ADuCM360_demo_blink can be found in projects examples
which comes with installer package, or the latest version of the project can be found on Github:

ADuCM360_demo_blink at Github

Importing the ADuCM360_demo_blink project

The necessary instructions on how to import ADuCM360_demo_blink project in your workspace can
be found in the section, Import a project into workspace.

Debugging the ADuCM360_demo_blink project

A debug configuration must be set up for this project in order to have the possibility to program and●

to debug it. To do this, follow the instructions from Setting up a Debug Configuration.

Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,●

navigate to the small Debug icon and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

https://www.blackfin.uclinux.org/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/bug.png?id=resources:eval:user-guides:eval-adicup360:reference_designs:demo_blink

Use step-by-step execution or directly run the program.●

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADuCM360_demo_blink project use basic ARM Cortex-M C/C++ Project structure:

In the src and include folders you will find the source and header files related to blink application.
You can modify as you wanted those files.

Here you can configure:

LEDs blinking method: in order to use LEDs blinking in a Timer 0 interrupt routine you need to set●

use_irq parameter to 1 (main.c). When use_irq = 0 then you use only a delay function for LEDs
blinking.
Time for blinking delay: BLINK_TIME (blink.h).●

The system folder contains system related files (try not to change these files):

ADuCM360 – contains low levels drivers for ADuCM360 microcontroller.●

CMSIS – contains files related to ADuCM360 platform, such as: ADuCM360.h (registers definitions),●

system_ADuCM360.c/h (system clock), vectors_ADuCM360.c (interrupt vector table).
cortexm – contains files for system management (start-up, reset, exception handler).●

Command Line Interpreter Demo

The ADuCM360_demo_cli is a Command Line Interpreter (CLI) demo project for the EVAL-ADICUP360
base board, created using the GNU ARM Eclipse Plug-ins in Eclipse environment.

General description

The purpose of this project is to help you to get used with UART peripheral of ADuCM360
microcontroller. The source code example can serve as a template for a resident command line
interpreter, complementing any other user application functionality. Interrupt-based receiving of text
commands from the UART is implemented. As soon as a command is entered, an execution request
flag is raised to signal the main loop. The commands are recognised and may be executed
immediately or later depending on the priority of the current tasks.

You can use any Terminal session you want, such as Putty or Serial Terminal with Eclipse Kepler
(incorporated in Eclipse environment).

A serial connection of a PC to the EVAL-ADICUP360 board using the user USB connector is required to
test and use the CLI application (EVAL-ADICUP360 board incorporates an FTDI USB-to-serial
converter). Any terminal application run on a PC at 9600-8-N-1 without flow control can be used to
'talk' to the EVAL-ADICUP360 board. After connecting and sending CR (by pressing Enter), the
command prompt '»' and a welcome message should appear.

Available commands

Command Description
help Display available commands
version Display SW version of CLI project

dump [begaddr] [count]

Display up to 0x40 consecutive byte-size
locations from any address of the ADuCM360 memory space.
One should be careful not to request locations which are not decoded
because the hardware_fault exception code will block the board.

reset Perform a HW reset which also initialize the application

Setting up the hardware

In order to program the EVAL-ADICUP360 you need to use the DEBUG USB. The jumper set up is
shown in the next figure. The important jumpers are highlighted in red.

The ADuCM360_cli_demo can connect to the serial port of a PC through two different USB ports on the
board:

USER USB (using P0.1, P0.2 or P0.6, P0.7 of the ADuCM360)●

DEBUG USB (only P0.1, P0.2 of the ADuCM360)●

A bank of jumpers provided near the PMOD ports of the EVAL-ADICUP360, makes this easy to
configure. The jumpers required for particular configurations are provided in the images below.
Ensure that the pins you select in the hardware configuration, also match what is in your software pin
definition.(UART_PINS)

Using UART via USER USB (P0.1, P0.2)

Using UART via USER USB (P0.6, P0.7)

Using UART via DEBUG USB (P0.1, P0.2)

If using UART in USER USB configuration, you first need to program the board using DEBUG USB

If using UART in DEBUG USB configuration you first need to program the board using DEBUG USB
and after the program runs on target, you need to change jumper (J1 and J2) positions

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

To learn how to import the ADuCM360_demo_cli project form the projects examples in the Git
repository, please click on How to import existing projects from the GIT Repository.

The source code and include files of the ADuCM360_demo_cli can be found in the projects examples
which comes with the installer package, or the latest version of the project can be found on Github:

ADuCM360_demo_cli at Github

Importing the ADuCM360_demo_cli project

The necessary instructions on how to import ADuCM360_demo_cli project in your workspace can be
found in the section, Import a project into workspace.

Debugging the ADuCM360_demo_cli project

A debug configuration must be set up for this project in order to have the possibility to program and●

to debug the ADuCM360_demo_cli project. To do this, follow the instructions from Setting up a
Debug Configuration Page.

Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,●

navigate to the small Debug icon and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

Use step-by-step execution or directly run the program.●

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/bug.png?id=resources:eval:user-guides:eval-adicup360:reference_designs:demo_cli

Project structure

The ADuCM360_demo_cli project use basic ARM Cortex-M C/C++ Project structure:

This project contains: initialization part - disabling watchdog, setting system clock, enabling clock for
peripheral; UART interrupt service; port configuration for UART use; UART read/write management;
command line interpreter application.

In the src and include folders you will find the source and header files related to CLI application. You
can modify as you wanted those files. The Communication.c/h files contain UART specific data,
meanwhile the cli.c/h files contain the command interpreter data.

Here you can configure:

UART pin configuration - UART_PINS paramater - use for P0.1, P0.2 connection - UART_PINS_12 or●

use for P0.6, P0.7 connection - UART_PINS_67 (Communication.h).
UART mode- UART_MODE paramater - interrupt or polling mode (Communication.h).●

UART baud rate - available baud rates for serial port can be changed at initialization part (main).●

UART data bits - 5 to 8 bits can be changed at initialization part (main).●

The system folder contains system related files (try not to change these files):

ADuCM360 – contains low levels drivers for ADuCM360 microcontroller.●

CMSIS – contains files related to ADuCM360 platform, such as: ADuCM360.h (registers definitions),●

system_ADuCM360.c/h (system clock), vectors_ADuCM360.c (interrupt vector table).
cortexm – contains files for system management (start-up, reset, exception handler).●

Weigh Scale Measurement Demo

The ADuCM360_demo_cn0216 is a weigh scale measurement demo project for the
EVAL-ADICUP360 base board with additional EVAL-CN0216-ARDZ shield, created using the GNU ARM
Eclipse Plug-ins in Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
various shield boards. It expand the list of possible applications that can be done with the base board.

The ADuCM360_demo_cn0216 project uses the EVAL-CN0216-ARDZ shield which is a precision
weigh scale system using a 24-bits sigma-delta converter, and auto-zero amplifiers providing high
gain for the bridge sensor input

The CN0216 circuit
translates the
resistance changes
on the bridge into
very small voltages.
The bridge is
excited by a
regulated 5V and
that determines
the full scale range
of the bridge
output. Those

values are passed through very low noise, auto zero amplifiers to remove as many error sources as
possible before being gained up to levels that will be compatible with the ADC. The 24-bit ADC value
is received via SPI interface of the EVAL-ADICUP360 board.

The
ADuCM360_demo
_cn0216
application
processes ADC
output value and
make all necessary
conversions in
order to provide
the weight results.
A UART interface
(9600 baud rate
and 8-bits data
length) is used to send the results to terminal window: ADC Data Register codes, ADC Input Voltage
volts, and Sensor Input Weight grams are the outputs provided in the terminal window.

At the start of the project, a calibration of the upper and lower input range of the weigh scale is taken
to remove both offset and gain errors in the circuit, providing the most accurate weigh scale
measurements possible. Make sure you open up the serial terminal to your PC in order to do the
calibration. Once the program is running, it will ask you to make the zero scale calibration, you MUST
press <ENTER> to begin the zero scale calibration(takes about 5 seconds). Once that calibration has
taken place, the serial terminal will prompt you to add the calibration weight to the scale and then
press <ENTER> to make the full scale calibration(again takes about 5 seconds). Those measurements
are averaged over 100 samples and then stored into memory as the upper and lower calibration
coefficients.

Once calibration is complete, measurements of the output values (weights and conversion
information) are displayed every time you press <ENTER> key from the keyboard. Measurements
should be between the lower and upper calibration limit can be made at the beginning of the program.

Setting up the hardware

Connect the EVAL-CN0216-ARDZ to the Arduino connectors P4, P5, P6, P7, P8 of the
EVAL-ADICUP360 board.

Extremely important to plug in an acceptable power supply to the barrel jack P11 to supply power for
the EVAL-CN0216-ARDZ. The boards will not work if you try only to power it from the DEBUG_USB or
the USER_USB.

In order to program the base board you need to use the DEBUG USB, and you will need to use the
USER USB to communicate with the serial terminal program. The important jumpers and switches
configurations are highlighted in red.

The ADuCM360_demo_cn0216 uses UART connection via P0.6/P0.7 and SPI1 channel of the
ADuCM360 to communicate with EVAL-CN0216-ARDZ shield.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADuCM360_demo_cn0216 can be found on Github:

AduCM360_demo_cn0216 at Github

Importing the ADuCM360_demo_cn0216 project

The necessary instructions on how to import the ADuCM360_demo_cn0216 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADuCM360_demo_cn0216 project

A debug configuration must be set up for this project in order to have the possibility to program and●

to debug the ADuCM360_demo_cn0216 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,●

navigate to the small Debug icon and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

Use step-by-step execution or directly run the program.●

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADuCM360_demo_cn0216 project use ADuCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI1, UART via P0.6/P0.7; SPI, UART read/write functions;
AD7791 control and weight conversions.

In the src and include folders you will find the source and header files related to CN0216 software
application. The Communication.c/h files contain SPI and UART specific data, meanwhile the
AD7791.c/h files contain the ADC control data and the CN0216.c/h files contain the calibration and
measurements management.

In the appropriate header files you can configure
next parameters:

Converter reference voltage - VREF - reference voltage (V) for AD7791 converter (AD7791.h).●

 #define VREF 5

Full scale calibration weight - CAL_WEIGHT - this parameter can be set to the numeric value of●

the full scale calibration weight you are using. (in grams) (CN0216.h).

 #define CAL_WEIGHT 1000

The system folder contains system related files (try not to change these files):

ADuCM360 – contains low levels drivers for ADuCM360 microcontroller.●

CMSIS – contains files related to ADuCM360 platform, such as: ADuCM360.h (registers definitions),●

system_ADuCM360.c/h (system clock), vectors_ADuCM360.c (interrupt vector table).
cortexm – contains files for system management (start-up, reset, exception handler).●

pH Monitor with Temperature Compensation
Demo

The ADuCM360_demo_cn0326 is a pH monitor with automatic temperature compensation demo
project, for the EVAL-ADICUP360 base board with additional EVAL-CN0326-PMDZ pmod, created using
the GNU ARM Eclipse Plug-ins in Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
pmod boards. It expand the list of possible applications that can be done with the base board.

The ADuCM360_demo_cn0326 project uses the EVAL-CN0326-PMDZ pmod which is a pH sensor
signal conditioner and digitizer with automatic temperature compensation.

The CN0326 circuit provides a complete solution for pH sensors with internal resistance between 1
MΩ and several GΩ. It consist of pH probe buffer, Pt1000 RTD for temperature compensation and
24-bits ADC with 3 differential analog inputs.

The pH probe consists of a glass measuring electrode and a reference electrode, which is analogous
to a battery. When the probe is place in a solution, the measuring electrode generates a voltage
depending on the hydrogen activity of the solution, which is compared to the potential of the
reference electrode. As the solution becomes more acidic (pH < 7) the potential of the glass
electrode becomes more positive (+mV) in comparison to the reference electrode; and as the
solution becomes more alkaline (pH > 7) the potential of the glass electrode becomes more negative
(−mV) in comparison to the reference electrode.

The change in temperature of the solution changes the activity of its hydrogen ions. When the
solution is heated, the hydrogen ions move faster which result in an increase in potential difference
across the two electrodes. In addition, when the solution is cooled, the hydrogen activity decreases
causing a decrease in the potential difference. Electrodes are designed ideally to produce a zero volt (
0 V) potential when placed in a buffer solution with a pH of 7 (neutral pH).

The EVAL-CN0326-PMDZ comes with an evaluation software which can help you to test and to
calibrate your pmod before you use it.

Please visit CN0326 Software User Guide page to find out how to get and how to use the CN0326
evaluation software.

The potential changes are outputted as ADC 24-bits value which is received via SPI interface of the
EVAL-ADICUP360 board. The ADC analog differential channels are:

AIN1(+)/AIN1(-) - pH probe (voltage full range: ±414 mV at 25°C to ±490 mV at 80°C)●

AIN2(+)/AIN2(-) - Pt1000 RTD (voltage full range: 210 mV to 290 mV with 210 μA excitation●

current)
AIN3(+)/AIN3(-) - Bias current (used to minimized tne voltage errors)●

The ADuCM360_demo_cn0326 application purchase ADC outputs from input channels, calculates
voltage, temperature and pH values. You can choose to use internal excitation current of the ADC
(IOUT2) or calculate bias current of the circuit (see USE_IOUT2 parameter).

A UART interface (9600 baud rate and 8-bits data length) is used, as a command line interpreter, to
send the results to terminal window: temperature and ph values. Beside this two the interpreter
process other three commands: help, calibrate channel/channels and ADC reset.

To start the command line interpreter you need to press ENTER key (CR) from the keyboard and after

that just type in <help> to see available commands. The output data are send via UART using
semihosting mechanism.

The project uses below formula to determine output ADC code for an input voltage on either channel:

AIN - analog input voltage
GAIN - gain value in the in-amp setting
N - ADC resolution (24)

The temperature value is calculated using RTD resistance value and it varies from 0°C (1000 Ω) to
100°C (1385 Ω):

Rrtd - RTD resistance at T°C
Rmin - RTD resistance at 0°C
α - temperature coefficient (0.00385 Ω/Ω/°C)

To calculate pH value is used Nernst equation:

 E - voltage of the hydrogen electrode with
unknown activity
α - zero point tolerance (±30 mV)
T - ambient temperature in °C
n - valence, number of charges on ion (1 at 25
°C)
F - Faraday constant (96485 coulombs/mol)
R - Avogadro's number (8314 mV-coulombs /°K

mol)
pHiso - reference hydrogen ion concentration (7)

Semihosting with ARM

Semihosting is a mechanism that connect the target firmware's standard IO (printf, scanf/fgets, open,
write, read, close, etc) to your host PC via JTAG or SWD. It’s easy to configure it with open source
tooling - the newlib C standard library and OpenOCD JTAG implementation.

You can automatic enable semihosting and configure it by using the project ADuCM36x C/C+ +
Project template, which offer you the ability to select how do you want to use semihosting.

This example present the possibility to use semihosting to output messages with printf() by using a
physical serial connection as UART. It uses the newlib GNU ARM library which actually links the UART
physical port to standard C functions. You need only to overwrite _write() function, which is marked
as weak function in the GNU ARM library, with your own function that write characters to UART (the
same for _read() function when you want to use scanf() in your code).

Setting up the hardware

Connect the EVAL-CN0326-PMD to the SPI_PMOD connector of the EVAL-ADICUP360 board. In
order to program the base board you need to use the DEBUG USB. After you program the board you
can switch to USER USB and you are set to use the application. The important jumpers and switches
configuration are highlighted in red.

The ADuCM360_cn0326_demo use UART connection via P0.6/P0.7 and SPI0 channel of the
ADuCM360 to communicate with CN0326 board.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADuCM360_demo_cn0326 can be found on Github:

AduCM360_demo_cn0326 at Github

Importing the ADuCM360_demo_cn0326 project

The necessary instructions on how to import the ADuCM360_demo_cn0326 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADuCM360_demo_cn0326 project

A debug configuration must be set up for this project in order to have the possibility to program and●

to debug the ADuCM360_demo_cn0326 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,●

navigate to the small Debug icon and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

Use step-by-step execution or directly run the program.●

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADuCM360_demo_cn0326 project use ADuCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI0, UART via P0.6/P0.7; SPI, UART read/write functions;
AD7793 control, voltage conversion, command interpreter, temperature and pH calculations.

In the src and include folders you will find the source and header files related to CN0326 software
application. The Communication.c/h files contain SPI and UART specific data, meanwhile the
AD7793.c/h files contain the ADC control data and the CN0326.c/h files contain the pH monitor
application data.

In the appropriate header files you can configure
next parameters:

ADC gain - AD7793_GAIN - POWER_DOWN set gain value for AD7793 converter (AD7793.h).●

 #define AD7793_GAIN AD7793_GAIN_1

Excitation current - USE_IOUT2 - select if you want to use bias current from the AIN3 channel: YES●

or you want to use internal excitation current, 210 µA: NO(CN0326.h).

 #define USE_IOUT2 NO

Zero point tolerance - TOLERANCE - tolerance used in Nernst equation (CN0326.h).●

 #define TOLERANCE 0

The system folder contains system related files (try not to change these files):

ADuCM360 – contains low levels drivers for ADuCM360 microcontroller.●

CMSIS – contains files related to ADuCM360 platform, such as: ADuCM360.h (registers definitions),●

system_ADuCM360.c/h (system clock), vectors_ADuCM360.c (interrupt vector table).
cortexm – contains files for system management (start-up, reset, exception handler).●

Data Acquisition for Input Current Demo

The ADuCM360_demo_cn0336 is a data acquisition demo project for 4-20 mA inputs, for the
EVAL-ADICUP360 base board with additional EVAL-CN0336-PMDZ pmod, created using the GNU ARM
Eclipse Plug-ins in Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
pmod boards. It expand the list of possible applications that can be done with the base board.

The ADuCM360_demo_cn0336 project uses the EVAL-CN0336-PMDZ pmod which is a completely
isolated 12-bits, 300 kSPS data acquisition system (with only three active devices) that processes 4
mA to 20 mA input signals.

The CN0336 circuit consists of an input current-to-voltage converter, a level shifting circuit, an ADC
stage and an output isolation stage. The 4 mA to 20 mA input signal is converted into voltage levels
compatible with the input range of the ADC (0 V - 2.5 V). The 12-bits ADC value is received via SPI
interface of the EVAL-ADICUP360 board.

The EVAL-CN0336-PMDZ comes with an evaluation software which can help you to test and to
calibrate your pmod before you use it.

Please visit CN0336 Software User Guide page to find out how to get and how to use the CN0336
evaluation software.

The ADuCM360_demo_cn0336 application processes ADC outputs and provide current and voltage
values. You can decide how often the ADC measurements take place (see SCAN_TIME parameter).

A UART interface (115200 baud rate and 8-bits data length) is used to send the results to terminal
window: input current value, voltage calculation and ADC code. If the input value is out of range
you get an error message which means that you need to check your settings.

To start displaying data acquisition results on a terminal (putty in this case) you need to press ENTER
key (CR) from the keyboard and after that the data are updated every time the input values are
changed. The output data are send via UART using semihosting mechanism.

The project offers two method to calculate the input current, giving you the possibility to get more
accurate results (see CN0336 circuit note). You can use transfer function of the circuit which
calculate input current based on voltage changed value and circuit gain:

 I = Imin + (Vout - Voffset)/Gain

Or you can use the two-point calibration method which used the ADC output values for 2 different
measurements: first at Imin = 4 mA (ADC1) and second at Imax = 20 mA (ADC2):

 Ix = Imin + [(Imax - Imin)/(ADC2 - ADC1)]*(ADCx - ADC1)

Semihosting with ARM

Semihosting is a mechanism that connect the target firmware's standard IO (printf, scanf/fgets, open,

write, read, close, etc) to your host PC via JTAG or SWD. It’s easy to configure it with open source
tooling - the newlib C standard library and OpenOCD JTAG implementation.

You can automatic enable semihosting and configure it by using the project ADuCM36x C/C+ +
Project template, which offer you the ability to select how do you want to use semihosting.

This example present the possibility to use semihosting to output messages with printf() by using a
physical serial connection as UART. It uses the newlib GNU ARM library which actually links the UART
physical port to standard C functions. You need only to overwrite _write() function, which is marked
as weak function in the GNU ARM library, with your own function that write characters to UART (the
same for _read() function when you want to use scanf() in your code).

Setting up the hardware

Connect the EVAL-CN0336-PMD to the SPI_PMOD connector of the EVAL-ADICUP360 board. In
order to program the base board you need to use the DEBUG USB. After you program the board you
can switch to USER USB and you are set to use the application. The important jumpers and switches
configuration are highlighted in red.

The ADuCM360_cn0336_demo use UART connection via P0.6/P0.7 and SPI0 channel of the
ADuCM360 to communicate with CN0336 board.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADuCM360_demo_cn0336 can be found on Github:

AduCM360_demo_cn0336 at Github

Importing the ADuCM360_demo_cn0336 project

The necessary instructions on how to import the ADuCM360_demo_cn0336 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADuCM360_demo_cn0336 project

A debug configuration must be set up for this project in order to have the possibility to program and●

to debug the ADuCM360_demo_cn0336 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,●

navigate to the small Debug icon and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

Use step-by-step execution or directly run the program.●

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADuCM360_demo_cn0336 project use ADuCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI0, UART via P0.6/P0.7; SPI, UART read/write functions;
AD7091R control and current-voltage conversion.

In the src and include folders you will find the source and header files related to CN0336 software
application. The Communication.c/h files contain SPI and UART specific data, meanwhile the
AD7091R.c/h files contain the ADC control data and the CN0336.c/h files contain the data acquisition
parts.

In the appropriate header files you can configure
next parameters:

Converter operation mode - AD7091R_OPERATION_MODE - POWER_DOWN to select power-down●

AD7091R mode of operation or NORMAL for normal mode (AD7091R.h).

 #define AD7091R_OPERATION_MODE POWER_DOWN

Converter scan time - SCAN_TIME - how often (msec) to read conversion results (AD7091R.h).●

 #define SCAN_TIME 500

Converter reference voltage - VREF - reference voltage (V) for AD7091R converter (AD7091R.h).●

 #define VREF 2.5

Current calculation formula - CALC_FORMULA - this parameter can be set as●

TRANSFER_FUNCTION or TWO_POINT_CALIBRATION (CN0336.h).

 #define CALC_FORMULA TWO_POINT_CALIBRATION

Data acquisition parameters - all needed parameters for data calculations (CN0336.h).●

 #define IMIN 4 /* Imin [mA] */
 #define IMAX 20 /* Imax [mA] */
 #define ADC_MIN 147 /* ADC min for IMIN */
 #define ADC_MAX 3960 /* ADC max for IMAX */

The system folder contains system related files (try not to change these files):

ADuCM360 – contains low levels drivers for ADuCM360 microcontroller.●

CMSIS – contains files related to ADuCM360 platform, such as: ADuCM360.h (registers definitions),●

system_ADuCM360.c/h (system clock), vectors_ADuCM360.c (interrupt vector table).
cortexm – contains files for system management (start-up, reset, exception handler).●

Test procedure

The ADuCM360_demo_cn0336 project was tested using the base HW configuration
(EVAL-ADICUP360 board together with EVAL-CN0336-PMDZ pmod) and by using additional
EVAL-CN0179-PMDZ pmod which was choose because it can generate the input current between
required range 4mA - 20 mA.

In order to generate input current with CN0179 circuit is necessary just to use ADI available
evaluation software for this pmod (CN-0179 Software User Guide).

RTD Temperature Measurement Demo

The ADuCM360_demo_cn0337 is a RTD temperature measurement demo project for the
EVAL-ADICUP360 base board with additional EVAL-CN0337-PMDZ pmod, created using the GNU ARM
Eclipse Plug-ins in Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
pmod boards. It expand the list of possible applications that can be done with the base board.

The ADuCM360_demo_cn0337 project uses the EVAL-CN0337-PMDZ pmod which is a completely
isolated 12-bits, 300 kSPS RTD temperature measuring system (with only three active devices) that
processes the output of a Pt100 RTD and includes an innovative circuit for lead-wire compensation
using a standard 3-wire connection.

The CN0337 circuit
translates the RTD
input resistance
range (100 Ω -
212.05 Ω for a
0°C - 300°C

temperature) into voltage levels compatible with the input range of the ADC (0 V - 2.5 V). The
12-bits ADC value is received via SPI interface of the EVAL-ADICUP360 board.

The EVAL-CN0337-PMDZ comes with an evaluation software which can help you to test and to
calibrate your pmod before you use it with an RTD sensor.

Please visit CN0337 Software User Guide page to find out how to get and how to use the CN0337
evaluation software.

The ADuCM360_demo_cn0337 application processes ADC output value and make all necessary
conversions in order to provide RTD measure results. A UART interface (9600 baud rate and 8-bits
data length) is used to send the results to terminal window: RTD temperature and resistance
values, voltage calculation and ADC code. If the resistance and temperature values are out of range
you get an error message which means that you need to check your settings.

The output values are displayed when you press ENTER key (CR) from the keyboard. Also you can
decide how often the measurements take place (see SCAN_TIME parameter).

The project offers two method to calculate the RTD resistance, giving you the possibility to get more
accurate RTD measurement results (see CN0337 circuit note).

You can use transfer function of the circuit which calculate RTD resistance based on voltage
changed value and circuit gain:

 Rrtd = (Vout - Voffset)/Gain

Or you can use the two-point calibration method which used the ADC output values for 2 different
measurements: first using Rmin = 100 Ω (ADC1) precision resistor and second with Rmax = 212.05 Ω
(ADC2) resistor.

 Rrtd = Rmin + [(Rmax - Rmin)/(ADC2 - ADC1)]*(ADCrtd - ADC1)

Because the transfer function of the RTD (resistance vs. temperature) is nonlinear is needed a
software linearization to eliminate the nonlinearity error of the RTD Pt100 sensor. This project used so
called Piecewise Linear Approximation method.

Rev 04 Dec 2015 11:31 | Page 3

Piecewise Linear Approximation Method

This method characterized by taking linear approximation one step further, one can conceptualize any
number of linear segments strung together to better approximate the nonlinear RTD transfer function.
Generating this series of linear segments so that each segment’s endpoints meet those of
neighboring segments results in what can be viewed as a number of points connected by straight
lines.

These coefficients is calculated once to best match the RTD’s nonlinear transfer function and then
stored permanently in a look-up table (see C_rtd[] table). From this table of coefficients, the software
can perform simple linear interpolation to determine temperature based on measured RTD resistance.

The look-up table can have how many coefficients you needed depending how accurate you want to
be. For this project the RTD resistance range is separated into 100 linearization segments.

This method is also used in the AN-709 application note which provide also an RTD coefficient
generator tool that you also can use.

Setting up the hardware

Connect the EVAL-CN0337-PMD to the SPI_PMOD connector of the EVAL-ADICUP360 board. In
order to program the base board you need to use the DEBUG USB. After you program the board you
can switch to USER USB and you are set to use the application. The important jumpers and switches
configuration are highlighted in red.

The ADuCM360_cn0337_demo use UART connection via P0.1/P0.2 and SPI0 channel of the

ADuCM360 to communicate with CN0337 board.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADuCM360_demo_cn0337 can be found on Github:

AduCM360_demo_cn0337 at Github

Importing the ADuCM360_demo_cn0337 project

The necessary instructions on how to import the ADuCM360_demo_cn0337 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADuCM360_demo_cn0337 project

A debug configuration must be set up for this project in order to have the possibility to program and●

to debug the ADuCM360_demo_cn0337 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,●

navigate to the small Debug icon and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

Use step-by-step execution or directly run the program.●

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADuCM360_demo_cn0337 project use ADuCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI0, UART via P0.1/P0.2; SPI, UART read/write functions;
AD7091R control and RTD conversions.

In the src and include folders you will find the source and header files related to CN0337 software
application. The Communication.c/h files contain SPI and UART specific data, meanwhile the
AD7091R.c/h files contain the ADC control data and the CN0337.c/h files contain the RTD
measurements management.

In the appropriate header files you can configure
next parameters:

Converter operation mode - AD7091R_OPERATION_MODE - POWER_DOWN to select power-down●

AD7091R mode of operation or NORMAL for normal mode (AD7091R.h).

 #define AD7091R_OPERATION_MODE POWER_DOWN

Converter scan time - SCAN_TIME - how often (msec) to read conversion results (AD7091R.h).●

 #define SCAN_TIME 500

Converter reference voltage - VREF - reference voltage (V) for AD7091R converter (AD7091R.h).●

 #define VREF 2.5

RTD resistance calculation method - RTD_FORMULA - this parameter can be set as●

TRANSFER_FUNCTION or TWO_POINT_CALIBRATION (CN0337.h).

 #define RTD_FORMULA TRANSFER_FUNCTION

RTD parameters - all needed parameters for RTD calculations (CN0337.h).●

 #define TMIN (0) /* Tmin [˚C] */
 #define TMAX (300) /* Tmax [˚C] */
 #define RMIN (100) /* Resistance [Ohms] at Tmin */
 #define RMAX (212.052) /* Resistance [Ohms] at Tmax */
 #define NSEG 100 /* Nr. of sections in look-up
table */
 #define RSEG 1.12052 /* Resistance of each segment */
 #define ADC_MIN 152 /* ADC min for RMIN */
 #define ADC_MAX 4095 /* ADC max for RMAX */

The system folder contains system related files (try not to change these files):

ADuCM360 – contains low levels drivers for ADuCM360 microcontroller.●

CMSIS – contains files related to ADuCM360 platform, such as: ADuCM360.h (registers definitions),●

system_ADuCM360.c/h (system clock), vectors_ADuCM360.c (interrupt vector table).
cortexm – contains files for system management (start-up, reset, exception handler).●

Test procedure

The ADuCM360_demo_cn0337 project was tested using the base HW configuration
(EVAL-ADICUP360 board together with EVAL-CN0337-PMDZ pmod) and by connecting the 3-wire
PT100 CZUJNIK temperature sensor.

Toxic Gas (CO) Measurement Demo

The ADuCM360_demo_cn0357 is a toxic gas(CO) detector demo project for the EVAL-ADICUP360
base board with additional EVAL-CN0357-ARDZ shield, created using the GNU ARM Eclipse Plug-ins in
Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
various shield boards. It expand the list of possible applications that can be done with the base board.

The ADuCM360_demo_cn0357 project uses the EVAL-CN0357-ARDZ shield which is a single-supply,
low noise, portable gas detector circuit using an electrochemical sensor.

The EVAL-CN0357-ARDZ shield circuit provides a potentiostatic circuit for biasing the electrochemical
sensor, along with a programmable TIA and 16-bit Sigma-Delta ADC. The TIA converts the small
currents passing in the sensor to a voltage that can be read by the ADC. The 16-bit ADC value is
received via SPI interface of the EVAL-ADICUP360 board, where the gas concentration is computed.

The
ADuCM360_demo
_cn0357
application
configures the
necessary
components,
processes ADC
output value and
make all necessary
conversions in
order to provide
the gas
concentration. A UART interface (9600 baud rate and 8-bits data length) is used to send the results to
terminal window: ADC Data Register codes, ADC Input Voltage volts, and Gas Concentration Parts
Per Million(PPM) are the outputs provided in the terminal window.

At the start of the project, the software computes the necessary parameters and configure the digital
rheostat(AD5270) of the TIA. The required parameters are the sensor sensitivity and sensor range.
These can be modified by changing the values of the constants SENSOR_SENSITIVITY and
SENSOR_RANGE found in the CN0357.h header file of the project. See the “Project Structure”
section for more details.

Once configuration is complete, the software remains in a loop and continuously reads data from the
ADC. Data can be read from a terminal by pressing the <Enter> key on the computer's keyboard.

Setting up the hardware

Connect the EVAL-CN0357-ARDZ to the Arduino connectors P4, P5, P6, P7, P8 of the
EVAL-ADICUP360 board.

Extremely important to plug in an acceptable power supply to the barrel jack P11 to supply power for
the EVAL-CN0357-ARDZ. The boards will not work if you try only to power it from the DEBUG_USB or
the USER_USB.

In order to program the base board you need to use the DEBUG USB, and you will need to use the

USER USB to communicate with the serial terminal program. The important jumpers and switches
configurations are highlighted in red.

The ADuCM360_demo_cn0357 uses UART connection via P0.6/P0.7 and SPI1 channel of the
ADuCM360 to communicate with EVAL-CN0357-ARDZ board.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADuCM360_demo_cn0357 can be found on Github:

ADuCM360_demo_cn0357 at Github

Importing the ADuCM360_demo_cn0357 project

The necessary instructions on how to import the ADuCM360_demo_cn0357 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADuCM360_demo_cn0357 project

A debug configuration must be set up for this project in order to have the possibility to program and●

to debug the ADuCM360_demo_cn0357 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,●

navigate to the small Debug icon and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

Use step-by-step execution or directly run the program.●

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADuCM360_demo_cn0357 project use ADuCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI1, UART via P0.6/P0.7; SPI, UART read/write functions,
AD7790 control, AD5270 control and gas concentration computation.

In the src and include folders you will find the source and header files related to CN0357 software
application. The Communication.c/h files contain SPI and UART specific data, the AD7790.c/h files
contain the ADC control, the AD5270.c/h files contain the rheostat control and the CN0357.c/h files
contain configurations and computations specific to the gas detector application.

In the appropriate header files you can configure
next parameters:

Sensor Range - SENSOR_RANGE - maximum value of the gas conentration (ppm) that can be●

detected by the electrochemical gas sensor being used (CN0357.h).

 #define SENSOR_RANGE 2000

Sensor Sensitivity - SENSOR_SENSITIVITY - sensitivity (nA/ppm) of the electrochemical sensor●

being used (CN0357.h).

 #define SENSOR_SENSITIVITY 65

The system folder contains system related files (try not to change these files):

ADuCM360 – contains low levels drivers for ADuCM360 microcontroller.●

CMSIS – contains files related to ADuCM360 platform, such as: ADuCM360.h (registers definitions),●

system_ADuCM360.c/h (system clock), vectors_ADuCM360.c (interrupt vector table).
cortexm – contains files for system management (start-up, reset, exception handler).●

Help and Support

This page wants to help you when you have a specific issue which required a different approach or
when the wiki information are not enough.

ADuCM360 questions

If you have any questions regarding the base platform or any of the shields/pmods or are
experiencing any problems while using the boards or while following any of the user guides feel free
to ask us a question. Questions can be asked on our EngineerZone support community.

When asking a question please take the time to give a detailed description of your problem. If you are
experiencing a problem please state the steps you have executed, the result you expected you would
get and the result you actually got. By doing so you enable us to provide you precise and detailed
answers in a timely manner.

Before asking questions please take the time to check if somebody else already asked the same
question and already got an answer.

IDE questions

If you need additional information about Eclipse IDE which is part of the EVAL-ADICUP360 Tool Chain
you can visit GNU ARM Eclipse page.

ADICUP360 Compliance Results

Introduction

Regulatory compliance means conforming to a rule, such as a specification, policy, standard or law.
Most products that ships into a country need to pass a variety of tests and regulations specific to that
country.

Due to the increasing number of regulations, organizations are increasingly adopting the use of
consolidated sets of compliance controls. This means once you normally get one, you can have them
all.

Reports

The ADICUP360 passes all requirements of the CE tests.

ADICUP360 EMC emissions and immunity test report●

What are all these logos?

CE Mark : a mandatory conformity marking for certain products sold within the European●

Economic Area (EEA).
Electrical and Electronic Equipment Waste Directive : a European Community directive●

2002/96/EC on waste electrical and electronic equipment (WEEE).
Federal Communications Commission : is an independent agency of the United States●

government, this logo means we pass part 15, class B.

http://en.wikipedia.org/wiki/Regulatory_compliance
http://en.wikipedia.org/wiki/Regulatory_compliance
http://en.wikipedia.org/wiki/CE_marking
http://en.wikipedia.org/wiki/CE_marking
https://wiki.analog.com/_media/resources/eval/user-guides/eval-adicup360/eval-adicup360-emc_emissions_and_ce_test_report.pdf
http://en.wikipedia.org/wiki/CE_marking
http://en.wikipedia.org/wiki/CE_marking
http://en.wikipedia.org/wiki/Waste_Electrical_and_Electronic_Equipment_Directive
http://en.wikipedia.org/wiki/Waste_Electrical_and_Electronic_Equipment_Directive
http://en.wikipedia.org/wiki/Federal_Communications_Commission
http://en.wikipedia.org/wiki/Federal_Communications_Commission
http://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet62/oet62rev.pdf
https://wiki.analog.com/resources/eval/user-guides/eval-adicup360/help_and_support
https://wiki.analog.com/resources/eval/user-guides/eval-adicup360
http://www.analog.com

	1&2
	2
	Introduction

	2c
	Tool Chain for EVAL-ADICUP360
	Pre-Requisites and Requirements List
	Windows Tool Chain Installer Instructions
	Linux Tool Chain Installer Instructions

	2d
	Tool Chain Setup User Guide
	Workspace and Projects

	Using the Tool Chain
	Importing a Project
	How to Import Existing Projects within the Installer Package
	How to Import Existing Projects from the GIT Repository

	Building the .ELF/.HEX Files
	Setting up a Debug Configuration for the Project
	Debugging an Application
	Creating a New Project
	Options available for "Hello World" template only

	Assign Device to the Project using Packs

	3
	3a
	Hardware

	3b
	EVAL-ADICUP360 Base Board
	Connectors
	Jumper Configuration
	Jumper P12
	Jumper REFnSel
	Jumpers J1, J2, J3, J4, J5

	USB/Connector Multiplexer
	Switches S1, S2, S3, S4
	Switch Schematic

	Buttons
	Schematics, PCB Layout, Bill of Materials
	Software examples

	3d
	EVAL-CN0216-ARDZ Shield
	Connectors and Jumper Configurations
	Sensor Connector
	Bridge Configuration
	Chip Select

	Schematic, PCB Layout, Bill of Materials

	3f
	EVAL-CN0357-ARDZ Shield
	Connectors and Jumper Configurations
	Sensor Footprint
	Chip Select

	Schematic, PCB Layout, Bill of Materials
	Software

	4
	4a
	Reference Designs

	4b
	Blinking LEDs demo
	General description
	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_blink project
	Debugging the ADuCM360_demo_blink project
	Project structure

	4c
	Command Line Interpreter Demo
	General description
	Available commands

	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cli project
	Debugging the ADuCM360_demo_cli project
	Project structure

	4d
	Weigh Scale Measurement Demo
	General description
	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0216 project
	Debugging the ADuCM360_demo_cn0216 project
	Project structure

	4e
	pH Monitor with Temperature Compensation Demo
	General description
	Semihosting with ARM

	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0326 project
	Debugging the ADuCM360_demo_cn0326 project
	Project structure

	4f
	Data Acquisition for Input Current Demo
	General description
	Semihosting with ARM

	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0336 project
	Debugging the ADuCM360_demo_cn0336 project
	Project structure
	Test procedure

	4g
	RTD Temperature Measurement Demo
	General description
	Piecewise Linear Approximation Method

	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0337 project
	Debugging the ADuCM360_demo_cn0337 project
	Project structure
	Test procedure

	4h
	Toxic Gas (CO) Measurement Demo
	General description
	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0357 project
	Debugging the ADuCM360_demo_cn0357 project
	Project structure

	5&6
	5
	Help and Support
	ADuCM360 questions
	IDE questions

	6
	ADICUP360 Compliance Results
	Introduction
	Reports
	What are all these logos?

