NOA1212

Ambient Light Sensor with Dark Current Compensation

Description

The NOA1212 is a very low power ambient light sensor (ALS) with an analog current output and a power down mode to conserve power. Designed primarily for handheld device applications, the active power dissipation of this chip is less than 8 μA at dark and its quiescent current consumption is less than 200 pA in power down mode. The device can operate over a very wide range of voltages from 2 V to 5.5 V. The NOA1212 employs proprietary CMOS image sensing technology from ON Semiconductor, including built-in dynamic dark current compensation to provide large signal to noise ratio (SNR) and wide dynamic range (DR) over the entire operating temperature range. The photopic optical filter provides a light response similar to that of the human eye. Together the photopic light response and dark current compensation insures accurate light level detection.

Features

- Senses Ambient Light and Provides an Output Current Proportional to the Ambient Light Intensity
- Photopic Spectral Response
- Dynamic Dark Current Compensation
- Three Selectable Output Current Gain Modes in Approximately 10x Steps
- Power Down Mode
- Less than 18 μA at 100 lux Active Power Consumption in Medium Gain Mode (Less than 8 μA at Dark)
- Less than 200 pA Quiescent Power Dissipation in Power Down Mode at All Light Levels
- Linear Response Over the Full Operating Range
- Senses Intensity of Ambient Light from ~0 lux to Over 100,000 lux
- Wide Operating Voltage Range (2 V to 5.5 V)
- Wide Operating Temperature Range (−40°C to 85°C)
- Drop-in Replacement Device in 1.6 x 1.6 mm Package
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Saves display power in applications such as:
 - Cell Phones, PDAs, MP3 players, GPS
 - Cameras, Video Recorders
 - Mobile Devices with Displays or Backlit Keypads
 - Laptops, Notebooks, Digital Signage
 - LCD TVs and Monitors, Digital Picture Frames
 - Automobile Dashboard Displays and Infotainment
 - LED Indoor/Outdoor Residential and Street Lights

Figure 1. Typical Application Circuit
Table 1. Pin Function Description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Power pin.</td>
</tr>
<tr>
<td>2</td>
<td>VSS</td>
<td>Ground pin.</td>
</tr>
<tr>
<td>3</td>
<td>GB1</td>
<td>In conjunction with GB2, selects between three gain modes and power down.</td>
</tr>
<tr>
<td>4</td>
<td>GB2</td>
<td>In conjunction with GB1, selects between three gain modes and power down.</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>Not connected. This may be connected to ground or left floating.</td>
</tr>
<tr>
<td>6</td>
<td>IOUT</td>
<td>Analog current output.</td>
</tr>
<tr>
<td></td>
<td>EP</td>
<td>Exposed pad, internally connected to ground. Should be connected to ground.</td>
</tr>
</tbody>
</table>

Table 2. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power Supply</td>
<td>VDD</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>VIN</td>
<td>−0.3 to VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>VOUT</td>
<td>−0.3 to VDD + 0.2</td>
<td>V</td>
</tr>
<tr>
<td>Output Current Range</td>
<td>I0</td>
<td>0 to 15</td>
<td>mA</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>TJ(max)</td>
<td>−40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>TSTG</td>
<td>−40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>ESD Capability, Human Body Model (Note 1)</td>
<td>ESDHBM</td>
<td>2</td>
<td>kV</td>
</tr>
<tr>
<td>ESD Capability, Charged Device Model (Note 1)</td>
<td>ESDDCM</td>
<td>750</td>
<td>V</td>
</tr>
<tr>
<td>ESD Capability, Machine Model (Note 1)</td>
<td>ESDDMM</td>
<td>150</td>
<td>V</td>
</tr>
<tr>
<td>Moisture Sensitivity Level</td>
<td>MSL</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>Lead Temperature Soldering (Note 2)</td>
<td>TSLD</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per EIA/JESD22−A114
 - ESD Charged Device Model tested per ESD−STM5.3.1−1999
 - ESD Machine Model tested per EIA/JESD22−A115
 - Latchup Current Maximum Rating: <= 100 mA per JEDEC standard: JESD78

2. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D
Table 3. ELECTRICAL CHARACTERISTICS
(Unless otherwise specified, these specifications apply over VDD = 5.5 V, −40°C < T_A < 85°C)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage</td>
<td>V<sub>DD</sub></td>
<td></td>
<td>2</td>
<td>3.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Power supply current</td>
<td>V<sub>DD</sub> = 3.0 V, Ev = 0 lux, H−Gain</td>
<td>I<sub>DD_0</sub></td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>µA</td>
</tr>
<tr>
<td>Power supply current</td>
<td>V<sub>DD</sub> = 3.0 V, Ev = 100 lux, H−Gain</td>
<td>I<sub>DD_100</sub></td>
<td>32</td>
<td>64</td>
<td>96</td>
<td>µA</td>
</tr>
<tr>
<td>Power down current</td>
<td>All light levels</td>
<td>I<sub>DD_PD</sub></td>
<td>0.2</td>
<td>5</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Output current, high−gain</td>
<td>Ev = 100 lux, White LED</td>
<td>I<sub>o_high</sub></td>
<td>41</td>
<td>51</td>
<td>61.5</td>
<td>µA</td>
</tr>
<tr>
<td>Dark output current, high−gain</td>
<td>V<sub>DD</sub> = 3.0 V, Ev = 0 lux</td>
<td>I<sub>o_dark</sub></td>
<td></td>
<td>10</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Wavelength of maximum response</td>
<td></td>
<td>λ<sub>m</sub></td>
<td>540</td>
<td></td>
<td></td>
<td>nm</td>
</tr>
<tr>
<td>White LED/fluorescent current ratio</td>
<td>Ev = 100 lux</td>
<td>r<sub>LE</sub></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incandescent/fluorescent current ratio</td>
<td>Ev = 100 lux</td>
<td>r<sub>IF</sub></td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum output voltage</td>
<td>Ev = 100 lux, R<sub>L</sub> = 220 kΩ, H−Gain</td>
<td>V<sub>OMAX</sub></td>
<td>V<sub>DD</sub>−0.4</td>
<td>V<sub>DD</sub>−0.1</td>
<td>V<sub>DD</sub></td>
<td>V</td>
</tr>
<tr>
<td>Power down time</td>
<td>Ev = 100 lux, H−Gain to PD</td>
<td>t<sub>PD</sub></td>
<td>1.5</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Wake up time</td>
<td>Ev = 100 lux, PD to H−Gain</td>
<td>t<sub>wu</sub></td>
<td></td>
<td>300</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Low level input voltage</td>
<td></td>
<td>V<sub>IL</sub></td>
<td>−0.2</td>
<td></td>
<td>0.25 V<sub>DD</sub></td>
<td>V</td>
</tr>
<tr>
<td>High level input voltage</td>
<td></td>
<td>V<sub>IH</sub></td>
<td>0.75 V<sub>DD</sub></td>
<td></td>
<td>V<sub>DD</sub>+0.2</td>
<td>V</td>
</tr>
<tr>
<td>Operating free−air temperature range</td>
<td></td>
<td>T<sub>A</sub></td>
<td>−40</td>
<td></td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
TYPICAL CHARACTERISTICS

Figure 3. Spectral Response (Normalized)

Figure 4. Light Source Dependency (Normalized to Fluorescent Light)

Figure 5. Output Current vs. Ev (High Gain Mode)

Figure 6. Output Current vs. Ev (High Gain Mode)

Figure 7. Output Current vs. Ev, 0–1000 lux (High Gain Mode)

Figure 8. Output Current vs. Ev, 0–100 lux (High Gain Mode)
TYPICAL CHARACTERISTICS

Figure 9. Output Current vs. Angle (End View, Normalized)

Figure 10. Output Current vs. Angle (Side View, Normalized)

Figure 11. Output Current at 0 lux vs. Temperature (High Gain Mode)

Figure 12. Output Current at 100 lux vs. Temperature

Figure 13. Supply Current at 0 lux vs. Temperature (High Gain Mode)

Figure 14. Supply Current at 100 lux vs. Temperature (High Gain Mode)

VDD = 3.3 V
TYPICAL CHARACTERISTICS

Figure 15. Output Current at 100 lux vs. Supply Voltage (High Gain Mode)

Figure 16. Supply Current vs. Ev (High Gain Mode)

Figure 17. Supply Current vs. Supply Voltage (High Gain Mode)
Ambient Light Sensor Architecture

The NOA1212 employs a sensitive photo diode fabricated in ON Semiconductor’s standard CMOS process technology. The major components of this sensor are as shown in Figure 2. The photons which are to be detected pass through an ON Semiconductor proprietary color filter limiting extraneous photons and thus performing as a band pass filter on the incident wave front. The filter only transmits photons in the visible spectrum which are primarily detected by the human eye and exhibits excellent IR rejection. The photo response of this sensor is as shown in Figure 3.

The ambient light signal detected by the photo diode is converted to an analog output current by an amplifier with programmable gain. Table 4 shows the gain setting and the corresponding light sensitivity.

<table>
<thead>
<tr>
<th>GB2</th>
<th>GB1</th>
<th>Mode</th>
<th>Approximate Output Current @ 100 lux</th>
<th>Approximate Output Current @ 1000 lux</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Power Down</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>High Gain</td>
<td>51 μA</td>
<td>510 μA</td>
<td>~10,000 lux</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Medium Gain</td>
<td>4.9 μA</td>
<td>49 μA</td>
<td>~100,000 lux</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Low Gain</td>
<td>0.54 μA</td>
<td>5.4 μA</td>
<td>> 100,000 lux</td>
</tr>
</tbody>
</table>

Power Down Mode

This device can be placed in a power down mode by setting GB1 and GB2 to logic low level.

In order for proper operation of this mode GB1 and GB2 should stay low 1.5 ms.

External Component Selection

The NOA1212 outputs a current in direct response to the incident illumination. In many applications it is desirable to convert the output current into voltage. It may also be desirable to filter the effects of 50/60 Hz flicker or other light source transients.

Conversion from current to voltage may be accomplished by adding load resistor R_L to the output. The value of R_L is bounded on the high side by the potential output saturation of the amplifier at high ambient light levels. R_L is bounded on the low side by the output current limiting of the internal amplifier and to minimize power consumption.

Equation 1 describes the relationship of light input to current output for the High−Gain mode.

\[I_{OUT} = \frac{51 \mu A}{100 \text{ lux}} \times E_V \] (eq. 1)

By adding R_L to the output, I_{OUT} is converted into a voltage according to Equation 2.

\[V_{OUT} = I_{OUT} \times R_L = \left(\frac{51 \mu A}{100 \text{ lux}} \right) \times E_V \times R_L \] (eq. 2)

The range of the output voltage is limited by the output stage to the V_{OMAX} parameter value of V_{DD} − 0.4 V at the maximum desired E_V as shown in Equation 3. Equation 4 computes the value for R_L (High−Gain mode).

\[V_{OMAX} = \left(\frac{51 \mu A}{100 \text{ lux}} \right) \times E_{VMAX} \times R_L \] (eq. 3)

\[R_L = \left(\frac{V_{DD} - 0.4 \text{ V}}{E_{VMAX}} \right) \times \left(100 \text{ lux} / 51 \mu A \right) \] (eq. 4)

For example, consider a 5 V supply with a desired E_{VMAX} = 1000 lux, the value of R_L would be 8.85 kΩ. The value for R_L can easily be computed for different NOA1212 gain ranges by substituting the appropriate output current at 100 lux from Table 4.

The optional capacitor C_L can be used to form a low−pass filter to remove 50/60 Hz filter or other unwanted noise sources as computed with Equation 5.

\[C_L = \frac{1}{2 \pi f_c R_L} \] (eq. 5)

For our example, to filter out 60Hz flicker the value of C_L would be 300 nF.

Power Supply Bypassing and Printed Circuit Board Design

Power supply bypass and decoupling can typically be handled with a low cost 0.1 µF to 1.0 µF capacitor.

The exposed pad on the bottom of the package is internally connected to VSS pin 2 and should be soldered to the printed circuit board.
PACKAGE DIMENSIONS

CUDFN6, 1.6x1.6, 0.5P
CASE 505AL
ISSUE O

NOTES:
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.10 AND 0.20MM FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

A
D
C
B
E
P
MILLIMETERS

DIM
MIN Max
A 0.55 0.65
A1 0.00 0.05
A3 0.20 REF
b 0.15 0.25
b2 0.15 REF
D 1.60 BSC
D2 1.05 1.15
E 1.60 BSC
E2 0.45 0.55
e 0.50 BSC
L 0.25 0.30
L2 0.17 REF

RECOMMENDED MOUNTING FOOTPRINT*

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.