STM8 & STM32 products in LQFP 14x14 & 20x20 packages -
Transfer assembly & test sites from Amkor ATK (Korea)
to Amkor ATP (Philippines)
Table 1. Change Implementation Schedule

<table>
<thead>
<tr>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecasted implementation date for change</td>
<td>07-Nov-2014</td>
</tr>
<tr>
<td>Forecasted availability date of samples for customer</td>
<td>03-Oct-2014</td>
</tr>
<tr>
<td>Forecasted date for STMicroelectronics change Qualification Plan results availability</td>
<td>03-Oct-2014</td>
</tr>
<tr>
<td>Estimated date of changed product first shipment</td>
<td>07-Nov-2014</td>
</tr>
</tbody>
</table>

Table 2. Change Identification

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Identification (Product Family/Commercial Product)</td>
<td>STM8 & STM32 products in LQFP 14x14 & 20x20</td>
</tr>
<tr>
<td>Type of change</td>
<td>Package assembly location change</td>
</tr>
<tr>
<td>Reason for change</td>
<td>Amkor ATK1 (Korea) assembly site closure</td>
</tr>
<tr>
<td>Description of the change</td>
<td>Due to Amkor ATK1 (Korea) assembly site closure, ST Microcontrollers Division intends to transfer manufacturing sites of LQFP 14x14 and 20x20 packages for standard STM8 and STM32 family products, from Amkor ATK (Korea) to Amkor ATP (Philippines).</td>
</tr>
<tr>
<td>Change Product Identification</td>
<td>See indicated below</td>
</tr>
<tr>
<td>Manufacturing Location(s)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. List of Attachments

<table>
<thead>
<tr>
<th>Customer Part numbers list</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification Plan results</td>
<td></td>
</tr>
</tbody>
</table>

Customer Acknowledgement of Receipt

<table>
<thead>
<tr>
<th>Qualification Plan Denied</th>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification Plan Approved</td>
<td>Title:</td>
</tr>
<tr>
<td>Change Denied</td>
<td>Company:</td>
</tr>
<tr>
<td>Change Approved</td>
<td>Date:</td>
</tr>
<tr>
<td>Remark</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

Please sign and return to STMicroelectronics Sales Office

Dated 07 May 2014
DOCUMENT APPROVAL

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonna, Daniel</td>
<td>Marketing Manager</td>
</tr>
<tr>
<td>Buffa, Michel</td>
<td>Product Manager</td>
</tr>
<tr>
<td>Narche, Pascal</td>
<td>Q.A. Manager</td>
</tr>
</tbody>
</table>
Dear Customer,

Due to Amkor ATK1 (Korea) assembly site closure, ST Microcontrollers Division has decided to transfer manufacturing sites of LQFP 14x14 & 20x20 packages for standard STM8 and STM32 family products, from Amkor ATK (Korea) to Amkor ATP (Philippines).

What are the changes?

New Bill Of Material is described below:

<table>
<thead>
<tr>
<th></th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly site</td>
<td>Amkor ATK1 (Korea)</td>
<td>Amkor ATP1 (Philippines)</td>
</tr>
<tr>
<td>Test site</td>
<td>Amkor ATK3 (Korea)</td>
<td>Amkor ATP3 (Philippines)</td>
</tr>
<tr>
<td>Mold compound</td>
<td>Nitto GE7470LQ</td>
<td>Sumitomo G631HQ</td>
</tr>
<tr>
<td>Glue</td>
<td>Ablestik 8200C</td>
<td>Sumitomo CRM1076YB</td>
</tr>
<tr>
<td>Leadframe</td>
<td>High Density Lead Frame (HDLF)</td>
<td>Ultra high Density Lead Frame (UDLF)</td>
</tr>
</tbody>
</table>

Chosen Bill Of Material is standard Bill Of Material, already running in high volumes for LQFP at Amkor ATP (Philippines).
Gate mark on Ultra high Density Lead Frame:

An additional gate mark is visible on top of the package, in addition to pin 1 identification mark.

Why?

Due to Amkor ATK1 (Korea) assembly site closure, ST MCD division moves LQFP 14x14 20x20 packages production from Amkor ATK (Korea) to Amkor ATP (Philippines).

When?

The production on the new platform will start week 45 2014.

How will the change be qualified?

This change will be qualified using the standard STMicroelectronics Corporate Procedures for Quality and Reliability, in full compliancy with the JESD-47 international standard. You can find below Qualification Plan.

What is the impact of the change?

- **Form:** Gate mark added
- **Fit:** no change
- **Function:** no change
How can the change be seen?
Traceability of the change is ensured by ST internal tools.

The marking instruction indicated on the products is changing from:

B : Assembly plant change from HP to 7B

I : Country Of Origin change from KOR to PHL

We remain available to discuss any concern that you may have regarding this Product Change Notification.

With our sincere regards.

Michel Buffa
Microcontroller Division General Manager
RERMCD 1312-PPF QUALIFICATION PLAN

Qualification of:

LQFP14x14 & 20X20 at Amkor Philippines for Microcontrollers devices

Qualification Reference : RERMCD1312
Issued on : Mar 31, 2014
Assembly Plant : AMKOR Philippines (ATP)
Assembly Line : LQFP
Package / Process : 14x14 (80Leads- 100Leads)
20x20 (144Leads)
Device : STM32- STM8S/L
Lead termination: PPF
MSL: MSL3
Purpose

Qualification of new assembly lines for Microcontrollers in LQFP 14x14 & 20x20 packages assembled at ATP (Philippines).
Ultra High Density Lead Frame will be qualified: an additional gate mark is visible on top of the package, in addition to pin 1 identification.

Test Vehicles:

<table>
<thead>
<tr>
<th>Package line</th>
<th>Assembly Line</th>
<th>Package</th>
<th>Device (Partial RawLine Code)</th>
<th>Diffusion Process</th>
<th>Number of Lots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LQFP14*14</td>
<td>80L</td>
<td>STM8S (1S*765)</td>
<td>F9GO1 Rou 8’</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100L</td>
<td></td>
<td>STM32F (1L*414)</td>
<td>TSMC M10 Rou 8’</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STM32F(1L*411)</td>
<td>M10 Cro12’</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STM32F(1L*419)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LQFP20*20</td>
<td>144L</td>
<td>STM32F (1A* 430)</td>
<td>TSMC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STM32F (1A*419)</td>
<td>M10 Cro12’</td>
<td>1</td>
</tr>
</tbody>
</table>

Package Reliability Trials:

(*) tests performed after preconditioning

<table>
<thead>
<tr>
<th>Reliability Trial</th>
<th>Test Conditions</th>
<th>Pass Criteria</th>
<th>Unit per Lot</th>
<th>Qual Lot nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Pre Conditioning: Moisture Sensitivity Jedecl Level 3 J-STD-020/ JESD22-A113 Bake (125°C / 24 hrs) Soak (30°C / 60% RH / 192 hrs) for level 3 Convection reflow: 3 passes with Jedecl level 3</td>
<td>3 passes MSL3</td>
<td>308</td>
<td>5 +1 monit.</td>
</tr>
<tr>
<td>AC or UHast(*)</td>
<td>Autoclave JESD22 A102 UnBiased Highly Accelerated Temperature and Humidity Stress JESD22 A118 121°C, 100% RH, 2 Atm 130°C, 85%RH, 2 atm</td>
<td>96h</td>
<td>77</td>
<td>5 +1 monit.</td>
</tr>
<tr>
<td>TC(*)</td>
<td>Thermal Cycling JESD22 A104 -50°C, +150°C</td>
<td>1000Cy</td>
<td>77</td>
<td>5 +1 monit.</td>
</tr>
<tr>
<td>THB(*)</td>
<td>Temperature Humidity Bias JESD22 A101 85°C, 85% RH, bias</td>
<td>1000h</td>
<td>77</td>
<td>4 +1 monit.</td>
</tr>
<tr>
<td>Attachment : Reliability tests description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Package oriented tests/ Trials description

1. **Preconditioning**

According to ST spec 0098044.
Preconditioning test sequence simulates storage and soldering of SMD (surface mount devices) before submitting them to the reliability tests. It aims to validate the moisture sensitivity level of the package, and prepare it to the stress of additional reliability tests, thus enabling a good modelization of the life of the packaged product.

Out-of-bag floor life storage and soldering are modeled by the following test sequence:
- Bake to completely remove moisture from the package;
- Moisture soak according to the package moisture level;
- IR reflow.

The aim is to check that the chip and plastic package withstand the stress due to report on card.
Depending on their technology, packages may absorb moisture during their transportation and/or storage, moisture that is released during the soldering operation. At this step, the moisture absorbed is vaporized due to high temperature of solder report process. This phenomenon can create plastic swelling, "pop corn" effect, and cracks which eventually results in wire breakage, passivation cracks, and delamination.

2. **Autoclave (AC)**

The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.
Purpose: to investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
To point out critical water entry paths with consequent electrochemical and galvanic corrosion.
1. **Unbiased Highly Accelerated Temperature and Humidity Stress (UHAST)**

The Unbiased HAST is performed for the purpose of evaluating the reliability of non-hermetic packaged solidstate devices in humid environments. It is a highly accelerated test which employs temperature and humidity under non-condensing conditions to accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. Bias is not applied in this test to ensure the failure mechanisms potentially overshadowed by bias can be uncovered (e.g. galvanic corrosion). This test is is used to identify failure mechanisms internal to the package and is destructive.

2. **Temperature Cycling (TC)**

The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere (thermal gradient typical 10 C/min).

Purpose: to investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system.

Typical failure modes are linked to metal displacement, dielectric cracking, moulding compound delamination, wire-bonds failure, die-attach layer degradation.

3. **Temperature Humidity Bias (THB)**

The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.

The Temperature Humidity Bias follows the same method than HAST at lower temperature.

Purpose: to investigate failure mechanisms activated in the die-package environment by electrical field and wet conditions.

Typical failure mechanisms are electro-chemical corrosion and surface effects related to the molding compound.

The package moisture resistance with electrical field applied is verified, both electrolytic and galvanic corrosion are put in evidence.

Conditions:
- Ta=85°C; R.H.=85%;
- Power supply voltage less or equal to max operative voltage to not exceed Tj = 95 °C.

4. **Temperature Humidity Storage (THS)**

The Temperature Humidity Storage is stored at controlled conditions of high temperature and relative humidity.

The Temperature Humidity Storage follows the same method than Unbiased HAST at lower temperature.

Purpose: to evaluate the reliability of non-hermetic packaged solid-state devices in humid environments. It is a highly accelerated test which employs temperature and humidity under non-condensing conditions to accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it.
Bias is not applied in this test to ensure the failure mechanisms potentially overshadowed by bias can be uncovered (e.g. galvanic corrosion). This test is used to identify failure mechanisms internal to the package.

- Test conditions: 85°C / 85% RH.
- No power supply

5. High Temperature Storage Life (HTSL)

The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.
Purpose: to investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.

1. ESD Charge Device Model (CDM)

This ESD failure model is associated with the device and package itself. The CDM is intended to simulate charging/discharging events that occur in production equipment and processes. The Field induced CDM equivalent circuit used to describe this phenomenon is illustrated in Figure 1.

![Field induced CDM equivalent circuit](image)

Possible (but not exhaustive) values of impedance:

- \(R_c \geq 100 \, \text{M}\Omega \)
- \(R_d = 1 - 10 \, \text{\Omega} \)
- \(L_d = 5 \, \text{nH} \)
- \(C_d = 10 \, \text{pF} \)

Fig.1 : Field induced CDM equivalent circuit
Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRIAL DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

©2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com