Linear Single Cell Li-Ion Battery Charger with Input Over Voltage Protection

General Description

The RT9526A is a fully integrated low cost single cell Li-ion battery charger ideal for portable applications. The RT9526A is capable of being powered up from AC adapter and USB (Universal Serial Bus) port inputs. The RT9526A enters sleep mode when supplies are removed. The RT9526A optimizes the charging task by using a control algorithm including preconditioning mode, fast charge mode, and constant voltage mode. The charging task will remain in constant voltage mode to hold the battery in a full charge condition. The charge current can be programmed with an external resistor. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate under all ambient temperatures. The RT9526A features 28V maximum rating voltage for VIN. Under-voltage protection and over-voltage protection are provided for the AC adapter supply.

The RT9526A is available in the WDFN-8L 2x3 and SOT-23-6 package to achieve best solution for PCB space and total BOM cost saving considerations.

Features

- 28V Maximum Rating for AC Adapter with Over-Voltage Protection 7V
- Internal Integrated Power FETs
- AC Adapter Power Good Status Indicator
- Programmed Charging Current
- Charge Status Indicator
- Programmed End of Charge Current
- Under-Voltage Protection
- Thermal Feedback Optimizing Charge Rate
- RoHS Compliant and Halogen Free

Applications

- Cellular Phones
- Digital Cameras
- PDAs and Smart Phones
- Portable Instruments

Ordering Information

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Lead Plating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>QW : WDFN-8L 2x3 (W-Type)</td>
<td>G : Green (Halogen Free and Pb Free)</td>
</tr>
<tr>
<td>E : SOT-23-6</td>
<td></td>
</tr>
</tbody>
</table>

Note:

Richtek products are:

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.
Function Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Pin Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 VIN</td>
<td>Supply Voltage Input. VIN can withstand up to 28V input.</td>
</tr>
<tr>
<td>2</td>
<td>-- PGB</td>
<td>Power Good Indicator. This pin connects to VIN with 10SL N-MOSFET as power good condition.</td>
</tr>
<tr>
<td>3</td>
<td>1 CHG_SB</td>
<td>Charge Status Indicator Output (Open-Drain). Indicate low when battery is charging; indicate high when battery charging finished or any fault happened.</td>
</tr>
<tr>
<td>4</td>
<td>-- ENB</td>
<td>Enable Control Input (Active Low). Connect this pin with a 200kΩ pull-low resistor.</td>
</tr>
<tr>
<td>5, 9 (Exposed Pad)</td>
<td>2 GND</td>
<td>Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.</td>
</tr>
<tr>
<td>6</td>
<td>6 IMIN</td>
<td>EOC Current Setting.</td>
</tr>
<tr>
<td>7</td>
<td>5 ISET</td>
<td>Charge Current Set Point</td>
</tr>
<tr>
<td>8</td>
<td>4 BATT</td>
<td>Battery Charge Current Output.</td>
</tr>
</tbody>
</table>

Pin Configurations (TOP VIEW)

```text
<table>
<thead>
<tr>
<th></th>
<th>CHG_SB</th>
<th>GND</th>
<th>VIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Marking Information

- **RT9526AGQW**: 05 : Product Code
 W : Date Code

- **RT9526AGE**: 0X= : Product Code
 DNN : Date Code
Operation

The RT9526A is a fully integrated low cost single cell Li-ion charger. It provides a fast-charge current setting by resistor R_{REF}. Pre-charge is 16.7% of fast charge current, while $V_{BAT} < 2.45V$. The PGB pin is low, while $VIN > POR$, $VIN < OVP$, and $VIN − V_{BAT} > V_{OSS_H}$. The CHG_SB pin is low, while RT9526A is charging. The CHG_SB pin will go high while end of charger happens. End of charge condition is set by R_{IMIN}. CHG_SB will go low again, while charge current is larger than 75% of fast-charge setting. The RT9526A charges continuously after end of charge happens. Li-ion battery will be full charged until $CV = 4.2V$. The RT9526A can be disabled by $ENB = H$.
Absolute Maximum Ratings (Note 1)

- Supply Voltage, VIN
 -3.0V to 28V
- CHG_SB, PGB
 -0.3V to 7V
- Other Pins
 -0.3V to 6V
- Power Dissipation, PD @ TA = 25°C
 - WDFN-8L 2x3: 3.17W
 - SOT-23-6: 0.48W
- Package Thermal Resistance (Note 2)
 - WDFN-8L 2x3, θJA: 31.5°C/W
 - WDFN-8L 2x3, θJC: 7.5°C/W
 - SOT-23-6, θJA: 208.2°C/W
- Lead Temperature (Soldering, 10 sec.)
 - 260°C
- Junction Temperature
 - 150°C
- Storage Temperature Range
 - -65°C to 150°C

Recommended Operating Conditions (Note 3)

- Junction Temperature Range
 - -40°C to 125°C
- Ambient Temperature Range
 - -40°C to 85°C

Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN POR Rising Threshold Voltage</td>
<td>VPOR_H</td>
<td></td>
<td>3.4</td>
<td>3.8</td>
<td>4.2</td>
<td>V</td>
</tr>
<tr>
<td>VIN POR Falling Threshold Voltage</td>
<td>VPOR_L</td>
<td></td>
<td>3.1</td>
<td>3.5</td>
<td>3.9</td>
<td>V</td>
</tr>
<tr>
<td>VIN – VBATT VOS Rising</td>
<td>VOS_H</td>
<td></td>
<td>--</td>
<td>90</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>VIN – VBATT VOS Falling</td>
<td>VOS_L</td>
<td></td>
<td>10</td>
<td>50</td>
<td>--</td>
<td>mV</td>
</tr>
<tr>
<td>VIN Standby Current</td>
<td>I_SLEEP</td>
<td></td>
<td>--</td>
<td>1</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td>Battery Regulation Voltage</td>
<td>V_REG</td>
<td></td>
<td>4.158</td>
<td>4.2</td>
<td>4.242</td>
<td>V</td>
</tr>
<tr>
<td>VIN Power MOSFET On-Resistance</td>
<td>R_DS(ON)</td>
<td>I_BATT = 0.5A</td>
<td>--</td>
<td>0.6</td>
<td>--</td>
<td>Ω</td>
</tr>
<tr>
<td>ISET Set Voltage (Fast Charge Phase)</td>
<td>V_ISET</td>
<td></td>
<td>--</td>
<td>1.22</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Charge Current Accuracy</td>
<td>R_ISET = 24.3kΩ</td>
<td></td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>mA</td>
</tr>
<tr>
<td>BATT Pre-Charge Threshold</td>
<td>V_CHG_PRE</td>
<td></td>
<td>2.45</td>
<td>2.55</td>
<td>2.65</td>
<td>V</td>
</tr>
<tr>
<td>BATT Pre-Charge Threshold Hysteresis</td>
<td>ΔV_CHG_PRE</td>
<td></td>
<td>40</td>
<td>100</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>Pre-Charge Current</td>
<td>I_CHG_PRE</td>
<td></td>
<td>12</td>
<td>16.7</td>
<td>21.3</td>
<td>%</td>
</tr>
<tr>
<td>ENB Input Threshold Voltage</td>
<td>V_H</td>
<td>V_IN = 4.2V to 24V</td>
<td>1.5</td>
<td>--</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Regulation</td>
<td>T_REG</td>
<td></td>
<td>--</td>
<td>115</td>
<td>--</td>
<td>°C</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Test Conditions</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>VIN Over-Voltage Protection Threshold</td>
<td>(V_{OVP})</td>
<td></td>
<td>6.7</td>
<td>7</td>
<td>7.5</td>
<td>V</td>
</tr>
<tr>
<td>VIN OVP Hysteresis</td>
<td>(\Delta V_{OVP})</td>
<td></td>
<td>--</td>
<td>0.1</td>
<td>--</td>
<td>V</td>
</tr>
<tr>
<td>PGB Pull-Down Voltage</td>
<td></td>
<td>5 mA</td>
<td>--</td>
<td>200</td>
<td>--</td>
<td>mV</td>
</tr>
<tr>
<td>CHG_SB Pull-Down Voltage</td>
<td></td>
<td>5 mA</td>
<td>--</td>
<td>200</td>
<td>--</td>
<td>mV</td>
</tr>
<tr>
<td>EOC Current Setting</td>
<td>(I_{MIN})</td>
<td>(R_{MIN} = 243\Omega)</td>
<td>--</td>
<td>45</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>EOC Rising Threshold</td>
<td></td>
<td>(R_{REF} = 24.3k\Omega)</td>
<td>337.5</td>
<td>375</td>
<td>412.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. \(\theta_JA \) is measured at \(T_A = 25^\circ C \) on a high effective thermal conductivity four-layer test board per JEDEC 51-7. \(\theta_JC \) is measured at the exposed pad of the package.

Note 3. The device is not guaranteed to function outside its operating conditions.
Typical Application Circuit
Typical Operating Characteristics

VOUT Regulation Voltage vs. Input Voltage

BATT Sleep Leakage Current vs. Battery Voltage

Charge Current vs. Input Voltage

Pre-Charge Current vs. Input Voltage

ISET Voltage vs. Input Voltage

OVP

Copyright © 2014 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
Power On

- V_{IN} (5V/Div)
- V_{BATT} (2V/Div)
- $V_{\text{CHG SB}}$ (2V/Div)
- I_{CHG} (500mA/Div)

Shutdown

- V_{IN} (5V/Div)
- V_{BATT} (2V/Div)
- $V_{\text{CHG SB}}$ (2V/Div)
- I_{CHG} (500mA/Div)

$V_{\text{BATT}} = 3.8V$, $R_{\text{SET}} = 24.3\,\Omega$

Power On Time (500μS/Div)

Shutdown Time (5ms/Div)
Application Information

The RT9526A is a fully integrated low cost single cell Li-ion battery charger operable in Constant Current (CC) mode or Constant Voltage (CV) mode. The CC mode current is set with the external resistor, R_{ISET}, and the CV mode voltage is fixed at 4.2V. If the battery voltage is below a typical 2.55V pre-charge threshold, the RT9526A charges the battery with a trickle current until the battery voltage rises above the pre-charge threshold. The RT9526A is capable of being powered up from AC adapter and USB (Universal Serial Bus) port inputs.

VIN Over-Voltage Protection

The input voltage is monitored by the internal comparator. The OVP threshold is set at 7V (typ.). When the input voltage exceeds the threshold, the controller outputs a logic signal to turn off the power P-MOSFET to prevent the electronics in the handheld system from damaging due to high input voltage. Nevertheless, an AC input voltage over 28V will still damage the RT9526A. When the input over-voltage condition is removed, the controller will enable the output again by running through soft-start.

Charger Enable Input

ENB is an active-low logic input to enable the charger. Drive the ENB pin low or leave it floating to enable the charger. This pin has a 200kΩ internal pull-down resistor. So when left floating, the input is equivalent to logic-low. Drive this pin high to disable the charger.

Battery Charge Profile

The RT9526A charges a Li-ion battery under Constant Current (CC) mode or Constant Voltage (CV) mode. The constant current of I_{SET} is set via the external resistor, R_{ISET}, and the constant voltage is fixed at 4.2V. If the battery voltage is below a typical 2.55V pre-charge threshold, the RT9526A charges the battery with a trickle current until the battery voltage rises above the pre-charge threshold. When the battery voltage reaches 4.2V, the charger enters CV mode and regulates the battery voltage at 4.2V to fully charge the battery without the risk of over charge.

a. Battery Pre-Charge Current

During a charge cycle, if the battery voltage is below the pre-charge threshold, the RT9526A applies a pre-charge mode to the battery. This feature revives deeply discharged cells and protects battery life. The internally determined pre-charge rate of the RT9526A is 16.7% of the constant charge current.

b. Battery Fast-Charge Current (CC Mode)

The RT9526A offers ISET pin to determine the fast-charge current via an external resistor, R_{ISET}, connected between ISET and GND. The fast-charge current can be calculated by the following equation:

$$I_{\text{CHG FAST}} = K_{\text{SET}} \times \frac{V_{\text{ISET}}}{R_{\text{ISET}}} \text{ (mA)}$$

$K_{\text{SET}} = 9959; \ V_{\text{SET}} = 1.22 \text{ (typ.)}$
c. Battery Voltage Regulation (CV Mode)
The battery voltage regulation feedback is through the BATT pin. The RT9526A monitors the battery voltage between the BATT and GND pins. When battery voltage is close to battery regulation voltage threshold, the voltage regulation phase begins and the charging current begins to taper down. When battery voltage is over battery regulation voltage threshold and charge mode stops, the RT9526A still monitors the battery voltage. Charge current is resumed when the battery voltage falls under battery regulation voltage threshold.

Sleep Mode
The RT9526A enters sleep mode if both AC and USB are removed from the input. This feature prevents draining the battery during the absence of input supply.

Power Good
This open-drain output pin is used to indicate the input voltage status. The PGB output asserts low when
1. $V_{IN} > V_{POR}$
2. $V_{IN} - V_{BATT} > V_{OS}$
3. $V_{IN} < V_{OVP}$

It can be used to drive an LED or communicate to the host processor. Note that ON indicates the open-drain transistor is turned on and LED is bright.

CHG_SB Indication
The CHG_SB pin is an open-drain output capable to at least 10mA current when the charger starts to charge and turns off when the EOC current is reached. The CHG_SB signal is interfaced either with a micro processor GPIO or an LED for indication.

End-Of-Charge Current (EOC)
Connect a resistor between the IMIN pin and GND to set the EOC current. The EOC current level, I_{MIN}, is programmable via the external resistor, $R_{MIN} (\Omega)$, as shown in the following equation:

$$I_{MIN} = \frac{10935}{R_{MIN}} \text{ (mA)}$$

Upon reaching the End-Of-Charge (EOC) current, the charger indicates charge completion via the CHG_SB pin, but the charger continues to output 4.2V voltage. Figure 1 shows the typical charge profile and the EOC/reset event. The CHG_SB signal asserts low when the trickle charge starts and changes to high at EOC. After EOC is reached, the charge current has to rise above 75% of I_{CHG_FAST} before the CHG_SB signal is allowed to turn on again. A current surge after EOC may occur due to a load connected to the battery.

Temperature Regulation and Thermal Protection
In order to maximize charge rate, the RT9526A features a junction temperature regulation loop. If the power dissipation of the IC results in junction temperature greater than the thermal regulation threshold ($115^\circ C$), the RT9526A will cut back on the charge current and disconnect the battery in order to maintain thermal regulation at around $115^\circ C$. This operation continues until the junction temperature falls below thermal regulation threshold ($115^\circ C$) by the hysteresis level. This feature prevents the maximum power dissipation from exceeding typical design conditions.

Selecting the Input and Output Capacitors
In most applications, a 1μF high frequency decoupling capacitor placed in close proximity to the input is sufficient. However, depending on the power supply characteristics and cable length, it may be necessary to add an additional 10μF ceramic capacitor to the input. For the RT9526A, a small output capacitor is required for loop stability. A 1μF ceramic capacitor placed between the BATT pin and GND is typically sufficient.

Thermal Considerations
For recommended operating condition specifications, the maximum junction temperature is $125^\circ C$. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For WDFN-8L 2x3 package, the thermal resistance, θ_{JA}, is $31.5^\circ C/W$ on a standard JEDEC 51-7 four-layer thermal test board. For SOT-23-6 package, the thermal resistance, θ_{JA}, is $208.2^\circ C/W$ on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^\circ C$ can be calculated by the following formula:
Layout Consideration

The RT9526A is a fully integrated low cost single-cell Li-ion battery charger ideal for portable applications. Careful PCB layout is necessary. For best performance, place all peripheral components as close to the IC as possible. A short connection is highly recommended. The following guidelines should be strictly followed when designing a PCB layout for the RT9526A.

- Input capacitor should be placed close to the IC and connected to the ground plane. The trace of input on the PCB should be placed far away from the sensitive devices and shielded by the ground.
- The GND and exposed pad should be connected to a strong ground plane for heat sinking and noise protection.
- The connection of \(R_{\text{SET}} \) should be isolated from other noisy traces.
- Output capacitor should be placed close to the IC and connected to the ground plane to reduce noise coupling.

\[
P_{\text{D(MAX)}} = \frac{(125^\circ C - 25^\circ C)}{(31.5^\circ C/W)} = 3.17W \text{ for WDFN-8L 2x3 package}
\]

\[
P_{\text{D(MAX)}} = \frac{(125^\circ C - 25^\circ C)}{(208.2^\circ C/W)} = 0.48W \text{ for SOT-23-6 package}
\]

The maximum power dissipation depends on the operating ambient temperature for fixed \(T_{J(\text{MAX})} \) and thermal resistance, \(\theta_{JA} \). The derating curve in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

\[
\begin{align*}
P_{\text{D(MAX)}} &= \frac{(125^\circ C - 25^\circ C)}{(31.5^\circ C/W)} = 3.17W \\
P_{\text{D(MAX)}} &= \frac{(125^\circ C - 25^\circ C)}{(208.2^\circ C/W)} = 0.48W
\end{align*}
\]

The maximum power dissipation depends on the operating ambient temperature for fixed \(T_{J(\text{MAX})} \) and thermal resistance, \(\theta_{JA} \). The derating curve in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.
Outline Dimension

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions In Millimeters</th>
<th>Dimensions In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>0.700</td>
<td>0.800</td>
</tr>
<tr>
<td>A1</td>
<td>0.000</td>
<td>0.050</td>
</tr>
<tr>
<td>A3</td>
<td>0.175</td>
<td>0.250</td>
</tr>
<tr>
<td>b</td>
<td>0.200</td>
<td>0.300</td>
</tr>
<tr>
<td>D</td>
<td>1.900</td>
<td>2.100</td>
</tr>
<tr>
<td>D2</td>
<td>1.550</td>
<td>1.650</td>
</tr>
<tr>
<td>E</td>
<td>2.900</td>
<td>3.100</td>
</tr>
<tr>
<td>E2</td>
<td>1.650</td>
<td>1.750</td>
</tr>
<tr>
<td>e</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>L</td>
<td>0.350</td>
<td>0.450</td>
</tr>
</tbody>
</table>

W-Type 8L DFN 2x3 Package

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

DETAIL A

Pin #1 ID and Tie Bar Mark Options
Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.