

Atmel AVR 8-bit Microcontroller with 4/8/16KBytes In-System Programmable Flash

ATmega48PB/88PB/168PB

DATASHEET SUMMARY

Features

- High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller Family
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 4/8/16KBytes of In-System Self-Programmable Flash program memory
 - 256/512/512Bytes EEPROM
 - 512/1K/1KBytes Internal SRAM
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
- Atmel[®] QTouch[®] library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix acquisition
 - Up to 64 sense channels
- Peripheral Features
 - Two 8-bit Timer/Counters (TC) with Separate Prescaler and Compare Mode
 - 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter (RTC) with Separate Oscillator
 - Six Pulse Width Modulation (PWM) channels
 - 8-channel 10-bit ADC with temperature measurement
 - Programmable Serial USART with start-of-frame detection
 - Master/Slave SPI Serial Interface
 - Byte-oriented Two-Wire Serial Interface (Phillips I²C compatible)
 - Programmable Watchdog Timer (WDT) with separate on-chip oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
 - 256-channel capacitive touch and proximity sensing
- Special Microcontroller Features
 - Power-on Reset (POR) and Programmable Brown-out Detection (BOD)
 - Internal calibrated oscillator
 - External and internal interrupt sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
 - Unique Device ID
- I/O and Packages
 - 27 Programmable I/O Lines
 - 32-lead TQFP and 32-pad VFQFN
- Operating Voltage: 1.8 5.5V
- Temperature Range: -40°C to 105°C
- Speed Grade: 0 4MHz@1.8 5.5V, 0 10MHz@2.7 5.5.V, 0 20MHz @ 4.5 5.5V
- Power Consumption at 1MHz, 1.8V, 25°C
 - Active Mode: 0.35mA
 - Power-down Mode: 0.23µA
 - Power-save Mode: <1.4µA (Including 32kHz RTC)

1. Configuration Summary

	ATmega48PB	ATmega88PB	ATmega168PB				
Pin count	32	32	32				
Flash (KB)	4	4 8 16					
SRAM (Bytes)	512	1024	1024				
EEPROM (Bytes)	256	512	512				
Max I/O pins		27					
SPI		1					
TWI (I ² C)		1					
USART		1					
ADC		10-bit 15ksps					
ADC channels		8					
AC		1					
8-bit Timer/Counters		2					
16-bit Timer/Counters		1					
PWM channels		6					
Operating voltage		1.8V - 5.5V					
Max operating frequency	20MHz						
Temperature range		-40°C to +105°C					

2. Pin Configurations

Figure 2-1. 32 TQFP Pinout ATmega48PB/88PB/168PB

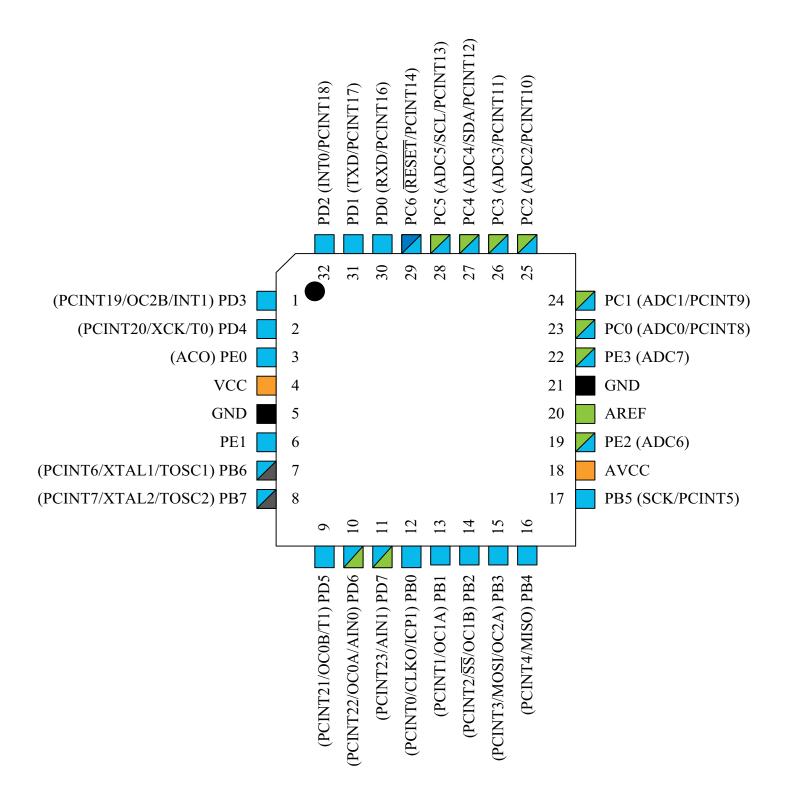


Figure 2-2. 32 VFQFN Pinout ATmega48PB/88PB/168PB

2.1 Pin Descriptions

2.1.1 VCC

Digital supply voltage.

2.1.2 GND

Ground.

2.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7:6 is used as TOSC2:1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 82 and "System Clock and Clock Options" on page 29.

2.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5...0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

2.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in "Alternate Functions of Port C" on page 85.

2.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in "Alternate Functions of Port D" on page 87.

2.1.7 Port E(PE3:0)

Port E is an 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that

are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port E are elaborated in "Alternate Functions of Port E" on page 89.

2.1.8 AV_{CC}

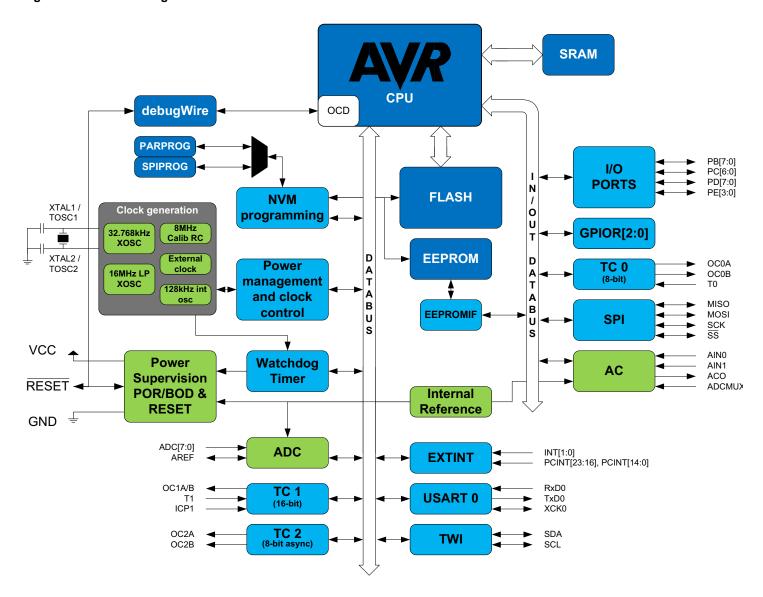
 AV_{CC} is the supply voltage pin for the A/D Converter, PC3:0, and PE3:2. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC6:4 use digital supply voltage, V_{CC} .

2.1.9 AREF

AREF is the analog reference pin for the A/D Converter.

2.1.10 ADC7:6 (TQFP and VFQFN Package Only)

In the TQFP and VFQFN package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.



3. Overview

The ATmega48PB/88PB/168PB is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48PB/88PB/168PB achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

3.1 Block Diagram

Figure 3-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega48PB/88PB/168PB provides the following features: 4/8/16Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512 bytes EEPROM, 512/1K/1Kbytes SRAM, 27 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and

external interrupts, a serial programmable USART, a byte-oriented Two-Wire Serial Interface (I²C), an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and VFQFN packages), a programmable Watchdog Timer with internal Oscillator, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, Two-Wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

Atmel® offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into AVR® microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for unambiguous detection of key events. The easy-to-use QTouch Composer allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48PB/88PB/168PB is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48PB/88PB/168PB AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

3.2 Comparison Between Processors

The ATmega48PB/88PB/168PB differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 3-1 summarizes the different memory and interrupt vector sizes for the devices.

Table 3-1. Memory Size Summary

Device	Flash	EEPROM	RAM	Interrupt Vector Size
ATmega48PB	4KBytes	256Bytes	512Bytes	1 instruction word/vector
ATmega88PB	8KBytes	512Bytes	1KBytes	1 instruction word/vector
ATmega168PB	16KBytes	512Bytes	1KBytes	2 instruction words/vector

ATmega88PB/168PB support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48PB there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash

4. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

5. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

6. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

7. Capacitive Touch Sensing

7.1 QTouch Library

The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR® microcontrollers. The library supports both QTouch (self-capacitance) and QMatrix (mutual-capacitance) acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location: www.atmel.com/tools/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from Atmel website.

8. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-			- Dit 0	-			r ago
(0xFE)	Reserved	_	_	_	_	_	_	_	_	
(0xFD)	Reserved	_	_	-	-	_	_	-	-	
(0xFC)	Reserved	_	-	-	-	-	_	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	_	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8) (0xF7)	SNoBR8 SNoBR7					nber Byte 8 nber Byte 7				28 28
(0xF1) (0xF6)	SNoBR6					nber Byte 6				28
(0xF5)	SNoBR5					nber Byte 5				28
(0xF4)	SNoBR4					nber Byte 4				28
(0xF3)	SNoBR3				Serial Nun	nber Byte 3				28
(0xF2)	SNoBR2				Serial Nun	nber Byte 2				28
(0xF1)	SNoBR1					nber Byte 1				28
(0xF0)	SNoBR0		ı	ı		nber Byte 0	ı			28
(0xEF)	Reserved	-	_	_	_	_	_	_	_	
(0xEE) (0xED)	Reserved Reserved	_	_	_	-	_	_	_	_	
(0xEC)	Reserved	_	_	_	_	_	_	_	_	
(0xEB)	Reserved	_	_	_	_	_	_	_	_	
(0xEA)	Reserved	-	-	-	-	-	-	-	_	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	Reserved	-	-	-	_	_	_	-	-	
(0xE5)	Reserved	_	_	-	-	_	_	-	-	
(0xE4) (0xE3)	Reserved Reserved	-	-	-	-	_	-	_	_	
(0xE3)	Reserved	_	_	_	_	_	_		_	
(0xE1)	Reserved	_	_	_	-	_	_	_	-	
(0xE0)	Reserved	_	-	-	-	-	-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC) (0xDB)	Reserved Reserved	-	-	-	-	-	-	_	_	
(0xDA)	Reserved	_	_			_	-			
(0xD9)	Reserved	_	_	_	_	_	_	_	_	
(0xD8)	Reserved	_	-	-	-	-	-	-	-	
(0xD7)	Reserved	_	-	-	-	_	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	_	-	-	-	_	-	_	-	
(0xD4)	Reserved	_	_	_	_	_	_	_	-	
(0xD3) (0xD2)	Reserved Reserved	_	_	-	-	_	-	_	_	
(0xD1)	Reserved	_	_	_	_	_	_	_	_	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0xCD)	Reserved	-	-	-	-	-	-	-	_	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA) (0xC9)	Reserved Reserved	_	_	-	_	_	-	_	_	
(0xC8)	Reserved	_	_	_		-	-	_	_	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	UDR0				USART I/O	Data Register				193
(0xC5)	UBRR0H	-	-	-	_		USART Baud F	tate Register High		198
(0xC4)	UBRR0L				USART Baud R	ate Register Low				198
(0xC3)	UCSR0D	RXSIE	RXS	SFDE	-	-	-	-	-	195
(0xC2)	UCSR0C	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01/UDORD0	UCSZ00 / UCPHA0	UCPOL0	195/208
(0xC1) (0xC0)	UCSR0B UCSR0A	RXCIE0 RXC0	TXCIE0 TXC0	UDRIE0 UDRE0	RXEN0 FE0	TXEN0 DOR0	UCSZ02 UPE0	RXB80 U2X0	TXB80 MPCM0	194 193
(0xBF)	Reserved	- RXC0	- TXC0	UDREU -	FEU -	DORU -	UPEU –	- -	MPCMU -	193
(0xBE)	Reserved	_	_	_	_	_	-	_	_	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	_	238
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	235
(0xBB)	TWDR		1	ı	2-wire Serial Inter				,	237
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	238
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	237
(0xB8) (0xB7)	TWBR Reserved	_		_	2-wire Serial Interfa	– Bit Rate Regis	ster –	_	_	235
(0xB7)	ASSR	_	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	159
(0xB5)	Reserved	_	-	-	-	-	-	-	-	100
(0xB4)	OCR2B		•	Tir	ner/Counter2 Outpo	ut Compare Regis	ster B		•	157
(0xB3)	OCR2A			Ti	mer/Counter2 Outp	ut Compare Regi	ster A			157
(0xB2)	TCNT2				Timer/Cou	nter2 (8-bit)				157
(0xB1)	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	156
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	153
(0xAF)	Reserved	-	-	-	_	_	-	_	-	
(0xAE)	Reserved	-	_	-	-	_	_	_	-	
(0xAD) (0xAC)	Reserved Reserved	_	-	_	_	-	-	-	-	
(0xAC)	Reserved	_	_	_	_	_	_		_	
(0xAA)	Reserved	_	_	_	_	_	_	_	_	
(0xA9)	Reserved	_	_	_	_	_	_	_	_	
(0xA8)	Reserved	-	-	-	_	-	-	-	_	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	_	-	_	_	-	_	-	
(0xA3)	Reserved Reserved	-	-	-	_	_	-		-	
(0xA2) (0xA1)	Reserved	_	_	_	_	_	_		_	
(0xA0)	Reserved	_	_	_	_	_	_	_	_	
(0x9F)	Reserved	-	-	-	_	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	_	-	_	-	
(0x9D)	Reserved	_	-	-	-	-	-	-	_	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	_	-	_	-	
(0x9A)	Reserved	-	-	-	-	_	-	_	-	
(0x99) (0x98)	Reserved Reserved	_	_	_	_	_	_		_	
(0x97)	Reserved	_				_	_		_	
(0x96)	Reserved	_	_	_	_	_	_	_	_	
(0x95)	Reserved	-	-	_	_	_	_	_	-	
(0x94)	Reserved	-	-	-	_	_	_	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	_	-	_	_	_	_	-	
(0x8F)	Reserved Reserved	-	-	-	_	-	-	-	-	
(0x8E) (0x8D)	Reserved	_	_	_	_	_	_		_	
(0x8C)	Reserved	_	_	_	_	_	-		_	
(0x8B)	OCR1BH				ounter1 - Output Co		B High Byte			134
(0x8A)	OCR1BL				ounter1 - Output Co					134
(0x89)	OCR1AH			Timer/Co	ounter1 - Output Co	mpare Register A	A High Byte		-	134
(88x0)	OCR1AL				ounter1 - Output Co					134
(0x87)	ICR1H				/Counter1 - Input C	•				135
(0x86)	ICR1L	1			/Counter1 - Input C		-			135
(0x85) (0x84)	TCNT1H TCNT1L	1	Timer/Counter1 - Counter Register High Byte Timer/Counter1 - Counter Register Low Byte						134 134	
(0x84) (0x83)	Reserved	_	_	— III	ner/Counter1 - Cou	nter Register Low	/ Byte _	_	_	134
(0x82)	TCCR1C	FOC1A	FOC1B	_	_	_	_		_	134
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	133
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	131
(0x7F)	DIDR1	-	_	-	_	-	-	AIN1D	AIN0D	242
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	258
(0x7D)	Reserved	-	-	-	-	-	-	-	-	
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	255
(0x7B)	ADCSRA	- ADEN	ACME	- ADATE	- ADIE	- ADIE	ADTS2	ADTS1	ADTS0	258
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	256

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x79)	ADCH				ADC Data Reg	gister High byte				257
(0x78)	ADCL				ADC Data Reg	gister Low byte				257
(0x77)	Reserved	_	-	-	-	-	-	-	-	
(0x76)	Reserved	_	-	-	_	_	-	_	_	
(0x75) (0x74)	Reserved Reserved	_	_	_	_	-	_	_	-	
(0x74) (0x73)	Reserved	_	_	_	_	_	_	_	_	
(0x72)	Reserved	_	_	-	_	-	-	-	_	
(0x71)	Reserved	_	-	_	_	-	_	-	_	
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	157
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	135
(0x6E)	TIMSK0 PCMSK2	PCINT23	PCINIT22	PCINIT21	PCINT20	PCINIT10	OCIE0B	OCIE0A	TOIE0 PCINT16	109 74
(0x6D) (0x6C)	PCMSK1	PCIN123	PCINT22 PCINT14	PCINT21 PCINT13	PCINT20 PCINT12	PCINT19 PCINT11	PCINT18 PCINT10	PCINT17 PCINT9	PCINT8	74
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	74
(0x6A)	Reserved	_	-	-	-	-	-	-	-	
(0x69)	EICRA	-	-	-	-	ISC11	ISC10	ISC01	ISC00	71
(0x68)	PCICR	-	-	-	-	-	PCIE2	PCIE1	PCIE0	
(0x67)	Reserved	-	-	-	-		-	-	-	
(0x66)	OSCCAL	_			Oscillator Calib	oration Register		_		38
(0x65) (0x64)	Reserved PRR	PRTWI	PRTIM2	PRTIM0	_	PRTIM1	PRSPI	PRUSART0	PRADC	42
(0x63)	Reserved	- FRIWI	- FRIIVIZ	- FRIIWIO	_	-	-	-	-	74
(0x62)	Reserved	-	-	-	_	-	-	-	_	
(0x61)	CLKPR	CLKPCE	-	_	_	CLKPS3	CLKPS2	CLKPS1	CLKPS0	38
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	55
0x3F (0x5F)	SREG	I	Т	Н	S	V	N	Z	С	11
0x3E (0x5E)	SPH	- 007	-	-	-	-	(SP10) ⁴	SP9	SP8	14
0x3D (0x5D) 0x3C (0x5C)	SPL Reserved	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	14
0x3E (0x5E)	Reserved	_	_	_	_	_	_		_	
0x3A (0x5A)	Reserved	-	_	_	_	_	-	_	_	
0x39 (0x59)	Reserved	-	_	_	_	-	-	_	_	
0x38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	(RWWSB) ^{4.}	SIGRD	(RWWSRE) ^{4.}	BLBSET	PGWRT	PGERS	SPMEN	283
0x36 (0x56)	Reserved	-	_ 	- PODGE	- DUD	_	_	-	- N/CF	46/69/04
0x35 (0x55) 0x34 (0x54)	MCUCR MCUSR	_	BODS -	BODSE -	PUD -	- WDRF	BORF	IVSEL EXTRF	IVCE PORF	46/68/91 55
0x33 (0x53)	SMCR	_	_	_	_	SM2	SM1	SM0	SE	41
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0x31 (0x51)	Reserved	_	-	-	-	-	-	-	-	
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	240
0x2F (0x4F)	ACSR0	-	-	-	-	-	-	-	ACOE	240
0x2E (0x4E)	SPDR	ODIE	MOOL			Register			ODIOV	170
0x2D (0x4D) 0x2C (0x4C)	SPSR SPCR	SPIF SPIE	WCOL SPE	DORD	– MSTR	- CPOL	- CPHA	SPR1	SPI2X SPR0	169 168
0x2B (0x4B)	GPIOR2			2010		se I/O Register 2	JIIIA	, JIN	0110	27
0x2A (0x4A)	GPIOR1					e I/O Register 1				27
0x29 (0x49)	Reserved	-	-	-	-	_	-	-	-	
0x28 (0x48)	OCR0B				mer/Counter0 Outpo					
0x27 (0x47)	OCR0A			Ti	mer/Counter0 Outp		ster A			
0x26 (0x46) 0x25 (0x45)	TCNT0 TCCR0B	FOC0A	FOC0B	-	I imer/Cou	nter0 (8-bit) WGM02	CS02	CS01	CS00	
0x23 (0x43) 0x24 (0x44)	TCCR0B	COM0A1	COM0A0	COM0B1	COM0B0	- VVGIVIO2	-	WGM01	WGM00	
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC	139/160
0x22 (0x42)	EEARH			(1	EEPROM Address I	Register High Byt	e) ^{4.}			23
0x21 (0x41)	EEARL				EEPROM Address		te			23
0x20 (0x40)	EEDR					ata Register			I	23
0x1F (0x3F)	CRIORO	-	-	EEPM1	Caparal Burnos	EERIE	EEMPE	EEPE	EERE	23
0x1E (0x3E) 0x1D (0x3D)	GPIOR0 EIMSK	_	_	_	General Purpos	e I/O Register 0	_	INT1	INT0	27 72
0x1C (0x3C)	EIFR	_	_	-	_	_	_	INTF1	INTF0	72
0x1B (0x3B)	PCIFR	-	-	-	_	-	PCIF2	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	-	_	-	-	-	_	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	45-
0x17 (0x37)	TIFR2	-	-	- ICE1	_	-	OCF2B	OCF2A	TOV2	158
0x16 (0x36)	TIFR1	_	-	ICF1	_	-	OCF1B	OCF1A	TOV1	136

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x15 (0x35)	TIFR0	-	_	-	-	-	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	1	-	-	_	-	-	
0x12 (0x32)	Reserved	_	1	1	-	_	_	_	-	
0x11 (0x31)	Reserved	-	ı	-	-	-	-	-	-	
0x10 (0x30)	Reserved	_	1	1	-	_	_	_	-	
0x0F (0x2F)	Reserved	_	1	1	-	_	_	_	-	
0x0E (0x2E)	PORTE	-	-	-	-	PORTE3	PORTE2	PORTE1	PORTE0	92
0x0D (0x2D)	DDRE	-	-	1	-	DDRE3	DDRE2	DDRE1	DDRE0	92
0x0C (0x2C)	PINE	_	1	1	-	PINE3	PINE2	PINE1	PINE0	92
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	92
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	92
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	92
0x08 (0x28)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	91
0x07 (0x27)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	91
0x06 (0x26)	PINC	_	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	92
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	91
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	91
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	91
0x02 (0x22)	Reserved	-	ı	1	-	-	-	-	-	
0x01 (0x21)	Reserved	-	-	1	-	-	_	-	-	
0x0 (0x20)	Reserved	_	_	-	_	-	_	-	_	

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel ATmega48PB/88PB/168PB is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

9. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS	3			
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	RdI,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \cdot Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \cdot K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	Rd ← Rd Å Rr	Z,N,V	1
COM	Rd	One's Complement	Rd ← 0xFF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 - Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \cdot (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd · Rd	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd Å Rd	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF		1
MUL	Rd, Rr			None Z,C	2
	· · ·	Multiply Unsigned	R1:R0 ← Rd x Rr		2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
BRANCH INSTRUC	1				_
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP ⁽¹⁾	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
CALL ⁽¹⁾	k	Direct Subroutine Call	PC ← k	None	4
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd - Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd - K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N Å V= 0) then PC ← PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N Å V= 1) then PC ← PC + k + 1	None	1/2
	k				
BRHS	k k	Branch if Half Carry Flag Set	if $(H = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHC		Branch if Half Carry Flag Cleared	if $(H = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE BRID	k k	Branch if Interrupt Enabled Branch if Interrupt Disabled	if (I = 1) then PC \leftarrow PC + k + 1 if (I = 0) then PC \leftarrow PC + k + 1	None	1/2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BIT AND BIT-TEST	INSTRUCTIONS				
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	1←1	1	1
CLI		Global Interrupt Disable	1←0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 1 S ← 0	S	1
		•		V	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV SET		Clear Twos Complement Overflow	V ← 0	T	1
		Set T in SREG	T ← 1		
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	H	1
CLH	INCTRUCTIONS	Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER	1	T.,			
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	X ← X - 1, (X) ¬ Rr	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM	,	Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM	,	Store Program Memory	$(Z) \leftarrow R1:R0$	None	-
IN	Rd, P	In Port	(2) ← K1.R0 Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr		1
PUSH	Rr		STACK ← Rr	None	2
POP	Rd	Push Register on Stack	STACK ← RF Rd ← STACK	None	2
		Pop Register from Stack	NU ← STACK	None	2
MCU CONTROL IN	ISTRUCTIONS				
NOR		No Operation		None	4
NOP SLEEP		No Operation Sleep	(see specific descr. for Sleep function)	None None	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Note: 1. These instructions are only available in ATmega168PB

10. Ordering Information

10.1 ATmega48PB

Speed [MHz] ⁽³⁾	Power Supply [V]	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	40.55	ATmega48PB-AU ATmega48PB-AUR ⁽⁴⁾ ATmega48PB-MU ATmega48PB-MUR ⁽⁴⁾	32A 32A 32MS1 32MS1	Industrial (-40°C to 85°C)
20	1.8 - 5.5	ATmega48PB-AN ATmega48PB-ANR ⁽⁴⁾ ATmega48PB-MN ATmega48PB-MNR ⁽⁴⁾	32A 32A 32MS1 32MS1	Industrial (-40°C to 105°C)

- 1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 306.
- 4. Tape & Reel.

	Package Type						
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)						
32MS1	32-pad, 5.0x5.0x0.9mm body, Lead Pitch 0.50mm, Very-thin Fine pitch, Quad Flat No Lead Package (VFQFN)						

10.2 ATmega88PB

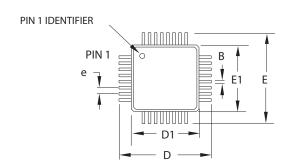
Speed [MHz] ⁽³⁾	Power Supply [V]	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	20 1.8 - 5.5	ATmega88PB-AU ATmega88PB-AUR ⁽⁴⁾ ATmega88PB-MU ATmega88PB-MUR ⁽⁴⁾	32A 32A 32MS1 32MS	Industrial (-40°C to 85°C)
20		ATmega88PB-AN ATmega88PB-ANR ⁽⁴⁾ ATmega88PB-MN ATmega88PB-MNR ⁽⁴⁾	32A 32A 32MS1 32MS1	Industrial (-40°C to 105°C)

- 1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 306.
- 4. Tape & Reel.

	Package Type
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)
32MS1	32-pad, 5.0x5.0x0.9mm body, Lead Pitch 0.50mm, Very-thin Fine pitch, Quad Flat No Lead Package (VFQFN)

10.3 ATmega168PB

Speed [MHz]	Power Supply [V]	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega168PB-AU ATmega168PB-AUR ⁽³⁾ ATmega168PB-MU ATmega168PB-MUR ⁽³⁾	32A 32A 32MS1 32MS1	Industrial (-40°C to 85°C)
20	1.0 - 5.5	ATmega168PB-AN ATmega168PB-ANR ⁽³⁾ ATmega168PB-MN ATmega168PB-MNR ⁽³⁾	32A 32A 32MS1 32MS1	Industrial (-40°C to 105°C)


- 1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. Tape & Reel.

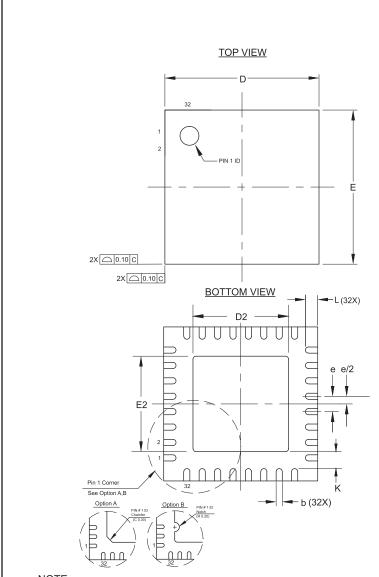
	Package Type
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)
32MS1	32-pad, 5.0x5.0x0.9mm body, Lead Pitch 0.50mm, Very-thin Fine pitch, Quad Flat No Lead Package (VFQFN)

11. Packaging Information

11.1 32A

COMMON DIMENSIONS (Unit of measure = mm)

MIN	NOM	MAX	NOTE
-	-	1.20	
0.05	-	0.15	
0.95	1.00	1.05	
8.75	9.00	9.25	
6.90	7.00	7.10	Note 2
8.75	9.00	9.25	
6.90	7.00	7.10	Note 2
0.30	-	0.45	
0.09	-	0.20	
0.45	_	0.75	
	0.80 TYP		
	- 0.05 0.95 8.75 6.90 8.75 6.90 0.30	0.05 - 1.00 8.75 9.00 6.90 7.00 8.75 9.00 6.90 7.00 0.30 - 0.09 - 0.45 -	- - 1.20 0.05 - 0.15 0.95 1.00 1.05 8.75 9.00 9.25 6.90 7.00 7.10 8.75 9.00 9.25 6.90 7.00 7.10 0.30 - 0.45 0.09 - 0.20 0.45 - 0.75


2010-10-20

- 1. This package conforms to JEDEC reference MS-026, Variation ABA.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10mm maximum.

eľ

TITLE	DRAWING NO.	REV.
32A, 32-lead, 7 x 7mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)	32A	С

11.2 32MS1

0.08 C

0.08 C

A3

A1

A1

A

W// 0.10 C

SIDE VIEW

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	TYP	MAX	NOTE
А	0.80	-	0.90	
A1	0.00	-	0.05	
A3		0.20 REF		
b	0.18	0.25	0.30	2
D	4.90	5.00	5.10	
D2	3.00	3.10	3.20	
Е	4.90	5.00	5.10	
E2	3.00	3.10	3.20	
е	-	0.50	-	
L	0.30	0.40	0.50	
K	0.20	-	-	

NOTE:

- Refer to JEDEC Drawing MO-220, Variation VHHD-2 (Figure 1/Saw Singulation)
- 2. Dimension "b" applies to metalized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimensions should not be measured in that radius area.

12/4/13

∕Itmel	TITLE	GPC	DRAWING NO.	REV.
Package Drawing Contact: packagedrawings@atmel.com	32MS1, 32-pad 5.0x5.0x0.9 mm Body, 0.50mm pitch, 3.1x3.1 mm Exposed pad, Saw Singulated Thermally Enhanced Plastic Very-thin Fine pitch, Quad Flat No Lead package (VFQFN)	ZMF	32MS1	А

12. Errata

12.1 Errata ATmega48PB

The revision letter in this section refers to the revision of the ATmega48PB device.

12.1.1 Rev. A

- Wrong device ID when using debugWire
- Power consumption in power save modes
- USART start-up functionality not working
- External capacitor on AREF pin

1.) Wrong device ID when using debugWire

The device ID returned using debugWire is incorrect.

Problem Fix/Workaround

None.

2.) Power consumption in power save modes

Power consumption in power save modes will be higher due to improper control of internal power management.

Problem Fix/Workaround

None.

3.) USART start-up functionality not working

While in power save modes, the USART start bit detection logic fails to wakeup the device.

Problem Fix/Workaround

None.

4.) External capacitor on AREF pin

If an external capacitor is used on the analog reference pin (AREF), it should be equal to or larger than 100nF. Smaller capacitor value can make the AREF buffer unstable with large ringing which will reduce the accuracy of the ADC.

Problem Fix/Workaround

None.

12.1.2 Rev. B

- External capacitor on AREF pin

1.) External capacitor on AREF pin

If an external capacitor is used on the analog reference pin (AREF), it should be equal to or larger than 100nF. Smaller capacitor value can make the AREF buffer unstable with large ringing which will reduce the accuracy of the ADC.

Problem Fix/Workaround

None.

12.1.3 Rev. C

No known errata.

12.2 Errata ATmega88PB

The revision letter in this section refers to the revision of the ATmega88PB device.

12.2.1 Rev. A

- Wrong device ID when using debugWire
- Power consumption in power save modes
- USART start-up functionality not working
- External capacitor on AREF pin

1.) Wrong device ID when using debugWire

The device ID returned using debugWire is incorrect.

Problem Fix/Workaround

None.

2.) Power consumption in power save modes

Power consumption in power save modes will be higher due to improper control of internal power management.

Problem Fix/Workaround

None.

3.) USART start-up functionality not working

While in power save modes, the USART start bit detection logic fails to wakeup the device.

Problem Fix/Workaround

None.

4.) External capacitor on AREF pin

If an external capacitor is used on the analog reference pin (AREF), it should be equal to or larger than 100nF. Smaller capacitor value can make the AREF buffer unstable with large ringing which will reduce the accuracy of the ADC.

Problem Fix/Workaround

None.

12.2.2 Rev. B

- External capacitor on AREF pin

1.) External capacitor on AREF pin

If an external capacitor is used on the analog reference pin (AREF), it should be equal to or larger than 100nF. Smaller capacitor value can make the AREF buffer unstable with large ringing which will reduce the accuracy of the ADC.

Problem Fix/Workaround

None.

12.2.3 Rev. C

No known errata.

12.3 Errata ATmega168PB

The revision letter in this section refers to the revision of the ATmega168PB device.

12.3.1 Rev. A

- Wrong device ID when using debugWire
- Power consumption in power save modes
- USART start-up functionality not working
- External capacitor on AREF pin

1.) Wrong device ID when using debugWire

The device ID returned using debugWire is incorrect.

Problem Fix/Workaround

None.

2.) Power consumption in power save modes

Power consumption in power save modes will be higher due to improper control of internal power management.

Problem Fix/Workaround

None

3.) USART start-up functionality not working

While in power save modes, the USART start bit detection logic fails to wakeup the device.

Problem Fix/Workaround

None.

4.) External capacitor on AREF pin

If an external capacitor is used on the analog reference pin (AREF), it should be equal to or larger than 100nF. Smaller capacitor value can make the AREF buffer unstable with large ringing which will reduce the accuracy of the ADC.

Problem Fix/Workaround

None.

12.3.2 Rev. B

- Power consumption in power save modes
- External capacitor on AREF pin

1.) Power consumption in power save modes

Power consumption in power save modes will be higher due to improper control of internal power management.

Problem Fix/Workaround

None

2.) External capacitor on AREF pin

If an external capacitor is used on the analog reference pin (AREF), it should be equal to or larger than 100nF. Smaller capacitor value can make the AREF buffer unstable with large ringing which will reduce the accuracy of the ADC.

Problem Fix/Workaround

None.

12.3.3 Rev. C

- External capacitor on AREF pin

1.) External capacitor on AREF pin

If an external capacitor is used on the analog reference pin (AREF), it should be equal to or larger than 100nF. Smaller capacitor value can make the AREF buffer unstable with large ringing which will reduce the accuracy of the ADC.

Problem Fix/Workaround

None.

12.3.4 Rev. D

No known errata.

13. Datasheet Revision History

Note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

13.1 Rev. 42176E - 10/2015

1.	Removed Preliminary
2.	General editing update
3.	Replaced the pinout drawings Figure 2-1 on page 3 and Figure 2-2 on page 4
4.	Replaced the block diagram Figure 3-1 on page 7.
5.	Replaced the "Block Diagram of the AVR Architecture" on page 10, Figure 8-1.
6.	Removed "Full Swing Crystal Oscillator" from the Table 10-1 on page 30.
7.	Removed the section "Full Swing Crystal Oscillator"
8.	Added "Unique Device ID" on page 28
9.	Update to correct addresses:
	"PORTE – The Port E Data Register",
	"DDRE – The Port E Data Direction Register",
	"PINE – The Port E Input Pins Address()"
10.	"Temperature Measurement" on page 253:
	Updated the values in Table 25-2 on page 253.
11.	Added "Reading the Signature Row from Software" on page 277.
12.	Updated typical values in "ATmega48PB/88PB DC Characteristics" on page 304.
13.	Updated "ATmega48PB/88PB Typical Characteristics" on page 316.
	Added "Power-save Supply Current" on page 323.
	Added "Power-standby Supply Current" on page 323.
14.	Updated the typical values in "ATmega168PB DC Characteristics" on page 305.
15.	Updated "ATmega168PB Typical Characteristics" on page 341.
	Added "Power-save Supply Current" on page 348.
	Added "Power-standby Supply Current" on page 348.

13.2 Rev. 42176D - 04/2015

1.	Added "ATmega48PB/88PB DC Characteristics" on page 304.
2.	Added "ATmega48PB/88PB Typical Characteristics" on page 316.
3.	Updated the typical values in "ATmega168PB DC Characteristics" on page 305
4.	Updated numbers in "ATmega168PB Supply Current of IO Modules" on page 346.

13.3 Rev. 42176C - 03/2015

1.	"Clock Characteristics" on page 307: Updated factory calibration accuracy from ±10% to ±3%in "Calibrated Internal RC Oscillator Accuracy" on page 307.
2.	"Errata": Updated "Errata ATmega48PB" on page 378, "Errata ATmega88PB" on page 379 and "Errata ATmega168PB" on page 380.

13.4 Rev. 42176B - 11/2014

- 1. Additional Delay from Reset (V_{CC}=5V) updated from 14CK to 19CK in the following sections / tables:
 - "Low Power Crystal Oscillator" / Table 10-4 on page 32.
 - "Low Frequency Crystal Oscillator" / Table 10-6 on page 32.
 - "Low Frequency Crystal Oscillator" / Table 10-7 on page 33.
 - "Calibrated Internal RC Oscillator" / Table 10-10 on page 34.
 - "128kHz Internal Oscillator" / Table 10-12 on page 35.
 - "External Clock" / Table 10-14 on page 36.

13.5 Rev. 42176A - 11/2014

Initial release.

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42176ES-8-bit AVR-ATmega48PB-88PB-168PB 10/2015.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], AVR[®], mega AVR[®], QTouch[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.