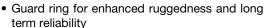


www.vishay.com

Vishay Semiconductors


High Performance Schottky Rectifier, 2 x 20 A

PRODUCT SUMMARY	
Package	TO-263AB (D ² PAK), TO-262AA
I _{F(AV)}	2 x 20 A
V_{R}	20 V
V _F at I _F	0.34 V
I _{RM} max.	310 mA at 125 °C
T _J max.	150 °C
Diode variation	Common cathode
E _{AS}	18

FEATURES

- 150 °C T_J operation
- Center tap configuration
- Optimized for 3.3 V application
- Ultralow forward voltage drop
- · High frequency operation

- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

This center tap Schottky rectifier module has been optimized for ultralow forward voltage drop specifically for 3.3 V output power supplies. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform	40	A		
V _{RRM}		20	V		
I _{FSM}	t _p = 5 μs sine	1000	A		
V _F	20 A _{pk} , T _J = 125 °C	0.34	V		
T _J		-55 to +150	°C		

VOLTAGE RATINGS					
PARAMETER SYMBOL TEST CONDITIONS VS-47CTQ020SPbF VS-47CTQ020-1PbF UNITS					
Maximum DC reverse voltage	V_{R}	125 °C	20	V	
Maximum DC reverse voltage	v _R	150 °C	10	V	

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average	per leg		50.0/ duty ovalo at T = 125.00	rootongular wayoform	20	
forward current per dev	per device	I _{F(AV)}	50 % duty cycle at T_C = 135 °C, rectangular waveform		40	
Maximum peak one cycle			5 μs sine or 3 μs rect. pulse	Following any rated load	1000	A
non-repetitive surge currer	nt per leg	I _{FSM}	10 ms sine or 6 ms rect. pulse	condition and with rated V _{RRM} applied	250	
Non-repetitive avalanche	energy per leg	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 3 \text{A}, L = 3 \text{mH}$		18	mJ
Repetitive avalanche curre	ent per leg	I _{AR}	Current decaying linearly to zero Frequency limited by T _J maximu		3	Α

VS-47CTQ020SPbF, VS-47CTQ020-1PbF

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS
		20 A	T _{.1} = 25 °C	0.45	
		40 A	1J=25 C	0.51	
Maximum famuard valtage drep per les	V (1)	20 A	T 105 °C	0.34	V
Maximum forward voltage drop per leg	V _{FM} ⁽¹⁾	40 A	- T _J = 125 °C	0.44	ľ
		20 A	T _ 150 °C	0.31	0.31 0.42 60
		40 A	$T_J = 150 ^{\circ}\text{C}$	0.42	
		T 105 °C	V _R = 5 V	60	60 45
	I _{RM} ⁽¹⁾	T _J = 125 °C	V _R = 3.3 V	45	
Maximum reverse leakage current per leg		T _J = 150 °C	V _R = 10 V	306	mA
canoni por log		T _J = 25 °C	V Datad V	3	
		T _J = 125 °C	V _R = Rated V _R	310	
Threshold voltage	V _{F(TO)}	$T_J = T_J$ maximum		0.188	V
Forward slope resistance	r _t			5.9	mΩ
Maximum junction capacitance per leg	C _T	V _R = 5 V _{DC} (test signal rang	ge 100 kHz to 1 MHz), 25 °C	3000	pF
Typical series inductance per leg	L _S	Measured lead to lead 5 m	m from package body	5.5	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs

Note

 $^{^{(1)}\,}$ Pulse width < 300 µs, duty cycle < 2 %

THERMAL - MECHA	NICAL SP	ECIFICAT	IONS		
PARAMETER	ER SYMBOL TEST CONDITIONS VALUES		UNITS		
Maximum junction and stora temperature range	ge	T _J , T _{Stg}		-55 to +150	°C
Maximum thermal resistance, junction to case per leg		В	DC operation	1.5	
Maximum thermal resistance, junction to case per package		- R _{thJC}	DC operation	0.75	°C/W
Typical thermal resistance, case to heatsink			Mounting surface, smooth and greased	0.50	
Approximate weight				2	g
Approximate weight				0.07	oz.
Maunting toyour	minimum			6 (5)	kgf · cm
Mounting torque	maximum			12 (10)	(lbf · in)
Maybing daying			Case style TO-263AB (D2PAK)	47CTQ020S	
Marking device			Case style TO-262AA	47CTQ0	20-1

Vishay Semiconductors

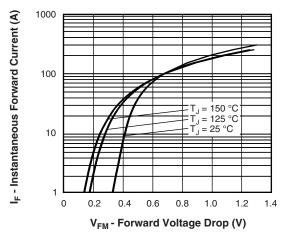


Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

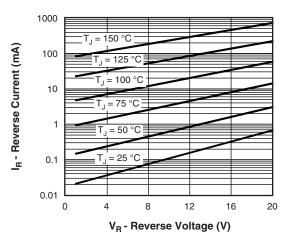


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

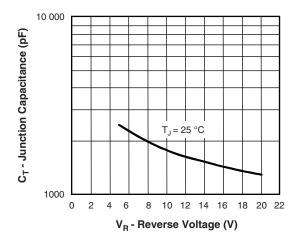


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

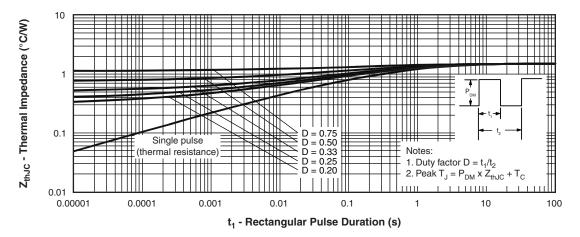


Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)

www.vishay.com

Vishay Semiconductors

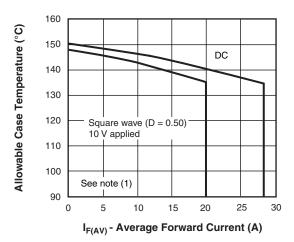


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

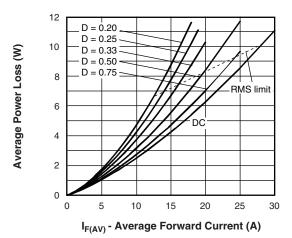


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

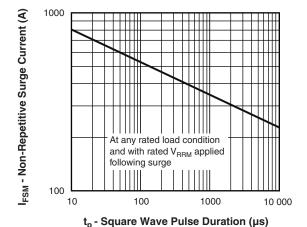


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

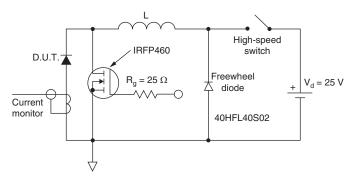


Fig. 8 - Unclamped Inductive Test Circuit

Note

 $^{(1)}$ Formula used: $T_C = T_J$ - (Pd + Pd_{REV}) x R_{thJC}; Pd = Forward power loss = $I_{F(AV)}$ x V_{FM} at (I_{F(AV)}/D) (see fig. 6); Pd_{REV} = Inverse power loss = V_{R1} x I_R (1 - D); I_R at V_{R1} = 10 V

VS-47CTQ020SPbF, VS-47CTQ020-1PbF

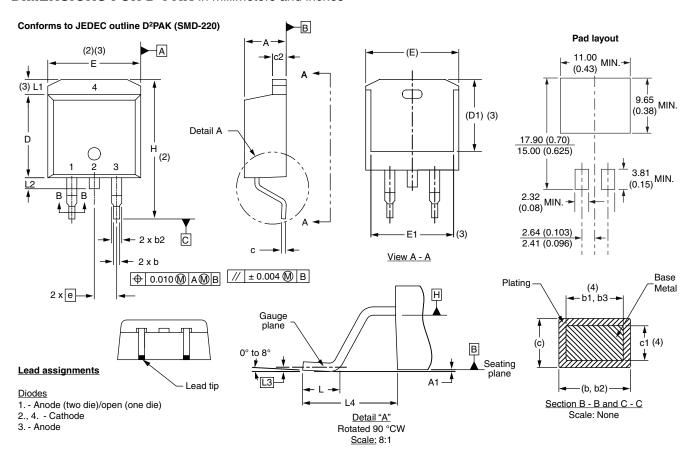
Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- Current rating (40 A)
- 3 Circuit configuration: C = common cathode
- **4** T = TO-220
- 5 Schottky "Q" series
- 6 Voltage rating (020 = 20 V)
- 7 • S = D²PAK
 - -1 = TO-262
- None = tube (50 pieces)
 - TRL = tape and reel (left oriented for D²PAK only)
 - TRR = tape and reel (right oriented for D²PAK only)
- 9 PbF = lead (Pb)-free

ORDERING INFORMATION (Example)					
PREFERRED P/N	QUANTITY PER REEL	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION		
VS-42CTQ020SPBF	50	1000	Antistatic plastic tubes		
VS-42CTQ020STRRPBF	800	800	13" diameter plastic tape and reel		
VS-42CTQ020STRLPBF	800	800	13" diameter plastic tape and reel		
VS-42CTQ020-1PBF	50	1000	Antistatic plastic tubes		


LINKS TO RELATED DOCUMENTS				
Dimensions TO-263AB (D ² PAK) <u>www.vishay.com/doc?95046</u>				
Dimensions	TO-262AA	www.vishay.com/doc?95419		
Part marking information		www.vishay.com/doc?95008		
Packaging information		www.vishay.com/doc?95032		

Vishay High Power Products

D²PAK, TO-262

DIMENSIONS FOR D²PAK in millimeters and inches

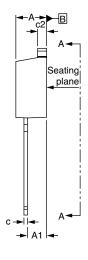
0)////	MILLIM	IETERS	INC		
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

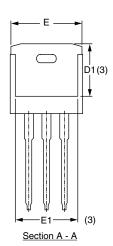
SYMBOL	MILLIM	ETERS	INC	HES	NOTES
STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch

(7) Outline conforms to JEDEC outline TO-263AB

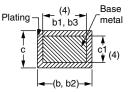

Vishay High Power Products


D²PAK, TO-262

DIMENSIONS FOR TO-262 in millimeters and inches

⊕ 0.010**⋒**|A**⋒**|B

Lead assignments



<u>Diodes</u>

-3 x b2 --3 x b

> 1. - Anode (two die)/open (one die) 2., 4. - Cathode

3. - Anode

Section B - B and C - C Scale: None

SYMBOL	MILLIMETERS		INC	CHES	NOTES
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.10	0 BSC	
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.56	3.71	0.140	0.146	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000