

IGBT SIP Module (Fast IGBT)

PRODUCT SUMMARY

OUTPUT CURRENT IN A TYPICAL 5.0 kHz MOTOR DRIVE						
V _{CES}	600 V					
I_{RMS} per phase (3.1 kW total) with T _C = 90 °C	11 A					
TJ	125 °C					
Supply voltage	360 V _{DC}					
Power factor	0.8					
Modulation depth See fig. 1	115 %					
$V_{CE(on)}$ (typical) at I _C = 4.8 A, 25 °C	1.41 V					
Speed	1 kHz to 8 kHz					
Package	SIP					
Circuit	Three phase inverter					

FEATURES

- Fully isolated printed circuit board mount package
- Switching-loss rating includes all "tail" losses
- HEXFRED[®] soft ultrafast diodes
- Optimized for medium speed, see fig. 1 for current vs. frequency curve
- Designed and qualified for industrial level
- UL approved file E78996
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The IGBT technology is the key to the advanced line of IMS (Insulated Metal Substrate) power modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current, each	1	T _C = 25 °C	8.8		
IGBT	Ι _C	T _C = 100 °C	4.8		
Pulsed collector current	I _{CM}	Repetitive rating; $V_{GE} = 20 V$, pulse width limited by maximum junction temperature. See fig. 20	26	A	
Clamped inductive load current	I _{LM}		800		
Diode continuous forward current	l _F	T _C = 100 °C 3.4			
Diode maximum forward current	I _{FM}		26		
Gate to emitter voltage	V _{GE}		± 20	V	
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V _{RMS}	
Maximum power dissipation, each		T _C = 25 °C	23	14/	
IGBT	PD	T _C = 100 °C	9.1	W	
Operating junction and storage temperature range	T _J , T _{Stg}		-40 to +150	°C	
Soldering temperature		For 10 s	300 (0.063" (1.6 mm) from case)		
Mounting torque		6-32 or M3 screw	5 to 7 (0.55 to 0.8)	lbf · in (N · m)	

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TYP.	MAX.	UNITS	
Junction to case, each IGBT, one IGBT in conduction	R _{thJC} (IGBT)	-	5.5		
Junction to case, each diode, one diode in conduction	R _{thJC} (diode)	-	9.0	°C/W	
Case to sink, flat, greased surface	R _{thCS} (module)	0.1	-		
Weight of module		20 (0.7)	-	g (oz.)	

Revision: 10-Jun-15

1

Document Number: 94361

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

COMPLIANT

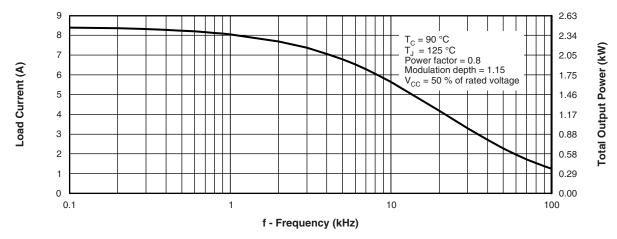
www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	V_{GE} = 0 V, I_C = 250 μA Pulse width \leq 80 $\mu s,$ duty factor \leq 0.1 %		600	-	-	V
Temperature coeff. of breakdown voltage	$\Delta V_{(BR)CES} / \Delta T_J$	$V_{GE} = 0 \text{ V}, I_{C} = 1.0 \text{ mA}$		-	0.72	-	V/°C
		I _C = 4.8 A		-	1.41	1.7	- V
Collector to emitter saturation voltage	V _{CE(on)}	I _C = 8.8 A	V _{GE} = 15 V See fig. 2, 5	-	1.66	-	
		I _C = 4.8 A, T _J = 150 °C	000 lig. 2, 0	-	1.42	-	
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$	3.0	-	6.0		
Gate to emitter leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}$		-	-	± 100	nA
Temperature coeff. of threshold voltage	$\Delta V_{GE(th)} / \Delta T_J$	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}$		-	-11	-	mV/°C
Forward transconductance	9 _{fe}	V_{CE} = 100 V, I _C = 4.8 A Pulse width 5.0 µs; single shot		2.9	5.0	-	S
Zero gate voltage collector current		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$		-	-	250	μA
	010	V_{GE} = 0 V, V_{CE} = 600 V, T_{J} = 150 $^{\circ}C$		-	-	1700	
	N/	$ I_{C} = 8.0 \text{ A} \\ I_{C} = 8.0 \text{ A}, \text{T}_{\text{J}} = 150 ^{\circ}\text{C} $	Section 10	-	1.4	1.7	v
Diode forward voltage drop	V _{FM}		See lig. 13	-	1.3	1.6	v

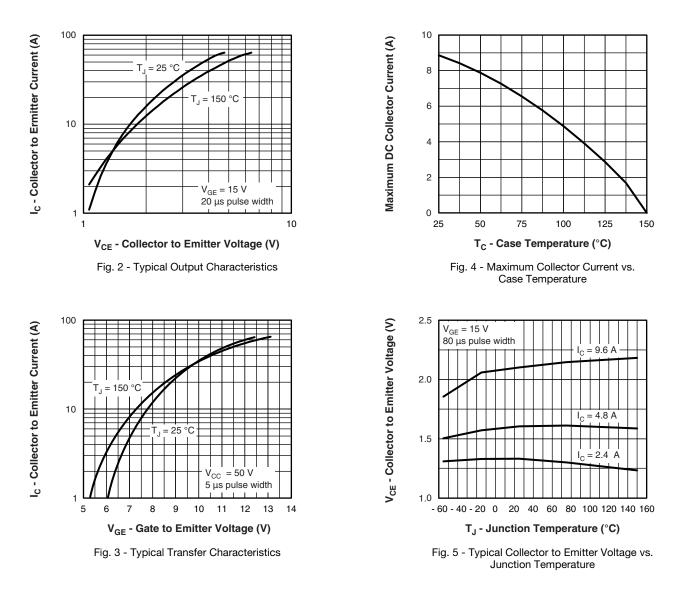
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
Total gate charge (turn on)	Qg	$I_{\rm C} = 4.8 {\rm A}$		-	30	45		
Gate to emitter charge (turn on)	Q _{ge}	V _{CC} = 400 V	0		-	4.0	6.0	nC
Gate to collector charge	Q _{gc}	See fig. 8			-	13	20	
Turn-on delay time	t _{d(on)}				-	49	-	1
Rise time	t _r	T.I = 25 °C	T 25 °C			22	-	
Turn-off delay time	t _{d(off)}	$I_{\rm C} = 4.8 {\rm A}, {\rm V}_{\rm C}$	_{CC} = 480 V		-	200	300	ms mJ
Fall time	t _f	V _{GE} = 15 V, I	R _G = 50 Ω es include "tai	l" and	-	214	320	
Turn-on switching loss	Eon	diode revers	ev recovery.		-	0.23	-	
Turn-off switching loss	E _{off}	See fig. 9, 10	D, 18		-	0.33	-	
Total switching loss	E _{ts}					0.45	0.70	1
Turn-on delay time	t _{d(on)}	$\begin{array}{l} T_J = 150 \ ^\circ C, \\ I_C = 4.8 \ \text{A}, \ V_{CC} = 480 \ \text{V} \\ V_{GE} = 15 \ \text{V}, \ R_G = 50 \ \Omega \\ \text{Energy losses include "tail" and} \\ \text{diode reverse recovery} \\ \text{See fig. 10, 11, 18} \end{array}$			-	48	-	ns
Rise time	t _r				-	25	-	
Turn-off delay time	t _{d(off)}				-	435	-	
Fall time	t _f				-	364	-	
Total switching loss	E _{ts}				-	0.93	-	mJ
Input capacitance	Cies	$V_{GE} = 0 V$ $V_{CC} = 30 V$ See fig. 7			-	340	-	pF
Output capacitance	Coes			See fig. 7	-	63	-	
Reverse transfer capacitance	C _{res}				-	5.9	-	1
Diada reverse recevery time		T _J = 25 °C	See fig. 14		-	37	55	
Diode reverse recovery time	t _{rr}	T _J = 125 °C See			-	55	90	ns
	1	T _J = 25 °C		-	3.5	50	^	
Diode peak reverse recovery current	I _{rr}	T _J = 125 °C	125 °C See fig. 15	I _F = 8.0 A V _B = 200 V	-	4.5	8.0	A
	0		dl/dt = 200 A/us	-	65	138	nC	
Diode reverse recovery charge	Q _{rr}			-	124	360		
	$T_J = 25 \text{ °C}$		-	240	-	A /		
Diode peak rate of fall of recovery during t_b	dl _{(rec)M} /dt	dt $T_J = 125 ^{\circ}\text{C}$ See fig. 17			-	210	-	A/µs

Revision: 10-Jun-15


2

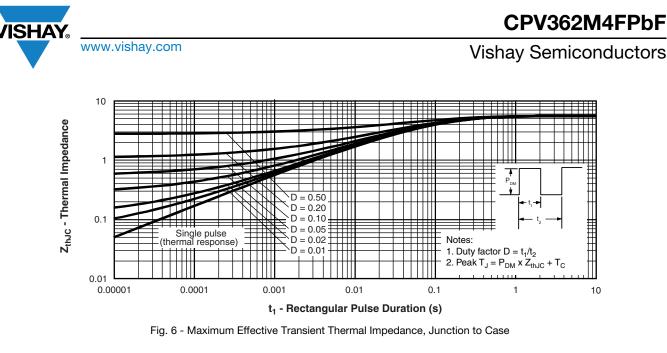
Document Number: 94361

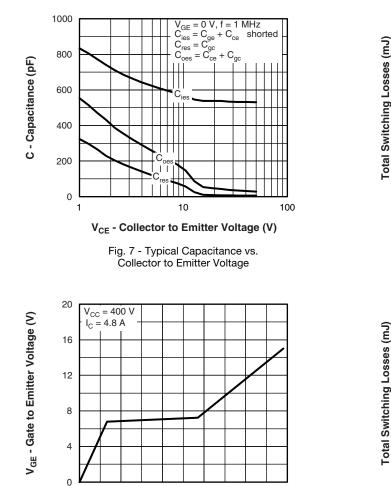
For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

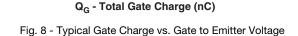

CPV362M4FPbF

Vishay Semiconductors

www.vishay.com




Revision: 10-Jun-15


3

Document Number: 94361

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

18

24

30

12

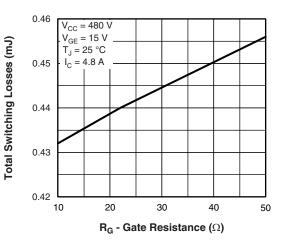
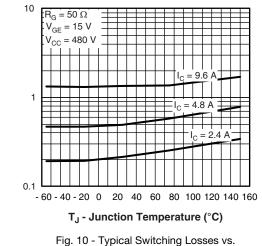
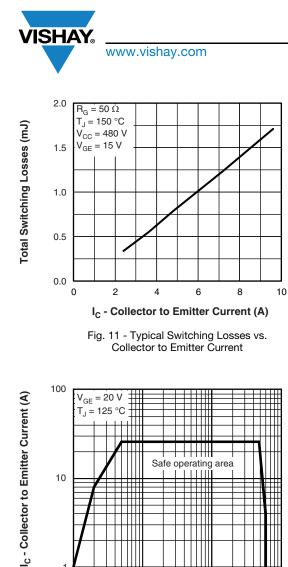
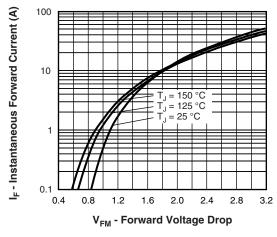



Fig. 9 - Typical Switching Losses vs. Gate Resistance

Junction Temperature


Revision: 10-Jun-15


0

6

Document Number: 94361

4 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

10

V_{CE} - Collector to Emitter Voltage (V) Fig. 12 - Turn-Off SOA

100

1000

Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

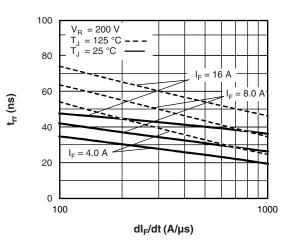


Fig. 14 - Typical Reverse Recovery Time vs. dl_F/dt

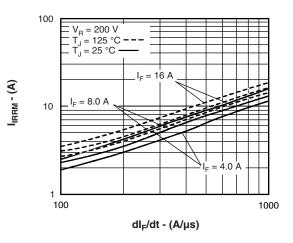


Fig. 15 - Typical Recovery Current vs. dl_F/dt

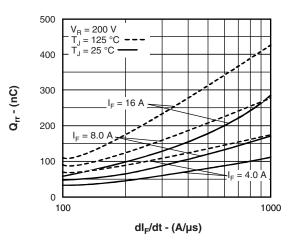
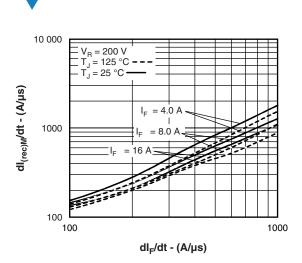


Fig. 16 - Typical Stored Charge vs. dl_F/dt

Revision: 10-Jun-15


1

1

5

Document Number: 94361

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

SHA

Fig. 17 - Typical dl_{(REC)M}/dt vs dl_F/dt

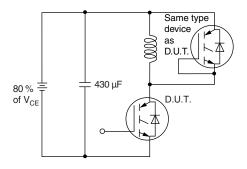


Fig. 18a - Test Circuit for Measurement of I_LM, E_on, E_{off(diode)}, t_{rr}, Q_{rr}, I_{rr}, t_{d(on)}, t_r, t_{d(off)}, t_f

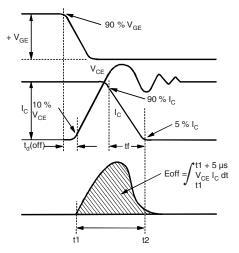


Fig. 18b - Test Waveforms of Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

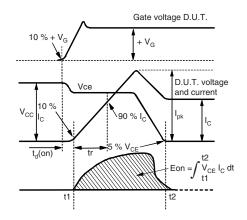


Fig. 18c - Test Waveforms of Circuit of Fig. 18a, Defining $E_{\text{on}},\,t_{d(\text{on})},\,t_{r}$

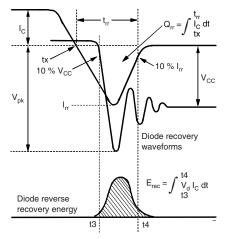


Fig. 18d - Test Waveforms of Circuit of Fig. 18a, Defining $\mathsf{E}_{\mathsf{rec}},\,\mathsf{t}_{\mathsf{rr}},\,\mathsf{Q}_{\mathsf{rr}},\,\mathsf{I}_{\mathsf{rr}}$

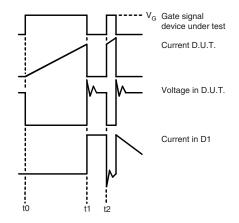
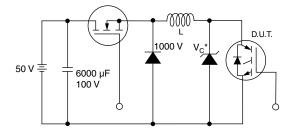


Fig. 18e - Macro Waveforms for Figure 18a's Test Circuit


 Revision: 10-Jun-15
 6
 Document Number: 94361

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

CPV362M4FPbF

Vishay Semiconductors

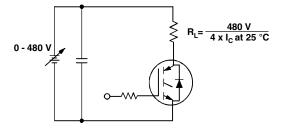
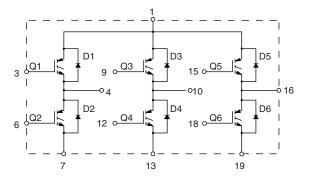
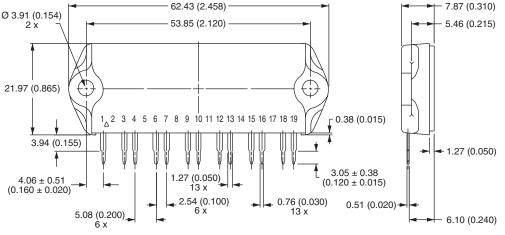



Fig. 19 - Clamped Inductive Load Test Circuit

Fig. 20 - Pulsed Collector Current Test Circuit

CIRCUIT CONFIGURATION



LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95066			

IMS-2 (SIP)

DIMENSIONS in millimeters (inches)

IMS-2 Package Outline (13 Pins)

Notes

- $^{(1)}$ Tolerance uless otherwise specified \pm 0.254 mm (0.010")
- ⁽²⁾ Controlling dimension: inch
- ⁽³⁾ Terminal numbers are shown for reference only

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.