Vishay Semiconductors

Bicolor SMD LED PLCC-4

DESCRIPTION

These devices have been designed to meet the increasing demand for surface mounting technology.

The package of the VLMKE340. is the PLCC-4.

It consists of a lead frame which is embedded in a white thermoplast. The reflector inside this package is filled up with clear epoxy.

This SMD device consists of a red and yellow chip. So it is possible to choose the color in one device.

PRODUCT GROUP AND PACKAGE DATA

- Product group: LED
- Package: SMD PLCC-4
- Product series: bicolor
- Angle of half intensity: ± 60°

FEATURES

- SMD LED with exceptional brightness
- Multicolored
- Luminous intensity categorized
- EIA and ICE standard package
- Compatible with automatic placement equipment
- Suitable for IR reflow and TTW soldering
- Available in 8 mm tape
- Low profile package
- · Non-diffused lens: excellent for coupling to light pipes and backlighting
- Low power consumption
- Luminous intensity ratio in one packaging unit $I_{Vmax}/I_{Vmin.} \le 1.6$
- JEDEC level 4
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- backlighting in Telecommunication: indicator and telephone and fax
- · Indicator and backlight for audio and video equipment
- · Indicator and backlight in office equipment
- · Flat backlight for LCDs, switches, and symbols
- General use

PARTS TABLE														
PART	COLOR	LUMINOUS INTENSITY (mcd)		at I _F (mA)	WAVELENGTH (nm)		at I _F (mA)	FORWARD VOLTAGE (V)		at I _F (mA)	TECHNOLOGY			
		MIN.	TYP.	MAX.	(11174)	MIN.	TYP.	MAX.	(11174)	MIN.	TYP.	MAX.	(11)~()	
VLMKE3400-GS08	Red	56	-	180	20	-	630	-	20	-	1.9	2.6	20	AllnGaP on GaAs
VLMKE3400-GS08	Yellow	90	-	280	20	581	588	594	20	-	2	2.6	20	AllnGaP on GaAs
VLMKE3400-GS18	Red	56	-	180	20	-	630	-	20	-	1.9	2.6	20	AllnGaP on GaAs
VLMKE3400-GS18	Yellow	90	-	280	20	581	588	594	20	-	2	2.6	20	AllnGaP on GaAs
VLMKE3401-GS08	Red	71	-	140	20	-	630	-	20	-	1.9	2.6	20	AllnGaP on GaAs
VLMKE3401-GS08	Yellow	112	-	224	20	581	588	594	20	-	2	2.6	20	AllnGaP on GaAs
VLMKE3401-GS18	Red	71	-	140	20	-	630	-	20	-	1.9	2.6	20	AllnGaP on GaAs
VLMKE3401-GS18	Yellow	112	-	224	20	581	588	594	20	-	2	2.6	20	AllnGaP on GaAs

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) VLMKE3400, VLMKE3401								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
Reverse voltage per diode		V _R	Not designed for reverse operation	V				
DC forward current per diode	$T_{amb} \le 80 \ ^{\circ}C$, 1 chip on	I _F	30	mA				
Surge forward current per diode	t _p ≤ 10 μs	I _{FSM}	0.1	А				
Power dissipation per diode		Pv	80	mW				
Junction temperature		Tj	125	°C				
Operating temperature range		T _{amb}	-40 to +100	°C				
Storage temperature range		T _{stg}	-40 to +100	°C				
Thermal resistance junction / ambient	Mounted on PC board (pad size > 16 mm ²)	R _{thJA}	560	K/W				

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified) **VLMKE3400, VLMKE3401, RED**

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 20 mA	VLMKE3400	Iv	56	-	180	mcd
Luminous intensity	IF = 20 IIIA	VLMKE3401	Ι _V	71	-	140	mcd
Dominant wavelength	I _F = 20 mA		λ_d	-	630	-	nm
Peak wavelength	I _F = 20 mA		λ _p	-	643	-	nm
Angle of half intensity	I _F = 20 mA		φ	-	± 60	-	deg
Forward voltage	I _F = 20 mA		V _F	-	1.9	2.6	V
Reverse voltage	I _R = 10 μA		V _R	6	-	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj	-	15	-	pF

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified) **VLMKE3400, VLMKE3401, YELLOW**

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 20 mA	VLMKE3400	I _V	90	-	280	mcd
Luminous intensity	1F = 20 MA	VLMKE3401	Ι _V	112	-	224	mcd
Dominant wavelength	I _F = 20 mA		λ_d	581	588	594	nm
Peak wavelength	I _F = 20 mA		λρ	-	590	-	nm
Angle of half intensity	I _F = 20 mA		φ	-	± 60	-	deg
Forward voltage	I _F = 20 mA		V _F	-	2	2.6	V
Reverse voltage	I _R = 10 μA		V _R	6	-	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj	-	15	-	pF

Vishay Semiconductors

LUMINOUS INTENSITY CLASSIFICATION AND GROUP COMBINATIONS VLMKE34.. RED **P2** Q1 Q2 R1 R2 56 mcd to 71 mcd 71 mcd to 90 mcd 90 mcd to 112 mcd 112 mcd to 140 mcd 140 mcd to 80 mcd Q2 00 00 00 00 00 90 mcd to 112 mcd R1 00 00 00 00 00 Υ 112 mcd to 140 mcd 01 01 01 Е L R2 00 00 00 00 00 L 140 mcd to 180 mcd 01 01 01 0 S1 00 00 00 w 00 00 180 mcd to 224 mcd 01 01 01 S2 00 00 00 00 00 224 mcd to 280 mcd

Notes

 Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %. The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). In order to ensure availability, single brightness groups will not be orderable. In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel. In order to ensure availability, single wavelength groups will not be orderable.

⁽¹⁾ Followed by 00 or 01

COLOR CLASSIFIATION							
	DOMINANT WAVELENGTH (nm)						
GROUP	YELI	LOW					
	MIN.	MAX.					
1	581	584					
2	583	586					
3	585	588					
4	587	590					
5	589	592					
6	591	594					

Note

• Wavelengths are tested at a current pulse duration of 25 ms.

Vishay Semiconductors

TYPICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)

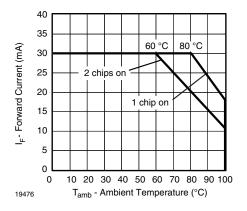


Fig. 1 - Forward Current vs. Ambient Temperature for InGaN

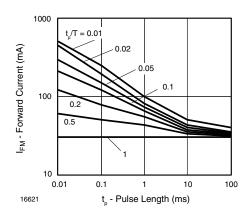


Fig. 2 - Forward Current vs. Pulse Duration

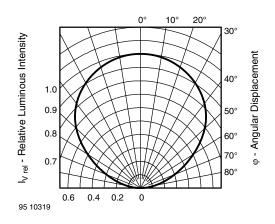


Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

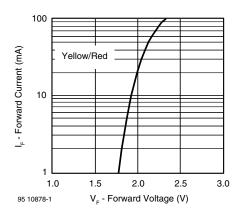


Fig. 4 - Forward Current vs. Forward Voltage

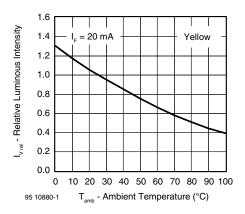


Fig. 5 - Relative Luminous Intensity vs. Ambient Temperature

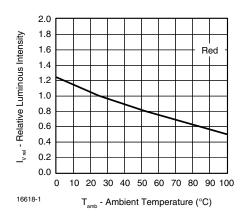


Fig. 6 - Relative Luminous Intensity vs. Ambient Temperature

4 For technical questions, contact: <u>LED@vishav.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

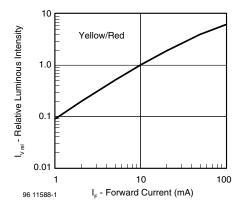


Fig. 7 - Relative Luminous Intensity vs. Forward Current

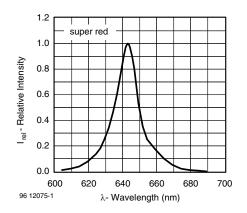


Fig. 8 - Relative Intensity vs. Wavelength

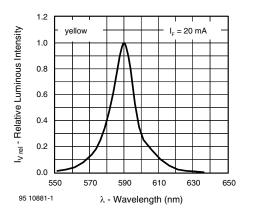


Fig. 9 - Relative Intensity vs. Wavelength

Vishay Semiconductors

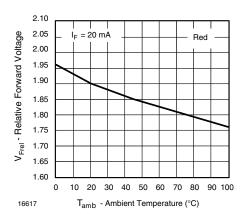


Fig. 10 - Relative Forward Voltage vs. Ambient Temperature

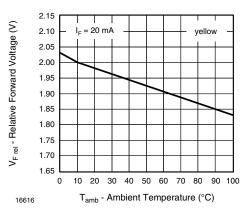
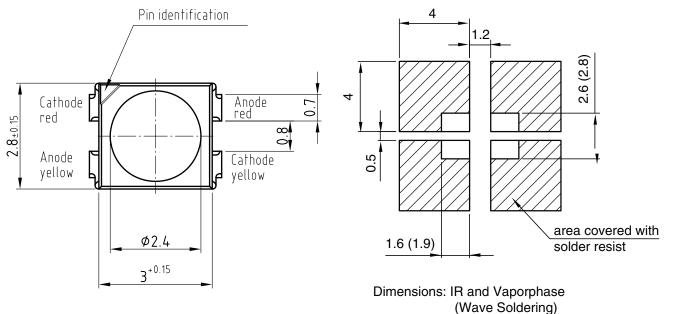
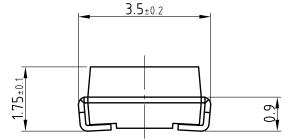


Fig. 11 - Relative Forward Voltage vs. Ambient Temperature


5

Vishay Semiconductors



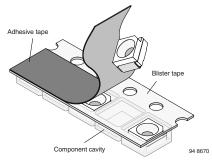
technical drawings

according to DIN specifications

Drawing-No.: 6.541-5057.01-4 Issue: 5; 30.05.07 19899

PACKAGE DIMENSIONS in millimeters

⁶



METHOD OF TAPING / POLARITY AND TAPE AND REEL

SMD LED (VLM.3 - SERIES)

Vishay's LEDs in SMD packages are available in an antistatic 8 mm blister tape (in accordance with DIN IEC 40 (CO) 564) for automatic component insertion. The blister tape is a plastic strip with impressed component cavities, covered by a top tape.

TAPING OF VLM.3...

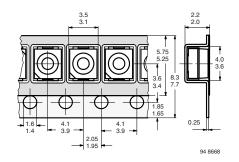


Fig. 12 - Tape Dimensions in mm for PLCC-2

REEL PACKAGE DIMENSION IN MILLIMETERS FOR SMD LEDS, TAPE OPTION GS08 (= 1500 PCS.)

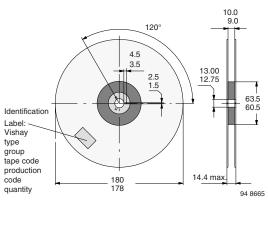
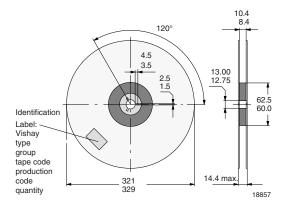



Fig. 13 - Reel Dimensions - GS08

REEL PACKAGE DIMENSION IN MILLIMETERS FOR SMD LEDS, TAPE OPTION GS18 (= 8000 PCS.) PREFERRED

SOLDERING PROFILE

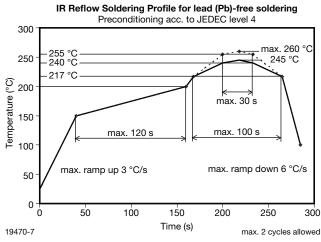


Fig. 15 - Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-020)

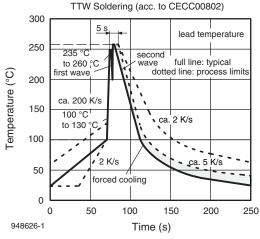
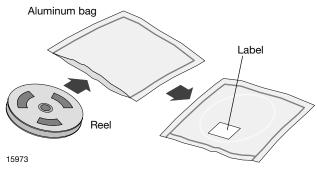


Fig. 16 - Double Wave Soldering of Opto Devices (all Packages)

Rev. 1.3, 04-Dec-15

Document Number: 81229


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay Semiconductors

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

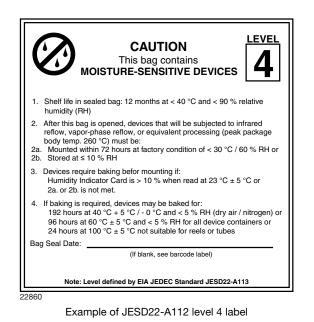
The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity \leq 60 % RH max.

After more than 72 h under these conditions moisture content will be too high for reflow soldering.


In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at 40 $^{\circ}\text{C}$ + 5 $^{\circ}\text{C}$ / - 0 $^{\circ}\text{C}$ and < 5 % RH (dry air / nitrogen) or

96 h at 60 °C + 5 °C and < 5 % RH for all device containers or

24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC standard JESD22-A112 level 4 label is included on all dry bags.

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electro-static sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.