
Freescale Semiconductor
Application Note

Document Number: AN3266
Rev. 1, 5/2006

Contents

Introduction to RS08 . 1
1.1 RS08 Architecture . 2
1.2 RS08 Instruction Set . 6
1.3 Paging Memory Scheme . 15
1.4 MCU Reset . 16
1.5 Wait Mode . 17
1.6 Stop Mode . 17
1.7 Subroutine Call . 18
1.8 Interrupt . 19
Emulated ADC Application Example 22

2.1 Implementation . 22
2.2 Calibration . 27
2.3 Measurement Result . 28

ppendix A
Program Listing . 30

Getting Started with RS08
by: Vincent Ko

Systems Engineering
Microcontroller Division
This application note is an introduction to the RS08
platform, an ultra low-cost 8-bit MCU core, from
Freescale Semiconductor.

Section 1 provides information for the user to get started
with RS08 and section 2 includes application discussions
to demonstrate techniques and concepts, together with
working examples.

1 Introduction to RS08
This section covers the RS08 architecture, programming
model, and instruction set to help the user to gain a good
understanding on the platform. Where necessary, cross
references are provided to the popular Freescale HC08
and S08 platforms. In most cases, the MC9RS08KA2
device is used in examples to illustrate concepts.

1

2

A

© Freescale Semiconductor, Inc., 2006. All rights reserved.

This document contains information on a new product under development. Freescale
reserves the right to change or discontinue this product without notice.

Introduction to RS08
1.1 RS08 Architecture
The RS08 platform is developed for extremely low cost applications. Its hardware size is optimized and
the overall system cost is reduced. The smaller hardware size allows the silicon to fit into a smaller
package, such as the 6-pin dual flat no lead package (DFN). The RS08 platform retains a similar
programming model as in the popular HC08/S08 platforms to allow easy source code migration between
the platforms.

The main features of the RS08 platform are:
• Subset of S08 instruction set
• New instructions for shadow program counter (SPC) — SHA and SLA
• New tiny and short addressing modes for code size optimization
• Maximum 16K-byte accessible memory space
• Eliminated vector fetch mechanism for interrupt and reset service
• Eliminated RAM stacking mechanism for subroutine call
• Single level hardware stacking for subroutine call
• Low power mode supported through the execution of STOP and WAIT instructions
• Stop wakeup through internal or external interrupt trigger
• Illegal address and opcode detection with reset
• Hardware security feature to protect unauthorized access to the non-volatile memory (NVM) area
• Debug and NVM program/erase support using single pin interface

1.1.1 CPU Registers

The RS08 CPU registers include an 8-bit general purpose accumulator (A), 14-bit program counter (PC),
14-bit shadow program counter (SPC), and a 2-bit conditional code register (CCR). The CCR contains two
status flags and are tested for conditional branch instructions such as BCS and BEQ. Figure 1-1 shows the
RS08 CPU registers.

Figure 1-1. RS08 CPU Registers

PC

SPC

CARRY
ZERO

0

0

0

7

13

13

ACCUMULATOR A

SHADOW PROGRAM COUNTER

7
PROGRAM COUNTER

CCRCZCONDITION CODE REGISTER
Getting Started with RS08, Rev. 1

Freescale Semiconductor2

Introduction to RS08
The 8-bit general purpose accumulator A provides a primary data register for the RS08 CPU. Data can be
read from memory into A with the LDA instruction. The data in A can be written into memory with the
STA instruction. The new added exchange instructions, SHA and SLA, allow values to be exchanged
between accumulator A and shadow program counter (SPC) high byte and low byte respectively.

The program counter (PC) contains the address of the next instruction or operand to be fetched as in the
HC08/S08 platform. However, the PC in RS08 platform is 14-bit long, which means the maximum
addressable space is 16K bytes.

In HC08/S08 platform, the return PC value is stacked into RAM during subroutine calls using JSR and
BSR instructions. In RS08 platform, RAM stacking mechanism is eliminated, return address is saved into
the SPC register. Upon completion of the subroutine, RTS instruction will restore the content of the PC
from SPC. SPC only provides a single level of address saving, nested subroutine calls can be performed
through software stacking. User firmware can utilize SHA and SLA instructions to swap the high byte and
the low byte content of SPC to A, then stack them to RAM.

The status bits (Z and C) in condition code register (CCR) indicates the results of previous arithmetic and
other operations. The bit definition is identical as in HC08/S08 platform. Please refer to RS08 Core
Reference Manual for their detail definition.

1.1.2 Special Registers

In additional to the CPU registers, there are two memory mapped registers that are tightly coupled with
the core address generation. They are the indirect data register (D[X]) and the index register (X). These
registers are located at $000E and $000F respectively.

Figure 1-2. RS08 Special Registers

Registers D[X] and X together perform indirect data access. The register X contains the address which is
used when register D[X] is accessed. Figure 1-3 shows the index addressing scheme. The X and D[X]
registers are not part of the CPU internal registers, but they are integrated seamlessly with the RS08
generic instruction set to form a pseudo instruction set.

07

07
INDIRECT DATA REGISTER D[X] (location $000E)

INDEX REGISTER X (location $000F)
Getting Started with RS08, Rev. 1

Freescale Semiconductor 3

Introduction to RS08
Figure 1-3. Index Addressing Scheme

1.1.3 Generic Addressing Mode

Whenever the MCU reads data from memory or writes data to memory, an addressing mode is used to
determine the exact address whether data is read from or write to. Table 1-1 summarizes the generic
addressing mode supported by the RS08 platform.

Table 1-1. RS08 Addressing Modes

Addressing Mode Example

Inherent Addressing CLRA, INCA, SHA, RTS

Direct Addressing LDA $20, AND $20

Relative Addressing BRA, BCS, BEQ

Immediate Addressing LDA #9

Tiny Addressing INC <$0D

Short Addressing CLR <$1D

Extended Addressing JMP, JSR

D[X]

Register X

Content of this location can be accessed via D[X]

$000E

$000F

$00FF

Address indicated in

$0100

Register X can specify
any location between
$0000–$00FF

Register X

$0000
Getting Started with RS08, Rev. 1

Freescale Semiconductor4

Introduction to RS08
1.1.3.1 Addressing Modes Common to HC08/S08 Platforms

The inherent addressing, direct addressing, relative addressing, immediate addressing, and extended
addressing modes in RS08 have identical operation as in the HC08/S08 platform. Inherent addressing is
used when the CPU inherently knows all the information needed to complete the instruction and no
addressing information is supplied in the source code. Relative addressing is used to specify the offset
address for branch instructions relative to the program counter. Immediate addressing is used when an
explicit value to be used by the instruction is located immediately after the opcode in the instruction
stream. Direct addressing is used to access operands located in direct address space ($0000 through
$00FF). Extended addressing is used to specify 2-byte operand to the instructions. This addressing mode
is only used in JMP and JSR instructions where the 14-bit target address is specified in the operand.

1.1.3.2 Tiny and Short Addressing Modes

Tiny and short addressing modes are introduced in the RS08 platform. These addressing modes have
similar operations to direct addressing mode but the addressable space is limited. Only portion of direct
address space within $0000–$00FF can be accessed by these addressing modes. However, all instructions
associated with these addressing modes are single byte instructions. Maximizing the utilization of these
instructions can reduce the overall code size.

Tiny addressing mode is capable of addressing only the first 16 bytes in the address map, from $0000 to
$000F. This addressing mode is available for increment (INC), decrement (DEC), add (ADD), and subtract
(SUB) instructions. Equivalent instructions are also available in direct addressing mode, 2-byte
instructions, where the addressable space is from $0000–$00FF. User should add the less than symbol (<)
before the operand in the source code as shown below, this forces the assembler to use tiny addressing
instructions instead.

INC <$0D
DEC <$0D
ADD <$0D
SUB <$0D

Short addressing mode is capable of addressing only the first 32 bytes in the address map, from $0000 to
$001F. This addressing mode is available for clear (CLR), load accumulator A (LDA), and store
accumulator A (STA) instructions. Similar to tiny addressing instructions equivalent instructions are also
available in direct address mode. User should add the less than symbol (<) before the operand as shown
below to force the assembler to use short addressing instructions.

CLR <$1F
LDA <$1F
STA <$1F

1.1.3.3 Pseudo Addressing Modes

Using the special registers, D[X] and X, the RS08 generic instruction set can be used to emulate some of
the accumulator X operations in the HC08/S08 architecture. This emulation is supported by the
assembler/compiler and it is done during the time of compilation. When zero offset indexing instructions
or register X related operations are involved, user can use the same HC08/S08 coding syntax for RS08
programming. During compilation the assembler will convert the pseudo RS08 instructions to equivalent
generic RS08 instructions. This operation is transparent to the user.
Getting Started with RS08, Rev. 1

Freescale Semiconductor 5

Introduction to RS08
Below summarizes the pseudo addressing modes supported by the RS08 architecture.
• Pseudo inherent addressing — for example, TSTX, DBNZX — is emulated by equivalent direct

addressing operation where the operand is always loaded from register X location ($000F). In some
of these operations, such as DECX and INCX, the tiny and short addressing instructions are
available. The pseudo instructions become single byte.

• Pseudo direct addressing — for example, LDX $20, STX $20 — is emulated by move (MOV)
direct-direct operation. LDX operation is equivalent to moving operand to register X ($000F). STX
operation is equivalent to move the content of register X to operand targeted address.

• Pseudo immediate addressing — for example, LDX #$09 — is emulated by move (MOV)
immediate-direct operation. Register X is loaded by explicit data.

• Pseudo zero offset index addressing — for example, ADD ,X — is emulated by equivalent direct
addressing operation where the operand is always loaded from register D[X] location ($000E).
Register D[X] itself holds the indirect data that its address is indicated by register X. Performing
operation on register D[X] has equivalent operation as HC08/S08 style zero offset index
addressing. RS08 platform preserves the same HC08/S08 style coding syntax which helps user to
migrate source code among these platform. Below shows some coding examples.

LDA ,X
ADD ,X
DBNZ ,X, rel

NOTE
Pseudo instructions are based on emulation, they have equivalent HC08/S08
operations. However in term of CPU cycle count and instruction byte count,
they are not the same. Special care is needed for timing critical software
before migrating source code from HC08/S08 platform to RS08 platform.

1.2 RS08 Instruction Set
The RS08 CPU core can be considered as a reduced version of S08 core. Most arithmetic operations are
retained in the RS08 platform such that source code compatibility is maintained as much as possible.
However, the RS08 platform is not intended for intensive mathematical calculations, therefore, nibble
swap (NSA), multiple (MUL), and divide (DIV) operations were removed from the instruction set.

Since the stacking mechanism is removed, instructions involving the stack pointer (SP) that were in
HC08/S08 core were removed from the RS08 core. Code condition register (CCR) contains two status
flags, Z-bit and C-bit, only conditional branch instructions involving these bits were included.

Table 1-2 summarizes the difference between RS08 instruction set and S08 instruction set.
Getting Started with RS08, Rev. 1

Freescale Semiconductor6

Introduction to RS08
Table 1-2. RS08 and S08 Instruction Set Comparison

Description RS08 S08 Operation

Arithmetic Operations:

Add with Carry

ADC #opr8
ADC opr8
ADC ,X 1
ADC X 1, 2

ADC #opr8
ADC opr8
ADC opr16
ADC opr8,X
ADC opr16,X
ADC ,X
ADC opr8,SP
ADC opr16,SP

A ← (A) + (M) + (C)
A ← (A) + (X) + (C) 2

Add without Carry

ADD #opr8
ADD opr8
ADD opr4
ADD ,X 1
ADD X 1, 2

ADD #opr8
ADD opr8
ADD opr16
ADD opr8,X
ADD opr16,X
ADD ,X
ADD opr8,SP
ADD opr16,SP

A ← (A) + (M)
A ← (A) + (X) 2

Add Immediate Value (Signed) to
Stack Pointer AIS #opr8 SP ← (SP) + (16 « M)

Add Immediate Value (Signed) to
Index Register (H:X) AIX #opr8 H:X ← (H:X) + (16 « M)

Arithmetic Shift Left
(Same as LSL) ASLA

ASL opr8
ASLA
ASLX
ASL opr8,X
ASL ,X
ASL opr8,SP

Arithmetic Shift Right

ASR opr8
ASRA
ASRX
ASR opr8,X
ASR ,X
ASR opr8,SP

Clear

CLR opr8
CLR opr5
CLRA
CLRX 1
CLR ,X 1

CLR opr8
CLRA
CLRX
CLRH
CLR opr8,X
CLR ,X
CLR opr8,SP

M ← $00
A ← $00
X ← $00

Decimal Adjust
Accumulator DAA (A)10

Decrement

DEC opr8
DEC opr4
DECA
DECX 1
DEC ,X 1

DEC opr8
DECA
DECX
DEC opr8,X
DEC ,X
DEC opr8,SP

M ← (M) – $01
A ← (A) – $01
X ← (X) – $01

 Divide DIV A ← (H:A)/(X)
H ← Remainder

Increment

INC opr8
INC opr4
INCA
INCX 1
INC ,X 1

INC opr8
INCA
INCX
INC opr8,X
INC ,X
INC opr8,SP

M ← (M) + $01
A ← (A) + $01
X ← (X) + $01

C

b0b7

0

b0b7

C

Getting Started with RS08, Rev. 1

Freescale Semiconductor 7

Introduction to RS08
Negate
(Two’s Complement)

NEG opr8
NEGA
NEGX
NEG opr8,X
NEG ,X
NEG opr8,SP

M ← –(M) = $00 – (M)
A ← –(A) = $00 – (A)
X ← –(X) = $00 – (X)

Subtract with Carry

SBC #opr8
SBC opr8
SBC ,X 1

SBC X 1, 2

SBC #opr8
SBC opr8
SBC opr16
SBC opr8,X
SBC opr16,X
SBC ,X
SBC opr8,SP
SBC opr16,SP

A ← (A) – (M) – (C)
A ← (A) – (X) – (C) 2

Subtract

SUB #opr8
SUB opr8
SUB opr4
SUB ,X 1
SUB X 1, 2

SUB #opr8
SUB opr8
SUB opr16
SUB opr8,X
SUB opr16,X
SUB ,X
SUB opr8,SP
SUB opr16,SP

A ← (A) – (M)
A ← (A) – (X) 2

Logical Operations:

Logical AND

AND #opr8
AND opr8
AND ,X1

AND X1, 2

AND #opr8
AND opr8
AND opr16
AND opr8,X
AND opr16,X
AND ,X
AND opr8,SP
AND opr16,SP

A ← (A) & (M)
A ← (A) & (X) 2

Clear Bit n in Memory
BCLR n,opr8
BCLR n,X 1, 2

BCLR n,D[X] 1, 2
BCLR n, opr8 Mn ← 0

Xn ← 0 2

Set Bit n in Memory
BSET n,opr8
BSET n,X 1, 2

BSET n,D[X] 1, 2
BSET n, opr8 Mn ← 1

Xn ← 1 2

Complement
(One’s Complement) COMA

COM opr8
COMA
COMX
COM opr8,X
COM ,X
COM opr8,SP

M ← (M)= $FF – (M)
A ← (A) = $FF – (M)
X ← (X) = $FF – (M)

Exclusive OR
Memory with
Accumulator

EOR #opr8
EOR opr8
EOR ,X 1
EOR X 1, 2

EOR #opr8
EOR opr8
EOR opr16
EOR opr8,X
EOR opr16,X
EOR ,X
EOR opr8,SP
EOR opr16,SP

A ← (A ⊕ M)
A ← (A ⊕ X) 2

Logical Shift Left
(Same as ASL) LSLA

LSL opr8
LSLA
LSLX
LSL opr8,X
LSL ,X
LSL opr8,SP

Table 1-2. RS08 and S08 Instruction Set Comparison (continued)

Description RS08 S08 Operation

C

b0b7

0

Getting Started with RS08, Rev. 1

Freescale Semiconductor8

Introduction to RS08
Logical Shift Right LSRA

LSR opr8
LSRA
LSRX
LSR opr8,X
LSR ,X
LSR opr8,SP

Nibble Swap
Accumulator NSA A ← (A[3:0]:A[7:4])

Inclusive OR Accumulator and
Memory

ORA #opr8
ORA opr8
ORA ,X 1

ORA X 1, 2

ORA #opr8
ORA opr8
ORA opr16
ORA opr8,X
ORA opr16,X
ORA ,X
ORA opr8,SP
ORA opr16,SP

A ← (A) | (M)
A ← (A) | (X) 2

Rotate Left through Carry ROLA

ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X
ROL opr,SP

Rotate Right through Carry RORA

ROR opr
RORA
RORX
ROR opr,X
ROR ,X
ROR opr,SP

Branch Operations:

Branch if Carry Bit Clear BCC rel BCC rel PC ← (PC) + $0002 + rel ? (C) = 0

Branch if Carry Bit Set (Same as
BLO) BCS rel BCS rel PC ← (PC) + $0002 + rel ? (C) = 1

Branch if Equal BEQ rel BEQ rel PC ← (PC) + $0002 + rel ? (Z) = 1

Branch if Greater Than or Equal
To (Signed Operands) BGE opr PC ← (PC) + $0002 + rel ? (N ⊕ V) = 0

Branch if Greater Than (Signed
Operands) BGT opr PC ← (PC) + $0002 + rel ? (Z)

| (N ⊕ V) = 0

Branch if Half Carry Bit Clear BHCC rel PC ← (PC) + $0002 + rel ? (H) = 0

Branch if Half Carry Bit Set BHCS rel PC ← (PC) + $0002 + rel ? (H) = 1

Branch if Higher BHI rel PC ← (PC) + $0002 + rel ? (C) | (Z) = 0

Branch if Higher or Same (Same
as BCC) BHS rel BHS rel PC ← (PC) + $0002 + rel ? (C) = 0

Branch if IRQ Pin High BIH rel PC ← (PC) + $0002 + rel ? IRQ = 1

Branch if IRQ Pin Low BIL rel PC ← (PC) + $0002 + rel ? IRQ = 0

Branch if Less Than
or Equal To (Signed
Operands)

BLE opr PC ← (PC) + $0002 + rel ? (Z)
| (N ⊕ V) = 1

Branch if Lower
(Same as BCS) BLO rel BLO rel PC ← (PC) + $0002 + rel ? (C) = 1

Branch if Lower or Same BLS rel PC ← (PC) + $0002 + rel ? (C) | (Z) = 1

Table 1-2. RS08 and S08 Instruction Set Comparison (continued)

Description RS08 S08 Operation

b0b7

C0

C

b0b7

b0b7

C

Getting Started with RS08, Rev. 1

Freescale Semiconductor 9

Introduction to RS08
Branch if Less Than (Signed Op-
erands) BLT opr PC ← (PC) + $0002 + rel ? (N ⊕ V) =1

Branch if Interrupt Mask Clear BMC rel PC ← (PC) + $0002 + rel ? (I) = 0

Branch if Minus BMI rel PC ← (PC) + $0002 + rel ? (N) = 1

Branch if Interrupt Mask Set BMS rel PC ← (PC) + $0002 + rel ? (I) = 1

Branch if Not Equal BNE rel BNE rel PC ← (PC) + $0002 + rel ? (Z) = 0

Branch if Plus BPL rel PC ← (PC) + $0002 + rel ? (N) = 0

Branch Always BRA rel BRA rel PC ← (PC) + $0002 + rel

Branch if Bit n in Memory Clear
BRCLR n,opr8,rel
BRCLR n,X,rel 1, 2

BRCLR n,D[X],rel 1, 2
BRCLR n , opr 8, rel PC ← (PC) + $0003 + rel ? (Mn) = 0

PC ← (PC) + $0003 + rel ? (Xn) = 0 2

Branch Never BRN rel PC ← (PC) + $0002

Branch if Bit n in Memory Set
BRSET n,opr8,rel
BRSET n,X,rel 1, 2

BRSET n,D[X],rel 1, 2
BRSET n , opr 8, rel PC ← (PC) + $0003 + rel ? (Mn) = 1

PC ← (PC) + $0003 + rel ? (Xn) = 1 2

Branch to Subroutine BSR rel BSR rel

For S08:
PC ← (PC) + $0002; push (PCL)
SP ← (SP) – $0001; push (PCH)

SP ← (SP) – $0001
PC ← (PC) + rel

For RS08:
PC ← (PC) + 2

Push PC to shadow PC
PC ← (PC) + rel

Compare and Branch if Equal

CBEQ opr8,rel
CBEQA #opr8,rel
CBEQ X rel 1, 2

CBEQ ,X,rel 1, 2

CBEQ opr8,rel
CBEQA #opr8,rel
CBEQX #opr8,rel
CBEQ opr8, X+,rel
CBEQ X+,rel
CBEQ opr8,SP,rel

For S08:
PC ← (PC) + $0003 + rel ? (A) – (M) = $00
PC ← (PC) + $0003 + rel ? (A) – (M) = $00
PC ← (PC) + $0003 + rel ? (X) – (M) = $00
PC ← (PC) + $0003 + rel ? (A) – (M) = $00
PC ← (PC) + $0002 + rel ? (A) – (M) = $00
PC ← (PC) + $0004 + rel ? (A) – (M) = $00

For RS08:
PC ← (PC) + $0003 + rel ? (A) – (M) = $00
PC ← (PC) + $0003 + rel ? (A) – (X) = $00 2

Decrement and Branch if Not Zero

DBNZ opr8,rel
DBNZA rel
DBNZX rel 1
DBNZ ,X,rel 1, 2

DBNZ opr8,rel
DBNZA rel
DBNZX rel
DBNZ opr8, X,rel
DBNZ X,rel
DBNZ opr8, SP,rel

A ← (A) – $0001 or M ← (M) – $01 or
X ← (X) – $0001

For S08:
PC ← (PC) + $0003 + rel if (result) ≠ 0 for DBNZ direct,

IX1
PC ← (PC) + $0002 + rel if (result) ≠ 0 for DBNZA, DB-

NZX, or IX
PC ← (PC) + $0004 + rel if (result) ≠ 0 for DBNZ SP1

For RS08:
PC ← (PC) + $0003 + rel if (result) ≠ 0 for DBNZ direct,

DBNZX, DBNZ ,X
PC ← (PC) + $0002 + rel if (result) ≠ 0 for DBNZA

 Jump JMP opr16

JMP opr8
JMP opr16
JMP opr8,X
JMP opr16,X
JMP ,X

PC ← Jump Address

Table 1-2. RS08 and S08 Instruction Set Comparison (continued)

Description RS08 S08 Operation
Getting Started with RS08, Rev. 1

Freescale Semiconductor10

Introduction to RS08
Jump to Subroutine JSR opr16

JSR opr8
JSR opr16
JSR opr16,X
JSR opr8,X
JSR ,X

For S08:
PC ← (PC) + n (n = 1, 2, or 3)

Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001

PC ← Unconditional Address

For RS08:
PC ← (PC) + 3

Push PC to shadow PC
PC ← Unconditional Address

Return from Subroutine RTS RTS

For S08:
SP ← SP + $0001; Pull (PCH)
SP ← SP + $0001; Pull (PCL)

For RS08:
Pull PC from shadow PC

Data Verification Operations:

Bit Test

BIT #opr8
BIT opr8
BIT opr116
BIT opr8,X
BIT opr16,X
BIT ,X
BIT opr8,SP
BIT opr16,SP

(A) & (M)

Compare Accumulator with Mem-
ory

CMP #opr8
CMP opr8
CMP ,X 1
CMP X 1, 2

CMP #opr8
CMP opr8
CMP opr16
CMP opr8,X
CMP opr16,X
CMP ,X
CMP opr8,SP
CMP opr16,SP

(A) – (M)
(A) – (X) 2

Complement
(One’s Complement)

CPHX #opr8
CPHX opr8
CPHX opr16
CPHX opr8,SP

(H:X) – (M:M + $0001)

Compare Index Register (H:X)
with Memory

CPX #opr8
CPX opr8
CPX opr16
CPX ,X
CPX opr8,X
CPX opr16,X
CPX opr8,SP
CPX opr16,SP

(X) – (M)

Test for Negative or Zero
TST opr8 1
TSTA 1
TSTX 1

TST opr8
TSTA
TSTX
TST opr8,X
TST ,X
TST opr8,SP

(A) – $00
(X) – $00
(M) – $00

Data Movement Operations:

Load Accumulator from Memory

LDA #opr8
LDA opr8
LDA opr5
LDA ,X 1

LDA #opr8
LDA opr8
LDA opr16
LDA opr8,X
LDA opr16,X
LDA ,X
LDA opr8,SP
LDA opr16,SP

A ← (M)

Table 1-2. RS08 and S08 Instruction Set Comparison (continued)

Description RS08 S08 Operation
Getting Started with RS08, Rev. 1

Freescale Semiconductor 11

Introduction to RS08
Load Index Register (H:X) from
Memory

LDHX #opr16
LDHX opr8
LDHX opr16
LDHX
LDHX opr8,X
LDHX opr16,X
LDHX opr8,SP

H:X ← (M:M + $0001)

Load X (Index Register Low) from
Memory

LDX #opr8 1
LDX opr8 1

LDX #opr8
LDX opr8
LDX opr16
LDX opr8,X
LDX opr16,X
LDX ,X
LDX opr8,SP
LDX opr16,SP

X ← (M)

Move

MOV opr8,opr8
MOV #opr8,opr8
MOV D[X],opr8 1
MOV opr8,D[X] 1
MOV #opr8,D[X] 1

MOV opr8,opr8
MOV opr8,X+
MOV #opr8,opr8
MOV X+,opr8

For S08/RS08:
(M)destination ← (M)source

For S08 only:
H:X ← (H:X) + $001 in IX+D and DIX+ Modes

Store Accumulator in Memory
STA opr8
STA opr5
STA ,X 1

STA opr8
STA opr16
STA opr8,X
STA opr16,X
STA ,X
STA opr8,SP
STA opr16,SP

M ← (A)

Store H:X (Index Reg.)
STHX opr
STHX opr
STHX opr,SP

(M:M + $0001) ← (H:X)

Store X (Index Register Low) in
Memory STX opr8 1

STX opr8
STX opr16
STX opr8,X
STX opr16,X
STX ,X
STX opr8,SP
STX opr16,SP

M ← (X)

Transfer Accumulator to CCR TAP CCR ← (A)

Transfer Accumulator to X (Index
Register Low) TAX 1 TAX X ← (A)

Transfer CCR to Accumulator TPA A ← (CCR)

Transfer SP to Index Reg. TSX H:X ← (SP) + $0001

Transfer X (Index Reg. Low) to
Accumulator TXA 1 TXA A ← (X)

Transfer Index Reg. to SP TXS (SP) ← (H:X) – $0001

Other Operations:

Background BGND BGND Enter Background Debug Mode

Clear Carry Bit CLC CLC C ← 0

Clear Interrupt Mask Bit CLI I ← 0

No Operation NOP NOP None

Push Accumulator onto Stack PSHA Push (A); SP ← (SP) – $0001

Push H (Index Register High) onto
Stack PSHH Push (H); SP ← (SP) – $0001

Table 1-2. RS08 and S08 Instruction Set Comparison (continued)

Description RS08 S08 Operation
Getting Started with RS08, Rev. 1

Freescale Semiconductor12

Introduction to RS08
1.2.1 Tiny and Short Addressing Mode Instructions

Tiny and short addressing mode instructions are single byte instructions. Maximizing the use of these
instructions can efficiently improve the overall code density. Given the limited addressable space for these
instructions, careful planning to allocate the most frequently used variables to be located within the tiny
and short addressable area is recommended. Table 1-3 summarizes the tiny and short instructions support
for the RS08 platform.

Push X (Index Register Low) onto
Stack PSHX Push (X); SP ← (SP) – $0001

Pull Accumulator from Stack PULA SP ← (SP + $0001); Pull (A)

Pull H (Index Register High) from
Stack PULH SP ← (SP + $0001); Pull (H)

Pull X (Index Register Low) from
Stack PULX SP ← (SP + $0001); Pull (X)

Reset Stack Pointer RSP SP ← $FF

Return from Interrupt RTI

SP ← (SP) + $0001; Pull (CCR)
SP ← (SP) + $0001; Pull (A)
SP ← (SP) + $0001; Pull (X)

SP ← (SP) + $0001; Pull (PCH)
SP ← (SP) + $0001; Pull (PCL)

Swap Shadow PC High with A SHA A ⇔ SPCH

Swap Shadow PC Low with A SLA A ⇔ SPCL

Set Carry Bit SEC SEC C ← 1

Set Interrupt Mask Bit SEI I ← 1

Enable IRQ pin; Stop Osc. STOP STOP Stop Oscillator
I bit ← 0 for S08 only;

Software Interrupt SWI

PC ← (PC) + $0001; Push (PCL)
SP ← (SP) – $0001; Push (PCH)

SP ← (SP) – $0001; Push (X)
SP ← (SP) – $0001; Push (A)

SP ← (SP) – $0001; Push (CCR)
SP ← (SP) – $0001; I ← 1

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

Enable Interrupts; Stop Processor WAIT WAIT I bit ← 0 for S08 only;

NOTES:
1 This is pseudo-instruction, the CPU cycle count and the instruction byte count may not be the same as the S08 equivalent

instruction.
2 This emulated operation do not have an equivalent operation in S08 instruction set.

Table 1-2. RS08 and S08 Instruction Set Comparison (continued)

Description RS08 S08 Operation
Getting Started with RS08, Rev. 1

Freescale Semiconductor 13

Introduction to RS08
1.2.2 Pseudo Instructions

Using register X located in $000F and register D[X] located in $000E, most HC08/S08 zero offset index
addressing instructions and accumulator instructions can be emulated. This index addressing can be
performed on virtually all direct addressing mode instructions. Table 1-4 summarizes all of the pseudo
instructions supported in RS08 platform and their operations.

NOTE
Instruction translation is done during time of compilation by the assembler,
and is transparent to the user.

Table 1-3. RS08 Tiny and Short Addressing Mode Instructions

Description Tiny/Short Instruction Addressable Space Coding Example

Load Accumulator from Memory LDA opr5 $0000 to $001F
LDA <$1F
LDA <$00

Store Accumulator in Memory STA opr5 $0000 to $001F
STA <$1F
STA <$00

Clear CLR opr5 $0000 to $001F
CLR <$1F
CLR <$00

Add without Carry ADD opr4 $0000 to $000F
ADD <$0F
ADD <$00

Subtract SUB opr4 $0000 to $000F
SUB <$0F
SUB <$00

Increment INC opr4 $0000 to $000F
INC <$0F
INC <$00

Decrement DEC opr4 $0000 to $000F
DEC <$0F
DEC <$00

Table 1-4. Pseudo Instructions in RS08 Platform

Operation
Pseudo

Instruction
Emulation Description Bytes Cycles

Add with Carry ADC ,X
ADC X

ADC $0E
ADC $0F

A ← (A) + (M) + (C)
A ← (A) + (X) + (C)

2
2

3
3

Add without Carry ADD ,X
ADD X

ADD <$0E
ADD <$0F

A ← (A) + (M)
A ← (A) + (X)

1
1

3
3

Logical AND AND ,X
AND X

AND $0E
AND $0F

A ← (A) & (M)
A ← (A) & (X)

2
2

3
3

Clear Bit n in Memory BCLR n,D[X]
BCLR n,X

BCLR n, $0E
BCLR n, $0F

Mn ← 0
Xn ← 0

2
2

5
5

Branch if Bit n in Memory
Clear

BRCLR n,D[X],rel
BRCLR n,X,rel

BRCLR n, $0E, rel
BRCLR n, $0F, rel

PC ← (PC) + $0003 + rel ? (Mn) = 0
PC ← (PC) + $0003 + rel ? (Xn) = 0

3
3

5
5

Branch if Bit n in Memory Set BRSET n,D[X],rel
BRSET n,X,rel

BRSET n, $0E, rel
BRSET n, $0F, rel

PC ← (PC) + $0003 + rel ? (Mn) = 1
PC ← (PC) + $0003 + rel ? (Xn) = 1

3
3

5
5

Set Bit n in Memory BSET n,D[X]
BSET n,X

BSET n, $0E
BSET n, $0F

Mn ← 1
Xn ← 1

2
2

5
5

Compare and Branch if Equal CBEQ ,X,rel
CBEQ X rel

CBEQ $0E, rel
CBEQ $0F, rel

PC ← (PC) + $0003 + rel ? (A) – (M) = $00
PC ← (PC) + $0003 + rel ? (A) – (X) = $00

3
3

5
5

Getting Started with RS08, Rev. 1

Freescale Semiconductor14

Introduction to RS08
1.3 Paging Memory Scheme
The RS08 instruction set does not include extended addressing capability. There is a 64-byte window,
known as the paging window, from location $00C0 to $00FF, in the direct page reserved for paging access.
A page selection (PAGESEL) register ($001F) determines the corresponding 64-byte block in the memory
map for the paging window access. Upper memory access can be done by direct-page access through the
paging window area.

The entire accessible memory space for RS08 is 16K-bytes, and divided into 256 pages of 64-byte
memory. Programming the PAGESEL register ($001F) defines the page to be accessed through the paging
window. Figure 1-4 illustrates the paging memory scheme.

Clear CLR ,X
CLRX

CLR <$0E
CLR <$0F

M ← $00
X ← $00

1
1

2
2

Compare Accumulator with
Memory

CMP ,X
CMP X

CMP $0E
CMP $0F

(A) – (M)
(A) – (X)

2
2

3
3

Decrement and Branch if Not
Zero

DBNZ ,X,rel
DBNZX rel

DBNZ $0E, rel
DBNZ $0F, rel

M ← (M) – $01
X ← (X) – $01

PC ← (PC) + $0003 + rel if (result) ≠ 0

3
3

6
6

Decrement DEC ,X
DECX

DEC <$0E
DEC <$0F

M ← (M) – $01
X ← (X) – $01

1
1

4
4

Exclusive OR
Memory with
Accumulator

EOR ,X
EOR X

EOR $0E
EOR $0F

A ← (A ⊕ M)
A ← (A ⊕ X)

2
2

3
3

Increment INC ,X
INCX

INC <$0E
INC <$0F

M ← (M) + $01
X ← (X) + $01

1
1

4
4

Load Accumulator from Mem-
ory LDA ,X LDA <$0E A ← (M) 1 3

Load X (Index Register Low)
from Memory

LDX #opr8
LDX opr8

MOV #opr8, $0F
MOV opr8, $0F X ← (M) 3

3
4
5

Inclusive OR Accumulator
and Memory

ORA ,X
ORA X

ORA $0E
ORA $0F

A ← (A) | (M)
A ← (A) | (X)

2
2

3
3

Subtract with Carry SBC ,X
SBC X

SBC $0E
SBC $0F

A ← (A) – (M) – (C)
A ← (A) – (X) – (C)

2
2

3
3

Store Accumulator in Memory STA ,X STA <$0E M ← (A) 1 2

Store X (Index Register Low)
in Memory STX opr8 MOV $0F, opr8 M ← (X) 3 5

Subtract SUB ,X
SUB X

SUB <$0E
SUB <$0F

A ← (A) – (M)
A ← (A) – (X) 1 3

Transfer Accumulator to X
(Index Register Low) TAX STA <$0F X ← (A) 1 2

Test for Negative or Zero
TST opr8
TSTA
TSTX

MOV opr8, opr8
ORA #$00
MOV X, X

(M) – $00
(A) – $00
(X) – $00

3
2
3

5
2
5

Transfer X (Index Reg. Low)
to Accumulator TXA LDA <$0F A ← (X) 1 3

Table 1-4. Pseudo Instructions in RS08 Platform (continued)

Operation
Pseudo

Instruction
Emulation Description Bytes Cycles
Getting Started with RS08, Rev. 1

Freescale Semiconductor 15

Introduction to RS08
The PAGESEL register defines the memory page to be accessed, the register X indicates the corresponding
location in the paging window that points to the desired upper memory location, CPU access through
register D[X] and the paging window can index to the corresponding upper memory location. Most pseudo
instructions can utilize this scheme to perform index addressing to the upper memory locations.

NOTE
Accessing any unimplemented location through the paging window will
generate an illegal address reset.

Figure 1-4. RS08 Paging Scheme

1.4 MCU Reset
MCU reset provides a way to restart the MCU to a known set of initial conditions. An MCU reset forces
most control and status registers to their initial values and the program counter (PC) is started from $3FFD.
In the RS08 platform there is no vector lookup mechanism, a JMP instruction (opcode $BC) with a 2-byte
operand must programmed into the locations $3FFD–$3FFF. The operand indicates the user defined
location to start user program execution.
;%%%
; Reset Vector
;%%%

org $3FFC
Security:

dc.b $FF ; SECD=1 is unsecured, SECD=0 is secured
jmp main

$0000

$003F
$0040

$007F
$0080

$00BF
$00C0

$00FF

$3FC0

$3FFF

$3F80

$3FBF

$3F40

$3F7F

PAGE 0

PAGE 1

PAGE 2

PAGE 0

PAGE 255

PAGE 254

PAGE 253

PAGE 1 PAGE 255PAGING WINDOW

$00 $01 $FF
PAGESEL Register
Getting Started with RS08, Rev. 1

Freescale Semiconductor16

Introduction to RS08
Similar to the HC08/S08 devices, RS08 has seven sources for reset:
• External pin reset (PIN) — enabled using RSTPE and SOPT
• Power-on reset (POR)
• Low-voltage detect (LVD)
• Computer operating properly (COP) timer
• Illegal opcode detect (ILOP)
• Illegal address detect (ILAD)
• Background debug forced reset via BDC command BDC_RESET

The system reset status register (SRS) located in $0200 includes read-only status flags to indicate the
source of the most recent reset.

1.5 Wait Mode
Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU
enters a low-power state in which it is not clocked. The program counter (PC) is halted at the position
following the WAIT instruction where it is executed. Exit from wait is done by asserting any reset and any
type of interrupt sources that has been enabled. When an interrupt request occurs:

1. MCU exists wait mode and resumes processing.
2. Fetches the following instruction and program flow continues.

It is the responsibility of the user program to probe the corresponding interrupt source that woke the MCU
because no vector fetching process is involved.

1.6 Stop Mode
Stop mode is entered upon execution of a STOP instruction when the STOPE bit in the system option
register is set. In STOP mode all internal clocks to the CPU and the modules are halted. Exit from stop is
done by asserting any reset, any asynchronous interrupt such as KBI that has been enabled, or the real-time
interrupt. When the requests occurs:

1. MCU clock module is enabled.
2. MCU exists stop mode and resumes processing.
3. Fetches the following instruction and program flow continues.

It is the responsibility of the user program to poll the corresponding interrupt source that woke the MCU,
because no vector fetching process is involved.

There are options to enable various modules, such as the internal clock source (ICS) and analog
comparator (ACMP), during stop mode. Please refer to the specific device data sheet for more details.

NOTE
If the STOPE bit is not set when the CPU executes a STOP instruction, the
MCU will not enter stop mode and an illegal opcode reset is forced.
Getting Started with RS08, Rev. 1

Freescale Semiconductor 17

Introduction to RS08
1.7 Subroutine Call
The RS08 platform provides only a single level of hardware stacking. When the instruction, JSR or BSR,
is executed, current program counter (PC) value is uploaded to the shadow program counter (SPC) register
before the PC is modified with a new location. In the case when the program encounters the instruction
RTS, the saved PC value is restored from the SPC register. Program execution resumes at the address that
was just restored from SPC register.

Single level of subroutine call may not be sufficient for some applications, multi-level software stacking
can be emulated with the help of SHA/SLA instructions. These instructions exchange the high byte and
the low byte of SPC register with accumulator A respectively. Software stacking can be implemented that
place the SPC content for each level of subroutine call in RAM.

The following code shows how software stacking can be implemented in macro format. In this example,
location $00 is arbitrarily chosen for the stack pointer (STACKPTR) variable and the stack content is
placed from address $4F downwards. The code shown provides no stack overflow checking.
SPInit equ $4F ; Stack block allocation
FLASHSTART equ $3800 ; For MC9RS08KA2

RESETSP: MACRO
mov #SPInit, STACKPTR ; Init Stack pointer
ENDM

PSH_SPC: MACRO ; 20 CPU cycles, 14 bytes code
; NOTE: Destructive to X content
ldx STACKPTR ; Load Stack pointer
sha ; Swap SPC high byte
sta ,X ; Push high byte to stack
sha ; Resume A content
decx ; update stack pointer
sla ; Swap SPC low byte
sta ,X ; Push low byte to stack
sla ; Resume A content
decx ; update stack pointer
stx STACKPTR ; Save stack pointer
ENDM

PUL_SPC: MACRO ; 22 CPU cycles, 14 byte code
; NOTE: Destructive to X content
ldx STACKPTR ; Load Stack pointer
incx ; Update stack pointer
sla ; Swap SPC low byte
lda ,X ; Pull low byte
sla ; Resume A and SPCL content
incx ; Update stack pointer
sha ; Swap SPC high byte
lda ,X ; Pull high byte
sha ; Resume A and SPCH content
stx STACKPTR ; Save stack pointer
ENDM

org TINY_RAM
STACKPTR ds.b 1 ; Stack pointer location

org FLASHSTART
Getting Started with RS08, Rev. 1

Freescale Semiconductor18

Introduction to RS08
;%%
; Subroutine A
;%%
SubA:

PSH_SPC ; Stack SPC
;... <Subroutine Content> ...
bsr SubB ; Multi-level subroutine call
;... <Subroutine Content> ...
PUL_SPC ; Unstack SPC
rts

;%%
; Subroutine B
;%%
SubB:

PSH_SPC ; Stack SPC
;... <Subroutine Content> ...
PUL_SPC ; Unstack SPC
rts

;%%
; Main
;%%
Main:

RESETSP
;... <Software Content> ...
jsr SubA
;... <Software Content> ...
jsr SubB
;... <Software Content> ...

Three macros are defined here. RESETSP is used to reset the stack pointer to the initial position. PSH_SPC
pushes shadow PC (SPC) content to stack and decrements STACKPTR variable accordingly. Similarly,
PUL_SPC pulls the SPC content from stack and increments STACKPTR variable accordingly. Calling
PSH_SPC at the beginning of each subroutine and PUL_SPC before executing RTS would stack up and
retrieve the return address (shadow PC) for each level of subroutine calls accordingly.

NOTE
Both PSH_SPC and PUL_SPC macro are destructive to register X. If X
content requires to carry across subroutine calls, enhancements to the
macros are required.

1.8 Interrupt
RS08 platform is targeted for small applications where usually intensive interrupt servicing is not required.
The interrupt request in the RS08 platform is designed to wake the MCU from either wait or stop mode.
At the same time the corresponding interrupt flags will also be set to indicate the interrupt events that had
happened. If multiple events had happened, it is up to the software to decide the priority of servicing. When
the MCU is operating in run mode or active background debug mode (BDM), interrupt events will not
affect the software flow. Users can check the interrupt events on a regular basis by polling the
corresponding interrupt flag and determine if interrupt service is required.

Similar to the HC08/S08 platform, in RS08 each interrupt source is associated with a corresponding
interrupt flag and an interrupt enable bit. The wait/stop wakeup capability of an interrupt source can only
Getting Started with RS08, Rev. 1

Freescale Semiconductor 19

Introduction to RS08
be enabled when the corresponding interrupt enable bit is set. When the MCU wakes up from wait/stop
mode, the program flow is resumed from where it was stopped. At this point, software can determine
which interrupt had occurred by polling the interrupt flags and then jump to the service subroutine
accordingly.

The interrupt flags from individual modules are scattered in several register locations, therefore it is not
efficient for the software to poll the corresponding flag among several registers. The RS08 platform
implements a system interrupt pending (SIP1) register where it provides a central location for the interrupt
sources notification. If hardware interrupt is enabled, the corresponding flag in SIP1 register will be set
when the interrupt event occurs. For example, if keyboard interrupt is required, it can be enabled by setting
the KBIE bit in KBISC register. When KBI event occurs, KBF flag in KBISC register and KBI flag in SIP1
register are both set. User has a choice to poll either of these bits to determine of the event existence.
Writing a logic 1 to KBACK bit in KBISC register will clear both KBF in KBISC and KBI flag in SIP1.

1.8.1 Interrupt Handling Coding Example

The interrupt sources associated with the MC9RS08KA2 are shown below:
• Low voltage detect (LVD)
• Real timer interrupt (RTI)
• Modulo timer overflow (MTIM)
• Analog comparator (ACMP)
• Keyboard interrupt (KBI)

First, the priority of servicing should be defined based on the application need. In general, the interrupt
that requires the shortest latency should have the highest priority. To illustrate the idea the servicing
priority is arbitrarily defined as follows:

For many interrupt driven applications the interrupt event period is unknown to the application; most of
the time the MCU is in idle state and waiting for an event to trigger. Once it happens, the MCU will wakeup
and performs a defined task then returns to its idle state. With the priority table defined in Table 1-5, the
interrupt servicing loop can be written as follows:
InfLoop: sta SRS ;Bump COP

wait
Priority1: brset SIP1_MTIM, SIP1, MTIM_ISR ;5 bus cycles
Priority2: brset SIP1_ACMP, SIP1, ACMP_ISR ;5 bus cycles
Priority3: brset SIP1_KBI, SIP1, KBI_ISR ;5 bus cycles
Priority4: brset SIP1_RTI, SIP1, RTI_ISR ;5 bus cycles
Priority5: brset SIP1_LVD, SIP1, LVD_ISR ;5 bus cycles

bra InfLoop
MTIM_ISR:

;... <ISR coding> ...

Table 1-5. Interrupt Servicing Priority Example

Highest Lowest

MTIM KBI ACMP RTI LVD
Getting Started with RS08, Rev. 1

Freescale Semiconductor20

Introduction to RS08
bra InfLoop
ACMP_ISR:

;... <ISR coding> ...
bra InfLoop

KBI_ISR:
;... <ISR coding> ...
bra InfLoop

RTI_ISR:
;... <ISR coding> ...
bra InfLoop

LVD_ISR:
;... <ISR coding> ...
bra InfLoop

The above example illustrates the software priority handling technique. In the example the MCU enters
wait mode during the application idle state. RS08 CPU requires typically three bus cycles to wakeup from
wait mode, the interrupt latency is mainly due to the software execution time. Assuming a bus frequency
of 10MHz (bus period is 100ns) the corresponding latencies are summarized in Table 1-6. User is free to
customize the software loop and minimize the interrupt latency according to the application requirement.

NOTE
In the above example COP is refreshed before entering wait mode. In order
to avoid a COP reset, at least one interrupt event is expected within the COP
timeout period.

In many applications the interrupt period is much longer, it would be wise to put the MCU in stop mode
to minimize the power consumption, particularly in battery operated applications. Because the RS08 CPU
can only be waked up from stop by asynchronous interrupt source such as KBI, ACMP, etc., all
synchronous interrupt events checking such as MTIM can be eliminated from the interrupt servicing loop.
For MC9RS08KA2, all interrupt sources except MTIM has stop wakeup capability (refer to
MC9RS08KA2 data sheet for more details). On top of the software execution time the interrupt latency
from stop must include the MCU stop recovery time that allows the system clock and internal regulator to
wakeup from their standby mode. The stop recovery time varies among product families, it depends on the
clock module and internal regulator technology used.

Table 1-6. Interrupt Latency based on 10MHz Bus Clock

Interrupt Latency (µs)

MTIM 0.8

ACMP 1.3 1

NOTES:
1 Additional delay (typically 2 bus clock cycles) may exist to synchronize

the asynchronous interrupt source to the bus clock.

KBI 1.8 1

RTI 2.3 1

LVD 2.8 1
Getting Started with RS08, Rev. 1

Freescale Semiconductor 21

Emulated ADC Application Example
2 Emulated ADC Application Example
In this section the analog comparator module in the MC9RS08KA2 is used to implement an 8-bit
analog-to-digital (ADC).

In many applications, precise ADC operation is not needed. With a timer module and a low cost high
performance analog comparator module built into the MCU, an ADC can be emulated. The emulated ADC
resolution depends on the resolution of the timer. In the case of MC9RS08KA2 an 8-bit modulo timer
(MTIM) is included, hence an 8-bit ADC operation can easily be emulated. Comparing with a dedicated
ADC module the trade-off is the sampling time and the dynamic range. Emulated ADC usually has longer
sampling time, narrower dynamic range, and rail-to-rail operation is not feasible.

Figure 2-5. Emulated ADC Schematic

Figure 2-5 shows the schematic of a simple emulated ADC. The positive terminal of the comparator is
connected to a RC network and the negative terminal is the ADC input. Before the comparator function is
enabled, both terminals are general I/O ports. The positive terminal is initially set to output low to
discharge the RC. When ADC function is required, the comparator is then enabled. The ADC function is
emulated by comparing the ADC input to the voltage across the C. Timer is used to monitor the time it
takes for the RC to charge up to the ADC input voltage. Since the RC charging profile is not linear, if the
ADC dynamic range is small, the timer reading can be used as it is. In general it is more desirable to
convert the timer reading back to linear scale using a simple lookup table.

2.1 Implementation
The following is the procedure to use the MC9RS08KA2 to perform the emulated ADC function. The
complete program is listed in Appendix A.

1. Define the sampling time and timer resolution. The sampling time is the time for the RC to
charge up to the maximum ADC input voltage (dynamic range). In this example one millisecond
is arbitrarily chosen. When 8-bit timer is used (n=8), the timer resolution is 3.9µs (the function is
given in Equation 1) and is rounded up to 4µs. Maximum timer overflow is assumed, then overflow
period becomes 255 times 4µs, i.e. 1.02ms.

Eqn. -1

+

–

MCU Boundary

VDD

ADC In

On-chip
Comparator

47nF
C

4k7
R

TimerResolution Ch eUpTimearg
2n 1–

--=
Getting Started with RS08, Rev. 1

Freescale Semiconductor22

Emulated ADC Application Example
2. Define RC time constant. The RC charging profile follows Equation 2.

Eqn. -2

The capacitor charge level reaches 99% when the time, t, reaches about 4.6 times of the RC
constant. To maximize the measurement range, the timer overflow period is expected to be longer
than or equal to this value. In this example, with 1.02ms timer overflow period RC constant
becomes 2.21E-4.

Eqn. -3

The value of the resistor, R, is defined by the port sinking capability. Referring to the data sheet of
MC9RS08KA2, the sinking current can keep in around 1mA level so that the initial discharged
voltage level can maintain to be close to 0V. Assuming VDD of 5V is used, 4700Ω resistor R is
chosen. Then, given 2.21E-4 time constant, capacitor C becomes 47nF. Please note this sinking
current will contribute to the overall system IDD consumption. If the ADC function is not used, or
before the MCU enters stop mode, it is recommended to configure the port back to input or high
impedance to avoid current leakage.

3. Construct the lookup table. Given the timer resolution, 4µs in this example, it is possible to
construct a lookup table to compensate for the nonlinearity of the charging profile based on
Equation 2. The step size for a linear 8-bit ADC is given as:

Eqn. -4

Figure 2-6. ADC Quantization Diagram

A linear ADC is expected to quantize the input voltage at step boundary starting from step/2 input
voltage as shown in Figure 2-6. The conversion function becomes:

V VDD 1 e
t

RC
--------–

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

RC TimerOverflowPeriod
4.61

---=

Step
VDD

255
----------=

C
O

D
E

ADC in (V)

$01

$00

$02

$03

Step/2 3*Step/2

Step

5*Step/2

Step

Step

7*Step/2
Getting Started with RS08, Rev. 1

Freescale Semiconductor 23

Emulated ADC Application Example
Eqn. -5

The lookup table that converts the timer count to linear ADC code is shown in Table 2-7.

4. Define bus frequency. There is software overhead to enable the timer and the comparator before
taking measurements. To avoid software latency error, it is recommended to choose a bus
frequency which is at least five times the timer clock frequency. In this example, a 2MHz bus
frequency is initially chosen, then timer prescaler is set to divide-by-8 option which gives 250kHz
timer clock frequency, i.e. 4µs resolution. In applications where the choice of bus frequency cannot
be chosen freely, the lookup table can be rebuilt to compensate for the software latency.

5. RS08 coding. The software code can be divided into four parts: declaration, initialization, ADC
read, and table lookup.
a) First, declare the variables required and the lookup table location. The most frequently used

variables should be allocated on the tiny addressable RAM area, i.e. $0000 to $000D, such that
the single byte tiny/short instructions can be used for data manipulation. Hence, code density
is greatly improved. Lookup table is located in the upper memory, there is no restriction on
where to put the table, in this example $3E00 is arbitrarily chosen. All upper memory access is
done through the 64-byte paging window located on the first page.

Table 2-7. Non-Linearity Compensation Lookup Table

Time (µs)
ADC Input (V)
(Equation 2)

Timer Count
Linear ADC Code

(Equation 5)

0 0 0 0

4 0.09 1 5

8 0.18 2 10

12 0.26 3 14

16 0.35 4 18

20 0.43 5 23

and so on...

1012 4.95 253 253

1016 4.95 254 253

1020 4.95 255 253

Code

ADCin Step
2

-----------–

Step

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1+ ADCin Step
2

-----------≥⎝ ⎠
⎛ ⎞;

0 ADCin Step
2

-----------<⎝ ⎠
⎛ ⎞;

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

Getting Started with RS08, Rev. 1

Freescale Semiconductor24

Emulated ADC Application Example
;===
; Application Definition
;===
RC equ PTAD_PTAD0
mRC equ mPTAD_PTAD0
TableStart equ $3E00

org Tiny_RAMStart
; variable/data section
SensorReading ds.b 1
ADCOut ds.b 1

b) Comparator positive terminal must be initialized as output low, so that RC network will start
up at a completely discharged state. Coding is shown below:

;---
; Init RAM
;---

clr SensorReading ; Single byte instruction
clr ADCOut ; Single byte instruction

;---
; Config GPIO
; RC - init L
;---

mov #(mDATAOUT), PTAD ; RC Initial low
mov #(mRC|mDATAOUT), PTADD ; Set Output pins

c) In the ADCRead subroutine, the timer is initialized and started to run before enabling the
comparator. Once the comparator is enabled, both of its terminals become analog inputs and
the RC network starts to charge up. The MCU then enters wait mode and waiting for interrupt
events to trigger. Both timer (MTIM) overflow interrupt and comparator interrupt are enabled
since either of these events will wake the MCU up from wait mode. When an interrupt triggers
the software flow continues and the following instruction is executed. The timer counter value
is read out immediately and save in SensorReading variable. The comparator flag is then
checked. If it is clear, it indicates no comparator event occurred. The ADC input could be out
of range and the saved SensorReading value is flushed. Otherwise the comparator is disabled,
the positive terminal returns to output low and discharges the RC network.

;%%%
; Read Sensor (ADC) Value
; Timer prescalar=8 -> Timer clk~250kHz
; Bus = 2MHz
; Max OF period = 1.02ms
; Timer resolution = 4us
;%%%
ADCRead:

mov #(MTIM_BUS_CLK|MTIM_DIV_8), MTIM1CLK ;Change Timer resolution
mov #255, MTIM1MOD ;OF period
mov #(mMTIM1SC_TRST|mMTIM1SC_TOIE), MTIM1SC ;Reset and Start Timer
mov #(mACMP1SC_ACME|mACMP1SC_ACIE|ACMP_OUTPUT_RAISING), ACMP1SC

; Enable ACMP, start RC rise
bset ACMP1SC_ACF, ACMP1SC ;Clear ACMP Flag
wait
mov MTIM1CNT, SensorReading
brclr ACMP1SC_ACF, ACMP1SC, NoReading
Getting Started with RS08, Rev. 1

Freescale Semiconductor 25

Emulated ADC Application Example
bset ACMP1SC_ACF, ACMP1SC ;Clear ACMP Flag
clr ACMP1SC ;disable ACMP
mov #(mMTIM1SC_TSTP|mMTIM1SC_TRST), MTIM1SC ;mask int and clear flag
rts

NoReading:
mov #$FF, SensorReading ;Biggest Number
clr ACMP1SC ;disable ACMP
mov #(mMTIM1SC_TSTP|mMTIM1SC_TRST), MTIM1SC ;mask int and clear flag
rts

d) In TableLookup subroutine the two most significant bits (MSB) of the variable SensorReading
are extracted and added to the page number that holds the lookup table. The corresponding
lookup table content is mapped to the 64-byte paging window, $00C0 to $00FF. Then the six
least significant bits (LSB) of the variable SensorReading is used as an index to read out the
upper memory content directly from the paging window.

;%%%
; 8bit Table Lookup
;%%%
TableLookup:

lda SensorReading ;
rola ;Extract 2 MSB
rola ;
rola ;
and #$03 ;Mask all other bits
add #(TableStart>>6) ;Add to Lookup table page
sta PAGESEL ;High page
lda SensorReading ;
and #$3F ;Extract 6 LSB
add #$c0 ;Index to paging window
tax ;
lda ,x ;Read upper memory
sta ADCOut ;Store lookup table content
mov #(HREG), PAGESEL ;Return to register page
rts ;

;%%%
; ADC Lookup Table - RC charging profile
;%%%

org TableStart
dc.b 0, 5, 10, 14, 18, 23, 27, 31, 35, 39, 43, 47, 50, 54, 58, 61
dc.b 65, 68, 71, 75, 78, 81, 84, 87, 90, 93, 96, 99,102,105,107,110
dc.b 113,115,118,120,123,125,127,130,132,134,136,138,141,143,145,147
dc.b 149,150,152,154,156,158,160,161,163,165,166,168,169,171,173,174
dc.b 175,177,178,180,181,182,184,185,186,188,189,190,191,192,193,195
dc.b 196,197,198,199,200,201,202,203,204,205,206,206,207,208,209,210
dc.b 211,211,212,213,214,215,215,216,217,217,218,219,219,220,221,221
dc.b 222,223,223,224,224,225,225,226,226,227,228,228,228,229,229,230
dc.b 230,231,231,232,232,233,233,233,234,234,235,235,235,236,236,236
dc.b 237,237,237,238,238,238,239,239,239,240,240,240,240,241,241,241
dc.b 241,242,242,242,242,243,243,243,243,244,244,244,244,244,245,245
dc.b 245,245,245,246,246,246,246,246,246,247,247,247,247,247,247,247
dc.b 248,248,248,248,248,248,248,249,249,249,249,249,249,249,249,249
dc.b 250,250,250,250,250,250,250,250,250,250,251,251,251,251,251,251
dc.b 251,251,251,251,251,251,252,252,252,252,252,252,252,252,252,252
dc.b 252,252,252,252,252,252,253,253,253,253,253,253,253,253,253,253
Getting Started with RS08, Rev. 1

Freescale Semiconductor26

Emulated ADC Application Example
2.2 Calibration
The emulated ADC performance depends highly on the RC network time constant accuracy. If the actual
RC component values deviates from their specified values, the RC charging profile will be shifted and the
timer capture will be inaccurate. In addition, variations in parasitic loading on the PCB layout will also
contribute to RC time constant error. Simple calibration can be performed to compensate for the change in
RC constant.

Figure 2-7. 2.5V Input R-C Charging Profile

To measure the actual RC constant the charging profile must be recorded. This can be done by applying a
VDD/2 voltage to the ADC input. The charging profile is recorded as in Figure 2-7. The time taken for the
RC network to reach VDD/2 voltage level, 264µs in this case. The expected rise time based on the previous
calculation listed in Table 2-7 is 152µs, which is equivalent to 38 timer counts. There are several ways to
do the calibration.

• From Equation 2 it is possible to deduce the actual RC constant and rebuild the lookup table.
• Instead of using fixed value R or C, variable R or C component can be used. Adjusting the R or

the C until the rise time is reduced to the expected value (152µs in this case).
• Compensation can be done by adjusting the timer resolution. MC9RS08KA2 and many Freescale

MCUs include a software programmable clock source (ICS), bus frequency can be fine-tuned by
simply reprogramming the content of the TRIM register. In this example, timer resolution is 4µs
based on the previous calculation with 2MHz bus frequency, 38 timer counts are expected to reach
VDD/2 voltage level. So, with 264µs measured rise time, new timer resolution should be 264µs
divided by 38, i.e. 6.94µs. With a divide-by-8 prescaler option selected for the timer clock source,
compensated bus period should be 6.94µs divided by 8, which is 868ns, i.e. 1.15MHz bus
frequency. Therefore, if a 1.15MHz bus frequency is used, no hardware adjustment nor lookup
table modification is required. For MC9RS08KA2, bus frequency can be changed by
reprogramming the TRIM register and bus frequency divider bits in the ICSC2 register. (Refer to
MC9RS08KA2 data sheet for more details.)

264ms

VDD/2
Getting Started with RS08, Rev. 1

Freescale Semiconductor 27

Emulated ADC Application Example
2.3 Measurement Result
When ADCRead subroutine is executed, the RC network starts the charging process. Once the ADC input
voltage matches the RC voltage, the timer counter value is read out and the comparator is disabled. RC
network returns to the discharged state. Figure 2-8 shows the charging and discharging process with
various ADC input voltages.

Figure 2-8. RC Charging Profile Against Different ADC Input Voltages

With bus frequency adjusted to 1.15MHz the emulated ADC performance for VDD=5V is shown in
Table 2-8 and Figure 2-9.

Table 2-8. Emulated ADC Performance

ADC Input Voltage (V)
Expected ADC code

(Decimal)
Measured ADC code

(Decimal)

1 51 50

1.5 76 75

2 102 99

2.5 127 123

3 153 150

3.5 178 175

4 204 202

4.5 229 234

ADC IN = 1V ADC IN = 2.5V ADC IN = 5V
Getting Started with RS08, Rev. 1

Freescale Semiconductor28

Emulated ADC Application Example
Figure 2-9. Emulated ADC Performance

Emulated ADC Performance

0

50

100

150

200

250

0 2 4 6

ADC In (Voltage)

C
od

e
(D

ec
im

al
)

Expected
Measured
Getting Started with RS08, Rev. 1

Freescale Semiconductor 29

Emulated ADC Application Example
Appendix A Program Listing
;**
;
; (c) copyright Freescale Semiconductor, Inc. 2006.
; ALL RIGHTS RESERVED
;
;**
;**
;* Emulated ADC Coding for MC9RS08KA2
;*
;* Author: Vincent Ko
;* Date: Jan 2006
;*
;* PTA0/KBI0/ACMP+ RC network
;* PTA1/KBI1/ACMP- ADCIN
;* PTA5/KBI5 DATAOUT
;*
;**
; include derivative specific macros

XDEF Entry

include "MC9RS08KA2.inc"
;===
; ICS Definition
;===
ICS_DIV_1 equ $00
ICS_DIV_2 equ $40
ICS_DIV_4 equ $80
ICS_DIV_8 equ $c0
;===
; MTIM Definition
;===
MTIM_DIV_1 equ $00
MTIM_DIV_2 equ $01
MTIM_DIV_4 equ $02
MTIM_DIV_8 equ $03
MTIM_DIV_16 equ $04
MTIM_DIV_32 equ $05
MTIM_DIV_64 equ $06
MTIM_DIV_128 equ $07
MTIM_DIV_256 equ $08
MTIM_BUS_CLK equ $00
MTIM_XCLK equ $10
MTIM_TCLK_FALLING equ $20
MTIM_TCLK_RISING equ $30
;===
; ACMP Definition
;===
ACMP_OUTPUT_FALLING equ $00
ACMP_OUTPUT_RAISING equ $01
ACMP_OUTPUT_BOTH equ $03
;===
; RTI Definition
;===
RTI_DISABLE equ $00
RTI_8MS equ $01
Getting Started with RS08, Rev. 1

Freescale Semiconductor30

Emulated ADC Application Example
RTI_32MS equ $02
RTI_64MS equ $03
RTI_128MS equ $04
RTI_256MS equ $05
RTI_512MS equ $06
RTI_1024MS equ $07

;===
; Application Definition
;===
RC equ PTAD_PTAD0
mRC equ mPTAD_PTAD0
DATAOUT equ PTAD_PTAD5
mDATAOUT equ mPTAD_PTAD5

TableStart equ $3E00

org Tiny_RAMStart
; variable/data section
SensorReading ds.b 1
ADCOut ds.b 1
BitCount ds.b 1

org Z_RAMStart
; variable/data section

org ROMStart
; code section
main:
Entry:
;---
; Config ICS
; Device is pre-trim to 18.4MHz ICLK frequency
; TRIM value are stored in $3FFA:$3FFB
;---

mov #$FF, PAGESEL
mov $FB, ICSSC ; $3FFB
mov $FA, ICSTRIM ; $3FFA
mov #ICS_DIV_8, ICSC2 ; Use 1.15MHz bus

;---
;Config System
;---

mov #HREG, PAGESEL ; Init Page register
mov #(mSOPT_COPE|mSOPT_COPT|mSOPT_STOPE), SOPT ; SOPT, COP enabled
mov #(mSPMSC1_LVDE|mSPMSC1_LVDRE), SPMSC1 ; LVI enable
mov #(RTI_128MS|mSRTISC_RTIE), SRTISC ; 128ms RTI

;---
; Init RAM
;---

clr SensorReading ; Single byte instruction
clr ADCOut ; Single byte instruction

;---
; Config GPIO
; RC - init L
;---

mov #(mDATAOUT), PTAD ; RC Initial low
mov #(mRC|mDATAOUT), PTADD ; Set Output pins
Getting Started with RS08, Rev. 1

Freescale Semiconductor 31

Emulated ADC Application Example
;---
; Application Loop
; 1) Wakeup every 128ms
; 2) Read ADC input
; 3) Dump code to serially output port (DATAOUT)
;---
InfLoop:

wait
bset SRTISC_RTIACK, SRTISC
bsr ReadSensor ; Read Charge up time data
bsr TableLookup ; Decode 8bit level
bsr DataDump ; Dump ADC code
sta SRS ; Bump COP
bra InfLoop

;%%%
; Read Sensor (ADC) Value
; Timer prescalar=8 -> Timer clk~250kHz
; Bus = 2MHz
; Max OF period = 1.02ms
; Timer resolution = 4us
;%%%
ADCRead:

mov #(MTIM_BUS_CLK|MTIM_DIV_8), MTIM1CLK ;Change Timer resolution
mov #255, MTIM1MOD ;OF period
mov #(mMTIM1SC_TRST|mMTIM1SC_TOIE), MTIM1SC ;Reset and Start Timer
mov #(mACMP1SC_ACME|mACMP1SC_ACIE|ACMP_OUTPUT_RAISING), ACMP1SC

; Enable ACMP, start RC rise
bset ACMP1SC_ACF, ACMP1SC ;Clear ACMP Flag
wait
mov MTIM1CNT, SensorReading
brclr ACMP1SC_ACF, ACMP1SC, NoReading
bset ACMP1SC_ACF, ACMP1SC ;Clear ACMP Flag
clr ACMP1SC ;disable ACMP
mov #(mMTIM1SC_TSTP|mMTIM1SC_TRST), MTIM1SC ;mask int and clear flag
rts

NoReading:
mov #$FF, SensorReading ;Biggest Number
clr ACMP1SC ;disable ACMP
mov #(mMTIM1SC_TSTP|mMTIM1SC_TRST), MTIM1SC ;mask int and clear flag
rts

;%%%
; 8bit Table Lookup
;%%%
TableLookup:

lda SensorReading ;
rola ;Extract 2 MSB
rola ;
rola ;
and #$03 ;Mask all other bits
add #(TableStart>>6) ;Add to Lookup table page
sta PAGESEL ;High page
lda SensorReading ;
and #$3F ;Extract 6 LSB
add #$c0 ;Index to paging window
tax ;
lda ,x ;Read upper memory
Getting Started with RS08, Rev. 1

Freescale Semiconductor32

Emulated ADC Application Example
sta ADCOut ;Store lookup table content
mov #(HREG), PAGESEL ;Return to register page
rts ;

;%%%
; Serial Data dump
; <LOW><b7><b6><b5><b4><b3><b2><b1><b0><HIGH>
;%%%
DataDump:

mov #8, BitCount
lda ADCOut

bclr DATAOUT, PTAD ;5 Start bit
bclr DATAOUT, PTAD ;5 dummy
cmp 0 ;3 dummy
nop ;1 dummy

NextBit:
lsla ;1
bcc ClrPort ;3
bset DATAOUT, PTAD ;5
bra BitEnd ;3

ClrPort:
bclr DATAOUT, PTAD ;5
bra BitEnd ;3

BitEnd:
dbnz BitCount, NextBit ;6

ByteEnd:
bset DATAOUT, PTAD ;5 End bit
rts

;%%%
; ADC Lookup Table - RC charging profile
;%%%

org TableStart
dc.b 0, 5, 10, 14, 18, 23, 27, 31, 35, 39, 43, 47, 50, 54, 58, 61
dc.b 65, 68, 71, 75, 78, 81, 84, 87, 90, 93, 96, 99,102,105,107,110
dc.b 113,115,118,120,123,125,127,130,132,134,136,138,141,143,145,147
dc.b 149,150,152,154,156,158,160,161,163,165,166,168,169,171,173,174
dc.b 175,177,178,180,181,182,184,185,186,188,189,190,191,192,193,195
dc.b 196,197,198,199,200,201,202,203,204,205,206,206,207,208,209,210
dc.b 211,211,212,213,214,215,215,216,217,217,218,219,219,220,221,221
dc.b 222,223,223,224,224,225,225,226,226,227,228,228,228,229,229,230
dc.b 230,231,231,232,232,233,233,233,234,234,235,235,235,236,236,236
dc.b 237,237,237,238,238,238,239,239,239,240,240,240,240,241,241,241
dc.b 241,242,242,242,242,243,243,243,243,244,244,244,244,244,245,245
dc.b 245,245,245,246,246,246,246,246,246,247,247,247,247,247,247,247
dc.b 248,248,248,248,248,248,248,249,249,249,249,249,249,249,249,249
dc.b 250,250,250,250,250,250,250,250,250,250,251,251,251,251,251,251
dc.b 251,251,251,251,251,251,252,252,252,252,252,252,252,252,252,252
dc.b 252,252,252,252,252,252,253,253,253,253,253,253,253,253,253,253

;%%%
; Reset Vector
;%%%

org $3ffc
Security:

dc.b $FF
jmp main
Getting Started with RS08, Rev. 1

Freescale Semiconductor 33

Document Number: AN3266
Rev. 1
5/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction to RS08
	1.1 RS08 Architecture
	1.1.1 CPU Registers
	1.1.2 Special Registers
	1.1.3 Generic Addressing Mode
	1.1.3.1 Addressing Modes Common to HC08/S08 Platforms
	1.1.3.2 Tiny and Short Addressing Modes
	1.1.3.3 Pseudo Addressing Modes

	1.2 RS08 Instruction Set
	1.2.1 Tiny and Short Addressing Mode Instructions
	1.2.2 Pseudo Instructions

	1.3 Paging Memory Scheme
	1.4 MCU Reset
	1.5 Wait Mode
	1.6 Stop Mode
	1.7 Subroutine Call
	1.8 Interrupt
	1.8.1 Interrupt Handling Coding Example

	2 Emulated ADC Application Example
	2.1 Implementation
	2.2 Calibration
	2.3 Measurement Result

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

