

12500 TI Boulevard, MS 8640, Dallas, Texas 75243

PCN# 20141203000 TPS2592AA/B/Z Datasheet change Information Only Datasheet

Date: 12/4/2014 To: Newark/Farnell PCN

Dear Customer:

This is an information-only announcement of a change to a device that is currently offered by Texas Instruments.

The changes discussed within this PCN are for your information only.

Any negotiated alternative change requirements will be provided via the customer's defined process. Customers with previously negotiated, special requirements will be handled separately. Any inquiries should be directed to your local Field Sales Representative.

For questions regarding this notice, contact your local Field Sales Representative or the PCN Manager (<u>PCN ww admin team@list.ti.com</u>).

Sincerely,

PCN Team SC Business Services Phone: +1(214) 480-6037 Fax: +1(214) 480-6659

20141203000 Information Only Datasheet Attachments

Products Affected:

The devices listed on this page are a subset of the complete list of affected devices. According to our records, these are the devices that you have purchased within the past twenty-four (24) months. The corresponding customer part number is also listed, if available.

DEVICE

TPS2592AADRCT TPS2592ALDRCT TPS2592BLDRCT

CUSTOMER PART NUMBER

null null null

Technical details of this Product Change follow on the next page(s).

PCN Number:		201412030	000				PCN Dat	e:	12/04/2014
Title: TPS2592AA/B/Z Datasl			et c	hange					
Customer Contact:		PCN Manager		Phone: +1(214) 480-6037		37	Dept: Qua		ality Services
Change	Туре:								
Asse	embly Site			Design			Wafer Bump Site		
Asse	embly Process		\boxtimes	Data Sh	eet		Wafer Bump Material		
Asse	embly Materia	s		Part nun	nber change		Wafer Bump Process		p Process
Mechanical Specification			Test Site	9		Wafer I	Fab S	Site	
Pacl	king/Shipping/	Labeling		Test Pro	cess		Wafer Fab Materials		
							Wafer I	Fab I	Process

PCN Details

Description of Change:

Texas Instruments Incorporated is announcing an information only notification, etc.

The product datasheet(s) is being updated to Split the datasheet into A, B, Z versions and reduce the current limit ranges.

The datasheet number will be changing.

Device Family	Change From:	Change To:
TPS2592AA/AL	SLVSC11B	SLVSC11C
TPS2592BA/BL	SLVSC11B	SLVSCU2
TPS2592ZA/ZL	SLVSC11B	SLVSCU3

These changes may be reviewed at the datasheet links provided.

http://www.ti.com/product/tps2592aa?qgpn=tps2592aa http://www.ti.com/product/tps2592ba?qgpn=tps2592ba http://www.ti.com/product/tps2592za?qgpn=tps2592za

The following section provides further details on specification changes.

Texas INSTRUMENTS

www.ti.com

TPS2592AA, TPS2592AL SLVSC11C - JUNE 2013-REVISED DECEMBER 2014

Primary Spec Changes from Revision B (2013) to Revision C

Page

 Added Maximum power dissipation in Absolute Maximum Ratings..... ΜΔΧ UNIT

Maximum power dissipation ⁽³⁾ , P _D	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		40	W		
$= (V_{IN} - V_{OUT}) \times I_{OUT}$	$T_A = 0^{\circ}C$ to +85 $^{\circ}C$		50	vv		
(3) Refer detailed explanation in the application section Maximum Device Power Dissipation Considerations						

on section Maximum Device Power Dissipation Considerations ed explanation in the appl

Change From: (page 3)

 Changed Con 	Changed Continuous output current and Change Resistance values					
		MIN	түр	MAX	UNIT	
Continuos output current	lout	0		5	Α	
Resistance	ILIM	40.2	100	162	kΩ	

Change To: (page 5)

			MIN	TYP MAX	UNIT
Continuous output current		$T_A = -40^{\circ}C$ to +85°C	0	2.8	^
	OUT	$T_A = 0^{\circ}C$ to +85°C	0	3.4	A
Registeres	ILIM	T _A = -40°C to +85°C	10	80.6	kΩ
Resistance		$T_A = 0^{\circ}C$ to +85°C	10	100	KΩ

Updated (page 23)

10.3 Maximum Device Power Dissipation Considerations

To prevent damage to the TPS2592x, it is necessary to keep internal power dissipation (P_D) below the levels specified in below Table. The power dissipation is defined as $(P_D = (V_{IN} - V_{OUT}) \times I_{OUT})$.

During normal operation P_D is low (typically < ½ Watt) because the FET is fully on with low (V_{IN} - V_{OUT}). However, during short circuit and surge protection the FET may be only partially on and $(V_{IN} - V_{OUT})$ can be high.

Example 1: Short Circuit on Output \rightarrow VIN = 12 V, I_{LIMIT} = 3 A. T_J = -40°C

• P_D = 12 V x 3 A = 36 W

• $OK \rightarrow (P_D = 36 \text{ W}) < (P_{D_MAX} = 40 \text{ W})$

Example 2: Short Circuit on Output
$$\rightarrow$$
 VIN = 13.2 V, I_{LIMIT} = 3.7 A

• P_D = 13.2 V x 3.7 A = 49 W

• OK at $T_J = 0^{\circ}C \rightarrow (P_D = 49 \text{ W}) < (P_{D_MAX} \text{ at } 0^{\circ}C = 50 \text{ W})$

• NOT OK at $T_J = -40^{\circ}C \rightarrow (P_D = 51 \text{ W}) > (P_{D_MAX} \text{ at } -40^{\circ}C = 40 \text{ W})$

Example 3: Surge Clamp VIN = 12 V, I_{LIMIT} = 3 A. T_J = 0°C, V_{SURGE} =19 V, V_{CLAMP} = 15 V

• P_D = (19 – 15) x 3 A = 12 Watt

• OK at
$$0^{\circ}C \rightarrow (PD = 12 \text{ W}) < (PD_MAX \text{ at } 0^{\circ}C = 50 \text{ W})$$

5 Revision History

DATE	REVISION	NOTES
December 2014	*	Initial release

Primary Spec Changes

Page

Added Maximum power dissipation in Absolute Maximum Ratings						
		MIN	MAX	UNIT		
Maximum power dissipation ⁽³⁾ , P _D	$T_{\rm A} = -40^{\circ}$ C to +85 °C		40	W		
$= (V_{IN} - V_{OUT}) \times I_{OUT}$	$T_{A} = 0^{\circ}C \text{ to } +85^{\circ}C$		50	vv		

(3) Refer detailed explanation in the application section Maximum Device Power Dissipation Considerations

Updated (page 23)

10.3 Maximum Device Power Dissipation Considerations

To prevent damage to the TPS2592x, it is necessary to keep internal power dissipation (P_D) below the levels specified in below Table. The power dissipation is defined as $(P_D = (V_{IN} - V_{OUT}) \times I_{OUT})$.

During normal operation P_D is low (typically < 1/2 Watt) because the FET is fully on with low (V_{IN} – V_{OUT}). However, during short circuit and surge protection the FET may be only partially on and (VIN - VOUT) can be high. $= 12 \text{ V}, \text{ I}_{\text{LIMIT}} = 3 \text{ A}. \text{ T}_{\text{J}} = -40^{\circ}\text{C}$

Example 1: Short Circuit on Output
$$\rightarrow$$
 VIN :
• P₂ = 12 V × 3 A = 36 W

•
$$P_D = 12 \vee X 3 A = 30 \vee V$$

• OK \rightarrow (P_D = 36 W) < (P_{D_MAX} = 40 W)

Example 2: Short Circuit on Output \rightarrow VIN = 13.2 V, I_{LIMIT} = 3.7 A

• P_D = 13.2 V x 3.7 A = 49 W

• OK at $T_J = 0^{\circ}C \rightarrow (P_D = 49 \text{ W}) < (P_{D_MAX} \text{ at } 0^{\circ}C = 50 \text{ W})$

• NOT OK at $T_J = -40^{\circ}C \rightarrow (P_D = 51 \text{ W}) > (P_{D_MAX} \text{ at } -40^{\circ}C = 40 \text{ W})$

Example 3: Surge Clamp VIN = 12 V, I_{LIMIT} = 3 A. T_J = 0°C, V_{SURGE} =19 V, V_{CLAMP} = 15 V

• P_D = (19 – 15) x 3 A = 12 Watt

• OK at $0^{\circ}C \rightarrow (PD = 12 \text{ W}) < (PD_MAX \text{ at } 0^{\circ}C = 50 \text{ W})$

www.ti.com

5 Revision History

DATE	REVISION	NOTES
December 2014	*	Initial release

Primary Spec Changes

TEXAS INSTRUMENTS

www.ti.com

• Added Maximum power dissipation in Absolute Maximum Ratings..... ΜΔΧ MIN Т LINIT

			1117 121	0			
Maximum power dissipation ⁽³⁾ , P _D	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		40	W			
$= (V_{IN} - V_{OUT}) \times I_{OUT}$	$T_A = 0^{\circ}C$ to +85 $^{\circ}C$		50	vv			
(3) Refer detailed explanation in the application section Maximum Device Power Dissipation Considerations							

er detailed explanation ir (3)app

Updated (page 23)

10.3 Maximum Device Power Dissipation Considerations

To prevent damage to the TPS2592x, it is necessary to keep internal power dissipation (P_D) below the levels specified in below Table. The power dissipation is defined as $(P_D = (V_{IN} - V_{OUT}) \times I_{OUT})$.

During normal operation P_D is low (typically < $\frac{1}{2}$ Watt) because the FET is fully on with low (V_{IN} - V_{OUT}). However, during short circuit and surge protection the FET may be only partially on and (VIN - VOUT) can be high.

Example 1: Short Circuit on Output
$$\rightarrow$$
 VIN = 12 V, I_{LIMIT} = 3 A. T_J = -40°C

• P_D = 12 V x 3 A = 36 W

• $OK \rightarrow (P_D = 36 \text{ W}) < (P_{D_MAX} = 40 \text{ W})$

Example 2: Short Circuit on Output \rightarrow VIN = 13.2 V, I_{LIMIT} = 3.7 A

• P_D = 13.2 V x 3.7 A = 49 W

• OK at $T_J = 0^{\circ}C \rightarrow (P_D = 49 \text{ W}) < (P_{D_MAX} \text{ at } 0^{\circ}C = 50 \text{ W})$

• NOT OK at $T_J = -40^{\circ}C \rightarrow (P_D = 51 \text{ W}) > (P_{D_MAX} \text{ at } -40^{\circ}C = 40 \text{ W})$

Example 3: Surge Clamp VIN = 12 V, I_{LIMIT} = 3 A. T_J = 0°C, V_{SURGE} =19 V, V_{CLAMP} = 15 V

• $P_D = (19 - 15) \times 3 A = 12 Watt$

• OK at $0^{\circ}C \rightarrow (PD = 12 \text{ W}) < (PD_MAX \text{ at } 0^{\circ}C = 50 \text{ W})$

Change From: (page 3)

 Changed Con 	Changed Continuous output current and Change Resistance values					
		MIN	түр	MAX	UNIT	
Continuos output current	I _{OUT}	0		5	Α	
Resistance	ILIM	40.2	100	162	kΩ	

Change To: (page 4)

 Changed Continuous output current and Change Resistance value					
		MIN	TYP MAX	UNIT	
Continuous output current	lout	0	1.7	A	
Resistance	ILIM	10	45.3	kΩ]

Reason for Change:				
To more accurately reflect device characteristics.				
Anticipated impact on Fit, Form, Function, Quality or Reliability (positive / negative):				
Electrical specification performance changes as indicated above.				
Changes to product identification resulting from this PCN:				
None.				
Product Affected:				
TPS2592AADRCR	TPS2592ALDRCT	TPS2592BLDRCR	TPS2592ZADRCT	
TPS2592AADRCT	TPS2592BADRCR	TPS2592BLDRCT		
TPS2592ALDRCR	TPS2592BADRCT	TPS2592ZADRCR		

For questions regarding this notice, e-mails can be sent to the regional contacts shown below or your local Field Sales Representative.

Location	E-Mail
USA	PCNAmericasContact@list.ti.com
Europe	PCNEuropeContact@list.ti.com
Asia Pacific	PCNAsiaContact@list.ti.com
Japan	PCNJapanContact@list.ti.com