

May 2016

FSA7830 8-Channel Voltage MUX with Integrated Voltage Divider and OVP

Features

- Voltage Supply, 2.7 to 5.5 V
- Input Voltage Range, 0 to 5.4 V
- Up to 8-Channel Inputs
- Integrated 1/3, 2/3 Voltage Divider
- Integrated Over-Voltage Protection and Assertion
- Total Introduced Offset < ±10 mV
- I_{CC} < 100 μA, Ishutdown < 1 μA</p>
- 1.8 V I²C Interface, Addr<1:0> to Set Address for Multi Chip Solution
- 16-Ball, 0.4 mm Pitch, 1.56 mm ×1.56 mm, WLCSP Package

Applications

- Cell Phones
- Tablets

Description

The FSA7830 is an 8-Channel, low-power Voltage MUX.

It integrates 8 analog switches for input voltage selection, and voltage dividers to provide 1/3, 2/3 fraction of selected voltage. With another 3 analog switches, FSA7830 provides feasibility to choose 1/3, 2/3 or 1 times of selected voltage.

FSA7830 also contains output buffer to enhance driving capability. It features over-voltage protection to ensure output less than 2 V, interrupt will be alerted at the same time.

FSA7830 supports 1.8 V I2C interface to communicate with processor, and 2 address pins to provide multi-chip solution.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA7830BUCX	GT	-40 to +85°C	16-Ball, 0.4 mm Pitch Wafer Level Chip Scale Package (WLCSP) Package (1.56 x 1.56 mm)

Pin Configuration

Figure 2. 16 Ball WLCSP Package(Top View)

Pin Definitions

Pin#	Name	Description			
A1	V5	Input Port 5			
A2	V6	Input Port 6			
A3	V7	Input Port 7			
A4	V8	Input Port 8			
B1	V4	Input Port 4			
B2	VCC	Voltage Supply			
B3	ADDR<0>	Address Pin, Bit 0			
B4	VO	Output Voltage			
C1	V3	Input Port 3			
C2	ADDR<1>	Address Pin, Bit 1			
C3	GND	Ground			
C4	\INT	I2C Interrupt			
D1	V2	Input Port 2			
D2	V1	Input Port 1			
D3	SCL	I2C Clock			
D4	SDA	I2C Data			

I2C Specifications

Cumbal	Deremeter	Fast Mode			
Symbol	Parameter	Min.	Max.	Unit	
f _{SCL}	I2C_SCL Clock Frequency	0	400	kHz	
t _{HD;STA}	Hold Time (Repeated) START Condition	0.6		μs	
t _{LOW}	LOW Period of I2C_SCL Clock	1.3		μs	
t _{HIGH}	HIGH Period of I2C_SCL Clock	0.6		μs	
t _{su;sta}	Set-up Time for Repeated START Condition	0.6		μs	
t _{HD;DAT}	Data Hold Time	0	0.9	μs	
t _{SU;DAT}	Data Set-up Time ⁽¹⁾	100		ns	
tr	Rise Time of I2C_SDA and I2C_SCL Signals ⁽¹⁾	20+0.1Cb	300	ns	
t _f	Fall Time of I2C_SDA and I2C_SCL Signals ⁽¹⁾	20+0.1Cb	300	ns	
t _{su;sto}	Set-up Time for STOP Condition	0.6		μs	
t _{BUF}	BUS-Free Time between STOP and START Conditions	1.3		μs	
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns	

Note:

A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement t_{SU;DAT} ≥
 □ 250 ns must be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal. If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line t_{r_max} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before the I2C_SCL line is released.

Definition of Timing for Full-Speed Mode Devices on the I2C Bus

Table 1. I²C[™] Slave Address

ADDR<1:0>	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00	1	0	0	0	0	1	0	R/W
01	1	0	0	0	0	1	1	R/W
10	1	0	0	0	1	0	1	R/W
11	1	0	1	0	1	0	0	R/W

Bails Bbis Bbis Slave Address WR A Register Address K A Write Data A Write Data K+1 A Write Data K+2 A Write Data K+N-1 A Note: Single Byte read is initiated by Master with P immediately following first data byte Figure 3. IZC Write Example Slave Address WR A Register Address K A S Slave Address R0 A Read Data K A Read Data K+1 NA Single or multi byte read executed from current register location (Single Byte read initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) W WR Wreo P Stop Conditio Figure 4. I2C Read Example		rite and read coquer	st mode, 400 kHz, sig	gnals. w Figure 3 and Figure 4 rear	actively.	
Slave Address WR A Register Address K A Write Data & Write Data K+1 A Write Data K+2 A Write Data K+N-1 A Note: Single Byte read is initiated by Master with P immediately following first data byte: Babits 8bits Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+N-1 NA Single or multi byte read executed from current register location (Single Byte read is initiated by Master with P immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red brack is needed From Master to Slave S start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master S start Condition NA NOT Acknowledge (SDA High) RD Read =1 Figure 4. L2C Read Example Figure 4. L2C Read Example	8bits	8bits	8bits	w Figure 3 and Figure 4 resp	Jectively.	
Stave Address WR A Register Address K A Write Data K A A Write Data K+2 A Write Data K+N-1 A Note: Single Byte read is initiated by Master with P immediately following first data byte B <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Net: Single Byte read is initiated by Master with P immediately following first data byte. Bits Bbits Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave Address WR A Register Address K A S Slave Address Slave address to Read specified Single or multi byte read executed from current register location (Single Byte read initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Slave to Master S Start Condition Na NOT Acknowledge (SDA High) No Read =1 From Slave to Master S Acknowledge (SDA Low) WR Write=0 P Stop Condition Figure 4. 12C Read Example Figure 4. 12C Read Example Read =1 <	Slave Address WR	A Register Address K	A Write Data A Write	e Data K+1 <mark> A</mark> Write Data K+2 <mark> A</mark>	Write Da	ata K+N-1 <mark>A</mark> P
Bits	Note: Single Byt	e read is initiated by N	laster with P immedia	tely following first data byte		
Bits Bits Bits Bits Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Single or multi byte read executed from current register location (Single Byte read initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition Figure 4. I2C Read Example I2C Read Example I2C Read Example			Figure 3. I2C V	vrite Example		
Slave Address WR A Register Address K S S Slave Address RD A Read Data K A Read Data K A Read Data K K A Read Para K K A Read Data K K K A Read Data K K A Read Data K K K K A Read Data K K K K K K K K K K K K K K K K K K	8bits	8bits	8bits	8bits		
Single or multi byte read executed from current register location (Single Byte read i initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition Figure 4. 12C Read Example	Slave Address WR A	Register Address K A	S Slave Address BD	A Read Data K A Read Data K	+1 A Read [Data K+N-1 NA
Single or multi by lead executed from current register location (single byte read of executed from current register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave \$ Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master \$ Acknowledge (SDA Low) WR Write=0 P Stop Condition From Slave to Master \$ Acknowledge (SDA Low) WR Write=0 P Stop Condition From Slave to Master \$ Acknowledge (SDA Low) WR Write=0 P Stop Condition From Slave to Master \$ Acknowledge (SDA Low) WR Write=0 P Stop Condition From Slave to Master \$ Acknowledge (SDA Low) WR Write=0 P Stop Condition From Slave to Master \$ Acknowledge (SDA Low) WR Write=0 P Stop Condition From Slave to Master \$ Acknowledge (SDA Low) WR Write=0 P Stop Condition		γ				
Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Red = 1 From Slave to Master A Acknowledge (SDA Low) WR Write-0 P Stop Condition Figure 4. 12C Read Example Image: Stop Stop Stop Stop Stop Stop Stop Stop	Register address [†]	to Read specified	initiated by M	ad executed from current register laster with NA immediately follow	ving first dat	ngle Byte read is ta byte)
bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition Figure 4. 1/2C Read Example	Note: If Register i	s not specified Master w	vill begin read from curr	ent register. In this case only seq	uence show	ing in Red
From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition Figure 4. I2C Read Example	bracket is n	eeded				
Figure 4. I2C Read Example	From Master t From Slave to	o Slave S Start Master A Ackn	Condition owledge (SDA Low)	NA NOT Acknowledge (SDA Hig WR Write=0	h) RD P	Read =1 Stop Conditio
			Figure 4. I2C F	Read Example		

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit	
Vcc	Supply Voltage		-0.5	6	V	
V1~8	Input Voltage		-0.5	6	V	
I _{IK}	DC Input Diode Current		-50		mA	
T _{STG}	Storage Temperature		-65	+150	°C	
MSL	Moisture Sensitivity Level (JEDEC J-STE	D-020A)		1	Level	
		All Pins	2			
FOD	Human Body Model, JEDEC: JESD22- A114	I/O to GND	2		kV	
ESD		2				
	Charged Device Model, JEDEC: JESD22	2-C101	500		V	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{cc}	Supply Voltage	2.7	5.5	V
V1~8	Input Voltage	0	5.4	V
V _{ADDR}	Address Pin Voltage	0	V _{CC}	V
V _{SCL,SDA,\INT}	I2C Bus Voltage Swing	0	1.8	V
T _A	Operating Temperature	-40	+85	°C

DC Electrical Characteristics

All typical value are for V_{CC}=3.7 V at T_A=25°C, with 100 K Ω and 100 nF+10 pF loading at VO, unless otherwise specified.

Cumb al	Devenuetor	Condition		T _A =- 40°C to +85°C			Unit
Symbol	Parameter	Condition	V _{CC} (V)	Min.	Тур.	Max.	Unit
VIK	Clamp Diode Voltage	I _{IN} =-18 mA				-0.7	V
V _{IHI2C}	High-Level Input Voltage		2.7 to 5.5	1.26			V
V _{ILI2C}	Low-Level Input Voltage		2.7 to 5.5			0.54	V
V _{HYSI2C}	Hysteresis of Schmitt Trigger Inputs		2.7 to 5.5	0.09			V
I _{I2C}	Input Current of SDA, SCL and \INT	Input Voltage 0.26 V to 2 V	2.7 to 5.5	-10		10	μA
I _{CCTI2C}	V_{CC} current when SDA or SCL is HIGH	Input Voltage 1.8 V	5.5			1	μA
VIHADDR	High-Level Input Voltage		2.7 to 5.5	1.26			V
VILADDR	Low-Level Input Voltage		2.7 to 5.5			0.54	V
V _{HYSADDR}	Hysteresis of Schmitt Trigger Inputs		2.7 to 5.5	0.09			V
V _{olsda}	Low-Level Output Voltage of SDA Pin	4 mA Sink Current (Open-Drain)	2.7 to 5.5			0.36	V
Volintn	Low-Level Output Voltage of \INT	4 mA Sink Current (Open-Drain)	2.7 to 5.5			0.36	V
R _{ON1}	Switch1 On Resistance		2.7 to 5.5		100	200	Ω
R _{ON2}	Switch2 On Resistance ⁽²⁾		2.7 to 5.5		100	200	Ω
R_{VD}	Voltage Divider On Resistance ⁽²⁾		2.7 to 5.5	1			MΩ
I _{CC}	Quiescent Supply Current	All blocks in Enable Mode	2.7 to 5.5			100	μA
I _{CCZ}	Disable Mode Leakage Current		2.7 to 5.5	-1		3.9	μA
I _{LEAK,ON}	Leakage Current of each channel from V1~8 to GND in Enable Mode					2	μA
I _{LEAK,OFF}	Leakage Current of each channel from V1~8 to GND in Disable Mode					1	μA
V _{OFFSET}	Offset Voltage introduced by FSA7830, referring to VO		2.7 to 5.5	-10	1	10	mV
V _{OVP}	Over-Voltage Protection Threshold (Low to High)	Register 06h set to '00'	2.7 to 5.5	1.87	2.00	2.15	V
V _{OVP,HYS}	Over-Voltage Assertion Hysteresis		2.7 to 5.5		50		mV
V _{CLAMPING}	Clamping Voltage on VO when OVP happens	Register 06h set to '00'	2.7 to 5.5	1.87	2.00	2.15	V
V _{O,DYNAMIC}	VO Dynamic Range	100 K Ω between VO to 0.9 V, output buffer has the ability to drive the target value with maximum 1% mismatch	2.7 to 5.5	0.5		2.1	V

Guaranteed by Design. 2.

AC Electrical Characteristics

All typical value are for V_{CC}=4.2 V at T_A=25°C, with 100 K Ω and 100 nF+10 pF loading at VO, unless otherwise specified.

Symbol	Paramatar	Condition		T _A =- 40°C to +85°C			Unit
Symbol	Farameter	Condition	V _{CC} (V)	Min.	Тур.	Max.	Unit
Cı	Input Capacitance on V1~8 ⁽³⁾	F=1 MHz	2.7 to 5.5			50	pF
t _{SETTLING}	VO Settling Time after each Switching ⁽³⁾	R_{s} =50 Ω , C_{o} =100 nF+10 pF, R_{o} =100 K Ω , VO reaches 99% of target value	2.7 to 5.5			200	μs
tloadresponse	VO Buffer Load Response, Settling Time of Load Change ⁽³⁾	Loading on VO switches from 100 nF to C_0 =100 nF+10 pF, R_0 =100 K. VO reaches 99% of target value	2.7 to 5.5			150	ns
PSRR	Power Supply Rejection Ratio of VO from V_{CC}	Power supply noise, F=217 Hz, Vpp=50 mV, C_0 =100 nF+10 pF, R_0 =100 K Ω	2.7 to 5.5		70		dB
Xtalk	Cross Talk between V1~8	F=500 KHz, Vpp=50 mV, C ₀ =100 nF+10 pF, R ₀ =100 KΩ	2.7 to 5.5		80		dB

Note:

3. Guaranteed by characterization and not tested in production.

Application Information

Interrupt operation

The \INT pin is an active low, open drain output which indicates to the host processor that an interrupt has occurred in the FSA7830 which needs attention. The \INT pin is HIGH-Z by default after power-up or device reset.

The \INT pin stays HIGH-Z in preparation of future interrupts. When an interruptible event occurs, \INT is driven LOW and is HIGH-Z again when the processor clears the interrupt by reading the interrupt registers.

Subsequent to the initial power up or reset; if the processor writes a "1" to one of interrupt mask bits when the system is already powered up, the \INT pin stays HIGH-Z and ignores corresponding interrupt until the interrupt mask bit is cleared. If an event happens that would ordinarily cause an interrupt when the interrupt mask bit is set, the \INT pin goes LOW when the interrupt mask is cleared.

Buffer & Clamping Enable Truth Table

To prevent non-ideal waveforms on VO node, enable of Output Buffer and Clamping circuitry depends on status of multi-internal register values.

	Registers						
Chip Enable	SW1 Enable	SW2 Enable	SW3 Enable	Output Enable	Clamping Enable		
0	x	x	x	x	0		
1	0	x	x	х	0		
1	x	0	x	x	0		
1	1	1	x	0	0		
1	1	1	х	1	1		

Table 2. Register Map

Register Definitions

Table 3. Register Map

Address	Register Name	Туре	Rst Val	Description	
0x01	Device ID	RO	08	Device Version and Revision	
0x02	Control	RW	00 Device Control		
0x03	SWCTL	RW	00	Switch Status Control	
0x04	INT	RO	00	Interrupt	
0x05	INT_MASK	RW	80	Interrupt Mask	
0x06	OVP	RW	00	OVP Threshold	

Notes:

4. Do not use registers that are blank.

5. Values read from undefined register bits are not defined and invalid. Do not write to undefined registers.

Table 4. Register Device ID

Address: 01h

Reset Value: 0x0000_1000

Type: Read

Bits	Name	Size	Description
7:6	Vendor ID	2	Vendor ID
5:3	Version ID	3	Device Version ID
2:0	Revision ID	3	Revision History ID

Table 5. Control

Address: 02h Reset Value: 0x0000_0000

Type: Read/Write

Bits	Name	Size	Description
7	Chip Enable	1	FSA7830 Enable/Shutdown 0: Shutdown (all other registers, including bits<6:0> of this register, reset to default value) 1: Enable
6	Output Enable	1	Output Buffer Enable 0: Disable, VO maintains HiZ 1: Enable
<5:4>	OVP action	2	Actions after OVP 00: Clamp output voltage to 2 V (based on register 06h) 01: Pull VO to 0V 10: No Action
<3:0>	Reserved	4	Do Not Use

Table 6. SWCTL

Address: 03h Reset Value: 0x0000_0000 Type: Read/Write

Bits	Name	Size	Description
7	SW1 Enable	1	Switch 1 Enable 0: All Switches Off 1: One switch on, status based on <6:4>
<6:4>	SW1 Control	3	Switch 1 Control 000: V1 to Vint 001: V2 to Vint 010: V3 to Vint 011: V4 to Vint 100: V5 to Vint 101: V6 to Vint 110: V7 to Vint 111: V8 to Vint
3	SW2 Enable	1	Switch 2 Enable 0: All Switches Off 1: One switch on, status based on <2:1>
<2:1>	SW2 Control	2	Switch 2 Control 00: VO to Vint 01: VO to 1/3Vint 10: VO to 2/3Vint 11: Reserved
0	SW3 Control	1	Switch 3 Control 0: SW3 OFF 1: SW3 ON

Table 7. INT

Address: 04h Reset Value: 0x0000_0000 Type: Read/Clear

Bits	Name	Size	Description
7	OVP	1	0: OVP event has not occurred 1: OVP event has occurred
<6:0>	Reserved	7	Do Not Use

Table 8. INT_MASK

Address: 05h Reset Value: 0x1000_0000

Type: Read/W	rite		
Bits	Name	Size	Description
7	OVP	1	0: Do not mask OVP interrupt 1: Mask OVP interrupt
<6:0>	Reserved	7	Do Not Use

Table 9. OVP

Address: 06h Reset Value: 0x0000_0000 Type: Read/Write

Bits	Name	Size	Description
<7:3>	Reserved	5	Do Not Use
<2:0>	OVP Threshold	3	Over-voltage protection threshold 000: Default 001: +50 mV 010: +100 mV 011: -250 mV 100: -50 mV 101: -100 mV 110: -150 mV 111: -200 mV

The table below pertains to the WLCSP package information on the following page.

Physical Dimensions

Product	D	E	X	Y
FSA7830BUCX	1.56 mm	1.56 mm	0.18 mm	0.18 mm

0.208±0.021

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

BOTTOM VIEW

NOTES

- A. NO JEDEC REGISTRATION APPLIES.
- **B. DIMENSIONS ARE IN MILLIMETERS.**
- C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
- /D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
 - E. PACKAGE NOMINAL HEIGHT IS
- 586 ± 39 MICRONS (547-625 MICRONS). /F.\FOR DIMENSIONS D,E,X, AND Y SEE
 - PRODUCT DATASHEET.
- G. DRAWING FILNAME: MKT-UC016AF rev1

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177