

Digital Triaxial Vibration Sensor with FFT Analysis and Storage Digital

Data Sheet ADIS16228

FEATURES

Frequency domain triaxial vibration sensor Flat frequency response up to 5 kHz Digital acceleration data, ±18 g measurement range Digital range settings: 0 q to 1 q/5 q/10 q/20 qReal-time sample mode: 20.48 kSPS, single-axis Capture sample modes: 20.48 kSPS, three axes Trigger modes: SPI, timer, external Programmable decimation filter, 11 rate settings Multirecord capture for selected filter settings Manual capture mode for time domain data collection FFT, 512-point, real valued, all three axes (x, y, z) 3 windowing options: rectangular, Hanning, flat top Programmable FFT averaging: up to 255 averages Storage: 14 FFT records on all three axes (x, y, z) Programmable alarms, 6 spectral bands 2-level settings for warning and fault definition Adjustable response delay to reduce false alarms Internal self-test with status flags Digital temperature and power supply measurements 2 auxiliary digital inputs/outputs **SPI-compatible serial interface** Identification registers: serial number, device ID, user ID Single-supply operation: 3.0 V to 3.6 V Operating temperature range: -40°C to +125°C 15 mm \times 24 mm \times 15 mm aluminum package, flex connector

APPLICATIONS

Vibration analysis
Condition monitoring
Machine health
Instrumentation, diagnostics
Safety shutoff sensing

GENERAL DESCRIPTION

The ADIS16228 iSensor® is a complete vibration sensing system that combines triaxial acceleration sensing with advanced time domain and frequency domain signal processing. Time domain signal processing includes a programmable decimation filter and selectable windowing function. Frequency domain processing includes a 512-point, real-valued FFT for each axis, along with FFT averaging, which reduces the noise floor variation for finer resolution. The 14-record FFT storage system offers users the ability to track changes over time and capture FFTs with multiple decimation filter settings.

The 20.48 kSPS sample rate and 5 kHz flat frequency band provide a frequency response that is suitable for many machine health applications. The aluminum core provides excellent mechanical coupling to the MEMS acceleration sensors. An internal clock drives the data sampling and signal processing system during all operations, which eliminates the need for an external clock source. The data capture function has three modes that offer several options to meet the needs of many different applications. In addition, real-time mode provides direct access to streaming data on one axis. The SPI and data buffer structure provide convenient access to data output. The ADIS16228 also offers a digital temperature sensor and digital power supply measurements.

The ADIS16228 is available in a 15 mm \times 24 mm \times 15 mm module with flanges, machine screw holes (M2 or 2-56), and a flexible connector that enables simple user interface and installation. It has an extended operating temperature range of -40° C to $+125^{\circ}$ C.

FUNCTIONAL BLOCK DIAGRAM

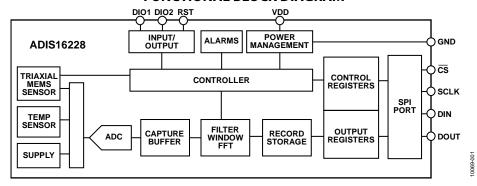


Figure 1.

ADIS16228* Product Page Quick Links

Last Content Update: 08/30/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits <a> □

- · ADIS16228 Daughter Board
- EVAL-ADIS Evaluation System

Documentation <a>□

Data Sheet

 ADIS16228: Digital Triaxial Vibration Sensor with FFT Analysis and Storage Data Sheet

User Guides

- PC-Based Evaluation of the ADIS16228
- UG-363: ADISUSB User Guide

Software and Systems Requirements

• ADIS16228 Evaluation Software for the ADISUSB

Design Resources -

- ADIS16228 Material Declaration
- · PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

Discussions <a>□

View all ADIS16228 EngineerZone Discussions

Sample and Buy -

Visit the product page to see pricing options

Technical Support <a> Image: Page 1 <a> Image: Page 2 <a> Image: Page 3 <a>

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Revision History	3
Specifications	4
Timing Specifications	5
Absolute Maximum Ratings	6
ESD Caution	6
Pin Configuration and Function Descriptions	7
Theory of Operation	8
Sensing Element	8
Signal Processing	8
User Interface	8
Basic Operation	9
SPI Write Commands	9
SPI Read Commands	9
Data Recording and Signal Processing	12
Recording Mode	12
Spectral Record Production	13
Sample Rate/Filtering	13
Dynamic Range/Sensitivity	15
Pre-FFT Windowing	16
FFT	17
Recording Times	17
Data Records	17
FFT Record Flash Endurance	17
Spectral Alarms	18

Alarm Definition
Alarm Indicator Signals
Alarm Flags and Conditions
Alarm Status
Worst-Case Condition Monitoring
Reading Output Data21
Reading Data from the Data Buffer21
Accessing FFT Record Data21
Data Format
Real-Time Data Collection
Power Supply/Temperature
FFT Event Header
System Tools
Global Commands
Status/Error Flags
Power-Down
Operation Managment
Input/Output Functions
Self-Test
Flash Memory Management
Device Identification
Applications Information
Interface Board
Flex Connector Care
Mating Connector
Outline Dimensions
Ordering Guide 28

REVISION HISTORY

8/15—Rev. D to Rev. E	
Added Axial Definitions Section and Figure 19; Renumb	ered
Sequentially	15
Change to Scale Adjustment Section	16
Change to Self-Test Section	26
2/14—Rev. C to Rev. D	
Moved Revision History	3
Change to Offset Temperature Coefficient Parameter, Ta	ble 14
Changes to Figure 14	13
Changes to FFT Section, Table 19, and Table 20	17
Added Flex Connector Care Section	27
8/13—Rev. B to Rev. C	
Changes to FFT Averaging Section	16
3/12—Rev. A to Rev. B	
Changes to Recording Times Section and Table 21	16
Changes to Interface Board Section	26

8/11—Rev. 0 to Rev. A

Changes to General Description	1
Changes to Output Noise and Bandwidth Parameters, Table	13
Added CAL_ENABLE Register to Table 8	10
Changes to Real-Time Mode Section; Changes to Table 11;	
Change to Figure 14	12
Changes to Figure 15	13
Change to Dynamic Range Settings Section	15
Added Dynamic Range/Sensitivity Section; Added Table 13,	
Renumbered Sequentially; Added Figure 16, Figure 17, and	
Figure 18, Renumbered Sequentially	14
Changes to Recording Times Section	16
Changes to Figure 20 and Figure 21	20
Changes to Table 49, Table 50, and Table 51; Change to	
Real-Time Data Collection Section	21
Change to Power-Down Section	23

7/11—Revision 0: Initial Version

SPECIFICATIONS

 $T_A = -40$ °C to +125°C, VDD = 3.3 V, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
ACCELEROMETERS					
Measurement Range ¹	T _A = 25°C	±18			g
Sensitivity, FFT	$T_A = 25$ °C, 0 g to 20 g range setting		0.3052		mg/LSB
Sensitivity, Time Domain	T _A = 25°C		0.6104		mg/LSB
Sensitivity Error	T _A = 25°C		±6		%
Nonlinearity	With respect to full scale		±0.2	±1.25	%
Cross-Axis Sensitivity			2.6		%
Alignment Error	With respect to package		1.5		Degrees
Offset Error	$T_A = 25$ °C		±1		g
Offset Temperature Coefficient			2		mg/°C
Output Noise	$T_A = 25$ °C, 20.48 kHz sample rate, time domain		12		mg rms
Output Noise Density	T _A = 25°C, 10 Hz to 1 kHz		0.248		m <i>g</i> /√Hz
Bandwidth	$\pm 5\%$ flatness, ² CAL_ENABLE[4] = 0, see Figure 17		840		Hz
	±5% flatness, ² CAL_ENABLE[4] = 1, see Figure 18		5000		Hz
Sensor Resonant Frequency			5.5		kHz
LOGIC INPUTS ³					
Input High Voltage, V _{INH}		2.0			V
Input Low Voltage, V _{INL}				0.8	V
Logic 1 Input Current, I _{INH}	V _{IH} = 3.3 V		±0.2	±1	μΑ
Logic 0 Input Current, I _{INL}	$V_{IL} = 0 V$				
All Except RST			-40	-60	μΑ
RST			-1		mA
Input Capacitance, C _{IN}			10		pF
DIGITAL OUTPUTS ³					μ.
Output High Voltage, V _{OH}	Isource = 1.6 mA	2.4			V
Output Low Voltage, Vol	I _{SINK} = 1.6 mA			0.4	V
FLASH MEMORY	ISIMA THE TIME			0.1	
Endurance ⁴		10,000			Cycles
Data Retention ⁵	T _J = 85°C, see Figure 24	20			Years
START-UP TIME ⁶	1) = 05 C, 3CC Figure 21	20			Tears
Initial Startup			202		ms
Reset Recovery ⁷	RST pulse low or GLOB_CMD[7] = 1		54		ms
Sleep Mode Recovery	Not pulse low of GEOD_CMD[7] = 1		2.3		
CONVERSION RATE	REC_CTRL1[11:8] = 0x1 (SR0 sample rate selection)		2.3		ms kSPS
	$REC_C[RL1[11:8] = UX1 (SKU sample rate selection)$				
Clock Accuracy	On anti-model and model and MDD	2.0	3	2.6	%
POWER SUPPLY	Operating voltage range, VDD	3.0	3.3	3.6	V
Power Supply Current	Record mode, T _A = 25°C		40	48	mA
	Sleep mode, T _A = 25°C		230		μΑ

¹ The maximum range depends on the frequency of vibration.

² Assumes that frequency flatness calibration is enabled.

³ The digital input/output signals are 5 V tolerant.

⁴ Endurance is qualified as per JEDEC Standard 22, Method A117 and measured at -40°C, +25°C, +85°C, and +125°C.

⁵ Retention lifetime equivalent at junction temperature (T₂) = 85°C as per JEDEC Standard 22, Method A117. Retention lifetime depends on junction temperature.

⁶ The start-up times presented reflect the time it takes for data collection to begin.

⁷ The RST pin must be held low for at least 15 ns.

TIMING SPECIFICATIONS

 $T_A = 25$ °C, VDD = 3.3 V, unless otherwise noted.

Table 2.

Parameter	Description	Min ¹	Тур	Max	Unit
f _{SCLK}	f _{SCLK} SCLK frequency			2.5	MHz
t _{STALL}	Stall period between data, between 16th and 17th SCLK	16.5			μs
tcs	Chip select to SCLK edge	48.8			ns
t _{DAV}	DOUT valid after SCLK edge			100	ns
t _{DSU}	DIN setup time before SCLK rising edge	24.4			ns
t _{DHD}	DIN hold time after SCLK rising edge	48.8			ns
t _{SR}	SCLK rise time			12.5	ns
t _{SF}	SCLK fall time			12.5	ns
t _{DF} , t _{DR}	DOUT rise/fall times		5	12.5	ns
t _{SFS}	CS high after SCLK edge	5			ns

¹ Guaranteed by design, not tested.

Timing Diagrams

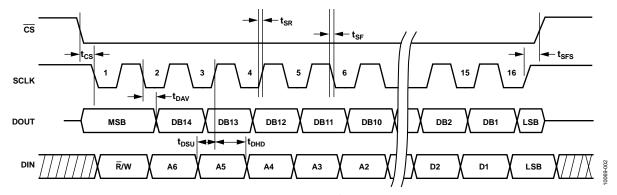


Figure 2. SPI Timing and Sequence

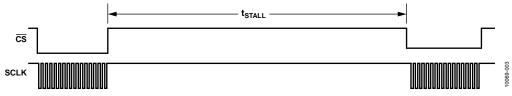


Figure 3. DIN Bit Sequence

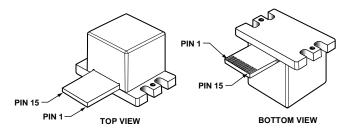
ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Acceleration	
Any Axis, Unpowered	2000 <i>g</i>
Any Axis, Powered	2000 <i>g</i>
VDD to GND	-0.3 V to +6.0 V
Digital Input Voltage to GND	−0.3 V to +5.3 V
Digital Output Voltage to GND	-0.3 V to +3.6 V
Analog Inputs to GND	-0.3 V to +3.6 V
Temperature	
Operating Temperature Range	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 4. Package Characteristics


Package Type	θ _{JA}	θ _{JC}	Device Weight
15-Lead Module	31°C/W	11°C/W	6.5 grams

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

- 1. LEADS ARE EXPOSED COPPER PADS THAT ARE LOCATED ON THE BOTTOM SIDE OF THE FLEXIBLE INTERFACE CABLE.
- 2. PACKAGE IS NOT SUITABLE FOR SOLDER REFLOW ASSEMBLY PROCESSES.
- 3. EXAMPLE MATING CONNECTOR: AVX CORPORATION FLAT FLEXIBLE CONNECTOR (FFC) P/N: 04-6288-015-000-846.

Figure 4. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Type ¹	Description
1, 2	VDD	S	Power Supply, 3.3 V.
3, 4, 5, 8	GND	S	Ground.
6, 9	DNC	N/A	No Connect. Do not connect to these pins.
7	DIO2	I/O	Digital Input/Output Line 2.
10	RST	1	Reset, Active Low.
11	DIN	1	SPI, Data Input.
12	DOUT	0	SPI, Data Output. DOUT is an output when \overline{CS} is low. When \overline{CS} is high, DOUT is in a three-state, high impedance mode.
13	SCLK	1	SPI, Serial Clock.
14	CS	1	SPI, Chip Select.
15	DIO1	I/O	Digital Input/Output Line 1.

 $^{^{\}rm 1}\,{\rm S}$ is supply, O is output, I is input, and I/O is input/output.

THEORY OF OPERATION

The ADIS16228 is a vibration sensing system that combines a triaxial MEMS accelerometer with advanced signal processing. The SPI-compatible port and user register structure provide convenient access to frequency domain vibration data and many user controls.

SENSING ELEMENT

Digital vibration sensing in the ADIS16228 starts with a MEMS accelerometer core on each axis. Accelerometers translate linear changes in velocity into a representative electrical signal, using a micromechanical system like the one shown in Figure 5. The mechanical part of this system includes two different frames (one fixed, one moving) that have a series of plates to form a variable, differential capacitive network. When experiencing the force associated with gravity or acceleration, the moving frame changes its physical position with respect to the fixed frame, which results in a change in capacitance. Tiny springs tether the moving frame to the fixed frame and govern the relationship between acceleration and physical displacement. A modulation signal on the moving plate feeds through each capacitive path into the fixed frame plates and into a demodulation circuit, which produces the electrical signal that is proportional to the acceleration acting on the device.

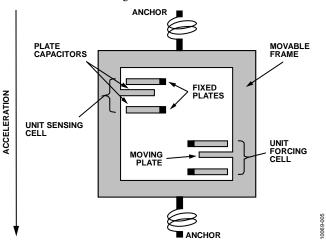


Figure 5. MEMS Sensor Diagram

SIGNAL PROCESSING

Figure 6 offers a simplified block diagram for the ADIS16228. The signal processing stage includes time domain data capture, digital decimation/filtering, windowing, FFT analysis, FFT averaging, and record storage. See Figure 14 for more details on the signal processing operation.

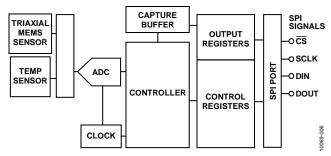


Figure 6. Simplified Sensor Signal Processing Block Diagram

USER INTERFACE

SPI Interface

The user registers (which include both the output registers and the control registers, as shown in Figure 6) manage user access to both sensor data and configuration inputs. Each 16-bit register has its own unique bit assignment and two addresses: one for its upper byte and one for its lower byte. Table 8 provides a memory map for each register, along with its function and lower byte address. The data collection and configuration command uses the SPI, which consists of four wires. The chip select (\overline{CS}) signal activates the SPI interface, and the serial clock (SCLK) synchronizes the serial data lines. Input commands clock into the DIN pin, one bit at a time, on the SCLK rising edge. Output data clocks out of the DOUT pin on the SCLK falling edge. When the SPI is used as a slave device, the DOUT contents reflect the information requested using a DIN command.

Dual-Memory Structure

The user registers provide addressing for all input/output operations in the SPI interface. The control registers use a dual-memory structure. The controller uses SRAM registers for normal operation, including user-configuration commands. The flash memory provides nonvolatile storage for control registers that have flash backup (see Table 8). Storing configuration data in the flash memory requires a manual flash update command (GLOB_CMD[6] = 1, DIN = 0xBE40). When the device powers on or resets, the flash memory contents load into the SRAM, and the device starts producing data according to the configuration in the control registers.

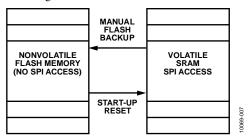


Figure 7. SRAM and Flash Memory Diagram

BASIC OPERATION

The ADIS16228 uses a SPI for communication, which enables a simple connection with a compatible, embedded processor platform, as shown in Figure 8. The factory default configuration for DIO1 provides a busy indicator signal that transitions low when an event completes and data is available for user access. Use the DIO_CTRL register (see Table 66) to reconfigure DIO1 and DIO2, if necessary.

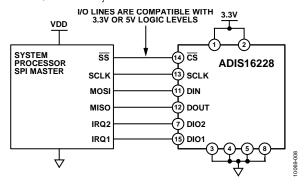


Figure 8. Electrical Hook-Up Diagram

Table 6. Generic Master Processor Pin Names and Functions

Pin Name	Function
SS	Slave select
SCLK	Serial clock
MOSI	Master output, slave input
MISO	Master input, slave output
IRQ1, IRQ2	Interrupt request inputs (optional)

The ADIS16228 SPI interface supports full duplex serial communication (simultaneous transmit and receive) and uses the bit sequence shown in Figure 12. Table 7 provides a list of the most common settings that require attention to initialize a processor serial port for the ADIS16228 SPI interface.

Table 7. Generic Master Processor SPI Settings

Processor Setting	Description
Master	The ADIS16228 operates as a slave.
SCLK Rate ≤ 2.5 MHz	Bit rate setting.
SPI Mode 3	Clock polarity/phase
	(CPOL = 1, CPHA = 1).
MSB First	Bit sequence.
16-Bit	Shift register/data length.

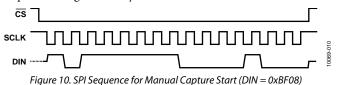

Table 8 provides a list of user registers with their lower byte addresses. Each register consists of two bytes that each has its own unique 7-bit address. Figure 9 relates the bits of each register to their upper and lower addresses.

Figure 9. Generic Register Bit Definitions

SPI WRITE COMMANDS

User control registers govern many internal operations. The DIN bit sequence in Figure 12 provides the ability to write to these registers, one byte at a time. Some configuration changes and functions require only one write cycle. For example, set $GLOB_CMD[11] = 1$ (DIN = 0xBF08) to start a manual capture sequence. The manual capture starts immediately after the last bit clocks into DIN (16th SCLK rising edge). Other configurations may require writing to both bytes.

SPI READ COMMANDS

A single register read requires two 16-bit SPI cycles that also use the bit assignments that are shown in Figure 12. The first sequence sets R/W = 0 and communicates the target address (Bits[A6:A0]). Bits[D7:D0] are don't care bits for a read DIN sequence. DOUT clocks out the requested register contents during the second sequence. The second sequence can also use DIN to set up the next read. Figure 11 provides a signal diagram for all four SPI signals while reading the PROD_ID. In this diagram, DIN = 0x5600 and DOUT reflects the decimal equivalent of 16,228.

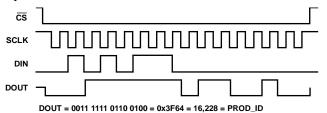


Figure 11. Example SPI Read, PROD_ID, Second Sequence

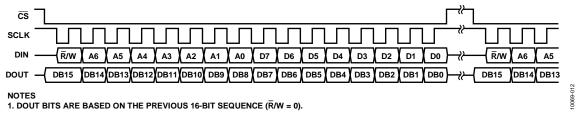


Figure 12. Example SPI Read Sequence

Table 8. User Register Memory Map

Table 8. User Register Memory Map						
Register Name	Access	Flash Backup	Address	Default	Function	Reference
FLASH_CNT	Read only	Yes	0x00	N/A	Status, flash memory write count	See Table 68
X_SENS	Read/write	Yes	0x02	N/A	X-axis accelerometer scale correction	See Table 16
Y_SENS	Read/write	Yes	0x04	N/A	Y-axis accelerometer scale correction	See Table 17
	Read/write	Yes	0x04 0x06	N/A N/A	Z-axis accelerometer scale correction	See Table 18
Z_SENS						
TEMP_OUT	Read only	No	0x08	0x8000	Output, temperature during capture	See Table 56
SUPPLY_OUT	Read only	No	0x0A	0x8000	Output, power supply during capture	See Table 54
FFT_AVG1	Read/write	Yes	0x0C	0x0108	Control, FFT average size of 1, SR0 and SR1	See Table 19
FFT_AVG2	Read/write	Yes	0x0E	0x0101	Control, FFT average size of 2, SR2 and SR3	See Table 20
BUF_PNTR	Read/write	No	0x10	0x0000	Control, buffer address pointer	See Table 47
REC_PNTR	Read/write	No	0x12	0x0000	Control, record address pointer	See Table 48
X_BUF	Read only	No	0x14	0x8000	Output, buffer for x-axis acceleration data	See Table 49
Y_BUF	Read only	No	0x16	0x8000	Output, buffer for y-axis acceleration data	See Table 50
Z_BUF	Read only	No	0x18	0x8000	Output, buffer for z-axis acceleration data	See Table 51
REC_CTRL1	Read/write	Yes	0x1A	0x1100	Control, Record Control Register 1	See Table 9
REC_CTRL2	Read/write	Yes	0x1C	0x00FF	Control, Record Control Register 2	See Table 14
REC_PRD	Read/write	Yes	0x1E	0x0000	Control, record period (automatic mode)	See Table 10
ALM_F_LOW	Read/write	N/A	0x20	0x0000	Alarm, spectral band lower frequency limit	See Table 28
ALM_F_HIGH	Read/write	N/A	0x22	0x0000	Alarm, spectral band upper frequency limit	See Table 29
ALM_X_MAG1	Read/write	N/A	0x24	0x0000	Alarm, x-axis, Alarm Trigger Level 1 (warning)	See Table 30
ALM_Y_MAG1	Read/write	N/A	0x26	0x0000	Alarm, y-axis, Alarm Trigger Level 1 (warning)	See Table 31
ALM_Z_MAG1	Read/write	N/A	0x28	0x0000	Alarm, z-axis, Alarm Trigger Level 1 (warning)	See Table 32
ALM_X_MAG2	Read/write	N/A	0x2A	0x0000	Alarm, x-axis, Alarm Trigger Level 2 (fault)	See Table 33
ALM_Y_MAG2	Read/write	N/A	0x2C	0x0000	Alarm, y-axis, Alarm Trigger Level 2 (fault)	See Table 34
ALM_Z_MAG2	Read/write	N/A	0x2E	0x0000	Alarm, z-axis, Alarm Trigger Level 2 (fault)	See Table 35
ALM_PNTR	Read/write	Yes	0x30	0x0000	Alarm, spectral alarm band pointer	See Table 27
ALM_S_MAG	Read/write	Yes	0x32	0x0000	Alarm, system alarm level	See Table 36
ALM_CTRL	Read/write	Yes	0x34	0x0080	Alarm, configuration	See Table 26
DIO_CTRL	Read/write	Yes	0x36	0x000F	Control, functional input/output configuration	See Table 66
GPIO_CTRL	Read/write	Yes	0x38	0x0000	Control, general-purpose input/output	See Table 67
AVG_CNT	Read/write	Yes	0x3A	0x9630	Control, average count for sample rate options	See Table 11
DIAG_STAT	Read only	No	0x3C	0x0000	Status, system error flags	See Table 65
GLOB_CMD	Write only	No	0x3E	N/A	Control, global command register	See Table 64
ALM_X_STAT	Read only	N/A	0x40	0x0000	Alarm, x-axis, status for spectral alarm bands	See Table 37
ALM_Y_STAT	Read only	N/A	0x42	0x0000	Alarm, y-axis, status for spectral alarm bands	See Table 38
ALM_Z_STAT	Read only	N/A	0x44	0x0000	Alarm, z-axis, status for spectral alarm bands	See Table 39
ALM_X_PEAK	Read only	N/A	0x46	0x0000	Alarm, x-axis, peak value (most severe alarm)	See Table 40
ALM_Y_PEAK	Read only	N/A	0x48	0x0000	Alarm, y-axis, peak value (most severe alarm)	See Table 41
ALM_Z_PEAK	Read only	N/A	0x4A	0x0000	Alarm, z-axis, peak value (most severe alarm)	See Table 42
TIME_STAMP_L	Read only	N/A	0x4C	0x0000	Record time stamp, lower word	See Table 61
TIME_STAMP_H	Read only	N/A	0x4E	0x0000	Record time stamp, upper word	See Table 62
Reserved	N/A	N/A	0x50	N/A	N/A	
LOT_ID1	Read only	Yes	0x52	N/A	Lot identification code	See Table 69
LOT_ID2	Read only	Yes	0x54	N/A	Lot identification code	See Table 70
PROD_ID	Read only	Yes	0x56	0x3F64	Product identifier; convert to decimal = 16,228	See Table 71
SERIAL_NUM	Read only	Yes	0x58	N/A	Serial number	See Table 71
USER_ID	Read/write	Yes	0x5C	0x0000	User identification register	See Table 73
REC_FLSH_CNT	Read only	No	0x5E	N/A	Record flash write/erase counter	See Table 24
Reserved	N/A	N/A	0x62	N/A N/A	N/A	JCC Table 24
Reserved	N/A N/A	N/A N/A	0x62 0x64	N/A N/A	N/A	
Reserved		N/A N/A		N/A N/A	N/A	
	N/A		0x66			
Reserved	N/A	N/A	0x68	N/A	N/A	<u> </u>

Register Name	Access	Flash Backup	Address	Default	Function	Reference
Reserved	N/A	N/A	0x6A	N/A	N/A	
Reserved	N/A	N/A	0x6C	N/A	N/A	
REC_INFO1	Read only	N/A	0x6E	N/A	Record settings	See Table 59
ALM_X_FREQ	Read only	N/A	0x70	0x0000	Alarm, x-axis, frequency of most severe alarm	See Table 43
ALM_Y_FREQ	Read only	N/A	0x72	0x0000	Alarm, y-axis, frequency of most severe alarm	See Table 44
ALM_Z_FREQ	Read only	N/A	0x74	0x0000	Alarm, z-axis, frequency of most severe alarm	See Table 45
REC_INFO2	Read only	N/A	0x76	N/A	Record settings	See Table 60
REC_CNTR	Read only	No	0x78	0x0000	Record counter	See Table 22
CAL_ENABLE	Read/write	Yes	0x7A	0x0010	Control, frequency calibration enable	See Table 13

DATA RECORDING AND SIGNAL PROCESSING

The ADIS16228 provides a complete sensing system for recording and monitoring vibration data. Figure 13 provides a simplified block diagram for the signal processing associated with spectral record acquisition on all three axes (x, y, z). User registers provide controls for data type (time or frequency), trigger mode (manual or automatic), collection mode (real time or capture), sample rates/filtering, windowing, FFT averaging, spectral alarms, and input/output management.

RECORDING MODE

The recording mode selection establishes the data type (time or frequency domain), trigger type (manual or automatic), and data collection (captured or real time). The REC_CTRL1[1:0] bits (See Table 9) provide four operating modes: manual FFT, automatic FFT, manual time capture, and real time. After setting REC_CTRL1, the manual FFT, automatic FFT, and manual time capture modes require a start command to start acquiring a spectral or time domain record. There are two start command options in this mode: SPI and input/output. The SPI trigger involves setting GLOB_CMD[11] = 1 (DIN = 0xBF08). The input/output trigger involves using DIO_CTRL (see Table 66) to configure DIO1 or DIO2 as an input trigger line.

Table 9. REC_CTRL1 (Base Address = 0x1A), Read/Write

Table 7. REC_CTREE (base Address = 0x1x), Read/ Witte		
Bits	Description (Default = 0x1100)	
[15:14]	Not used (don't care).	
[13:12]	Window setting.	
	00 = rectangular, $01 = Hanning$, $10 = flat top$, $11 = N/A$.	
11	SR3, $1 = \text{enabled for FFT}$, $0 = \text{disable}$.	
	Sample rate = $20,480 \div 2^{AVG_CNT[15:12]}$ (see Table 11).	
10	SR2, $1 = \text{enabled for FFT}$, $0 = \text{disable}$.	
	Sample rate = $20,480 \div 2^{AVG_CNT[11:8]}$ (see Table 11).	
9	SR1, $1 = \text{enabled for FFT}$, $0 = \text{disable}$.	
	Sample rate = $20,480 \div 2^{AVG_CNT[7:4]}$ (see Table 11).	
8	SR0, $1 = \text{enabled for FFT}$, $0 = \text{disable}$.	
	Sample rate = $20,480 \div 2^{AVG_CNT[3:0]}$ (see Table 11).	
7	Power-down between each recording. 1 = enabled.	
[6:4]	Not used (don't care).	
[3:2]	Storage method.	
	00 = none, 01 = alarm trigger, 10 = all, 11 = N/A.	
[1:0]	Recording mode.	
	00 = manual FFT, 01 = automatic FFT,	
	10 = manual time capture, 11 = real-time sampling/data	
	access.	

Manual FFT Mode

Set REC_CTRL1[1:0] = 00 to place the device in manual FFT mode. Then use a start command to trigger the production of a spectral record. When the device is acquiring a spectral record, use the busy indicator (DIO1, per factory default) to drive an interrupt service line on an external processor, which can start data collection after the process completes. DIAG_STAT is the only register that the SPI can read while the device is processing a command. Reading this register returns a 0x00 while the device is busy and 0x80 when the data is ready for external access. When the spectral record is complete, the device waits for another start command.

Automatic FFT Mode

Set REC_CTRL1[1:0] = 01 to place the device in automatic FFT mode. Use the REC_PRD register (see Table 10) to program the period between production of each spectral record. Then use a start command to trigger periodic acquisition of a spectral record. For example, set REC_PRD = 0x020A (DIN = 0x9E0A, 0x9F02) to set the trigger period to 10 hours.

Table 10. REC_PRD (Base Address = 0x1E), Read/Write

Bits	Description (Default = 0x0000)	
[15:10]	Not used (don't care)	
[9:8]	Scale for data bits	
	00 = 1 second/LSB, 01 = 1 minute/LSB, 10 = 1 hour/LSB	
[7:0]	Data bits, binary format; range = 0 to 255	

Manual Time Capture Mode

Set REC_CTRL1[1:0] = 10 to place the device into manual time capture mode; then use a manual trigger to start a data collection cycle. When the device is operating in this mode, 512 samples of time domain data are loaded into the buffer for each axis. This data goes through all time domain signal processing, except the pre-FFT windowing, prior to loading into the data buffer for user access. The manual trigger options are the same as in the manual FFT mode (SPI, input/output).

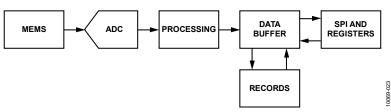


Figure 13. Simplified Block Diagram

Real-Time Mode

Set REC_CTRL1[1:0] = 11 to place the device into real-time mode. In this mode, the device samples only one axis, at a rate of 20.48 kSPS, and provides data on its output register at the SR0 sample rate setting in AVG_CNT[3:0] (see Table 11). Select the axis of measurement in this mode by reading its assigned register. For example, select the x-axis by reading X_BUF, using DIN = 0x1400. See Table 49, Table 50, or Table 51 for more information on the x_BUF registers. Use DIO1 (Pin 15) to help manage external access to real-time data. For example, this signal is suitable for driving an interrupt line to initiate a service routine in an external processor.

SPECTRAL RECORD PRODUCTION

The ADIS16228 produces a spectral record by taking a time record of data on all three axes, then scaling, windowing, and performing an FFT process on each time record. This process repeats for a programmable number of FFT averages, with the FFT result of each cycle accumulating in the data buffer. After completing the selected number of cycles, the FFT averaging process completes by scaling the data buffer contents. Then the data buffer contents are available to the SPI and output data registers.

SAMPLE RATE/FILTERING

The sample rate for each axis is 20.48 kSPS. The internal ADC samples all three axes in a time-interleaving pattern (x1, y1, z1, x2, y2...) that provides even distribution of data across the data record. The averaging/decimating filter provides a control for the final sample rate in the time record. By averaging and decimating the time domain data, this filter provides the ability to focus the spectral record on lower bandwidths, which produces finer frequency resolution in each FFT frequency bin. AVG_CNT (see Table 11) provides the setting for the four different sample rate options in REC_CTRL1[11:8] (SRx, see Table 9). All four options are available when using the manual FFT, automatic FFT, and manual time capture modes. When more than one sample rate option is enabled while the device is in one of the manual modes, the device produces a spectral record for one SRx at a time, starting with the lowest number. After completing the spectral record for one SRx option, the device waits for another start command before producing a spectral record for the next SRx option that is enabled in REC_CTRL1[11:8]. When

more than one sample rate option is enabled while the device is in the automatic FFT mode, the device produces a spectral record for one SRx option, and then waits for the next automatic trigger, which occurs based on the time setting in the REC_PRD register (see Table 10). See Figure 15 for more details on how multiple SRx options influence data collection and spectral record production. When in real-time mode, the output data rate reflects the SR0 setting.

Table 12 provides a list of SRx settings available in the AVG_CNT register (see Table 11), along with the resulting sample rates, FFT bin widths, bandwidth, and estimated total noise. Note that each SRx setting also has associated range settings in the REC_CTRL2 register (see Table 14) and the FFT averaging settings that are shown in the FFT_AVG1 and FFT_AVG2 registers (see Table 19 and Table 20, respectively).

Table 11. AVG_CNT (Base Address = 0x3A), Read/Write

Bits	Description (Default = 0x9630)
[15:12]	Sample Rate Option 3, binary (0 to 10), SR3 option sample rate = $20,480 \div 2^{AVG_CNT[15:12]}$
[11:8]	Sample Rate Option 2, binary (0 to 10), SR2 option sample rate = $20,480 \div 2^{AVG_CNT[11:8]}$
[7:4]	Sample Rate Option 1, binary (0 to 10), SR1 option sample rate = $20,480 \div 2^{AVG_CNT[7:4]}$
[3:0]	Sample Rate Option 0, binary (0 to 10), SR0 option sample rate = 20,480 ÷ 2 ^{AVG_CNT[3:0]}

Table 12. Sample Rate Settings and Filter Performance

SRx Option	Sample Rate, f _s (SPS)	Bin Width (Hz)	Bandwidth (Hz)	Peak Noise per Bin (mg)
0	20,480	40	10,240	5.18
1	10,240	20	5120	3.66
2	5120	10	2560	2.59
3	2560	5	1280	1.83
4	1280	2.5	640	1.29
5	640	1.250	320	0.91
6	320	0.625	160	0.65
7	160	0.313	80	0.46
8	80	0.156	40	0.32
9	40	0.078	20	0.23
10	20	0.039	10	0.16

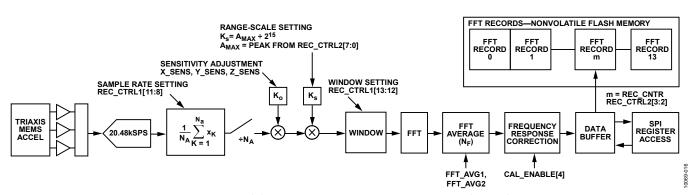


Figure 14. Signal Flow Diagram, REC_CTRL1[1:0] = 00 or 01, FFT Analysis Modes

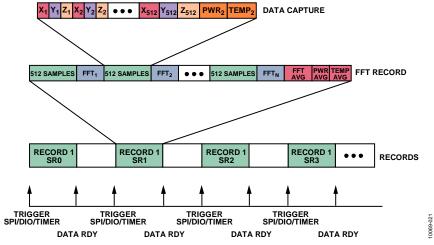


Figure 15. Spectral Record Production, with All SRx Settings Enabled

DYNAMIC RANGE/SENSITIVITY

The range of the ADIS16228 accelerometers depends on the frequency of the vibration. The accelerometers have a self-resonant frequency of 5.5 kHz, and the signal conditioning circuit applies a single-pole, low-pass filter (2.5 kHz) to the response. The self-resonant behavior of the accelerometer influences the relationship between vibration frequency and dynamic range, as shown in Figure 16, which displays the response to peak input amplitudes, assuming a sinusoidal vibration signature at each frequency. The accelerometer resonance and low-pass filter also influence the magnitude response, as shown in Figure 17.

Frequency Response Correction

The CAL_ENABLE register provides an on/off control bit for a magnitude/frequency correction that extends the flatness (5%) of this response up to 5 kHz. Set CAL_ENABLE[4] = 1 (DIN = 0xFA10) to enable this function, which produces a magnitude/frequency response like the one that is shown in Figure 18. Set CAL_ENABLE[4] = 0 to remove this correction, and use a response that reflects the curve that is shown in Figure 17. Note that this operation does not expand the dynamic range of the sensor, but it can simplify the process of setting spectral alarm limits and any other postprocessing routines.

Table 13. CAL_ENABLE (Base Address = 0x7A), Read/Write

Bits	Description (Default = 0x00FF)
[15:5]	Not used (don't care)
4	Frequency/flatness calibration enable
	1 = enable (see Figure 18)
	0 = disable (see Figure 17)
[3:0]	Not used (don't care)

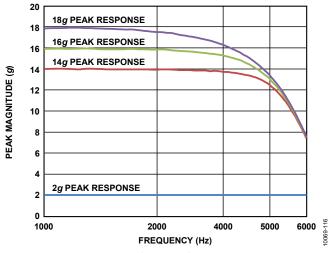


Figure 16. Peak Magnitude vs. Frequency

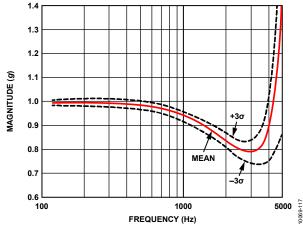


Figure 17. Magnitude/Frequency Response (CAL_ENABLE[4] = 0)

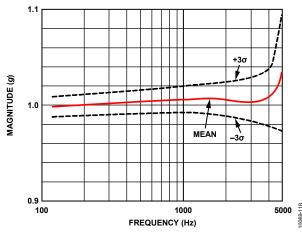


Figure 18. Magnitude/Frequency Response (CAL_ENABLE[4] = 1)

Axial Definitions

Figure 19 describes the axial and polarity definitions for all three accelerometers in the ADIS16228.

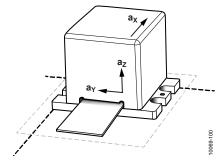


Figure 19. Accelerometer Axial and Polarity Definitions

Dynamic Range Settings

REC_CTRL2 (see Table 14) provides four range settings that are associated with each sample rate option, SRx. The range options that are referenced in REC_CTRL2 reflect the maximum dynamic range, which occurs at the lower part of the frequency range and does not account for the decrease in range (see Figure 16). For example, set REC_CTRL2[5:4] = 10 (DIN = 0x9C20) to set the peak acceleration (A_{MAX}) to 10 g on the SR2 sample rate option. These settings help optimize FFT precision and sensitivity when monitoring lower magnitude vibrations. For each range setting in Table 14, this stage scales the time domain data so that the maximum value equates to 2^{15} LSBs for time domain data and 2^{16} LSBs for frequency domain data.

Note that the maximum range for each setting is 1 LSB smaller than the listed maximum. For example, the maximum number of codes in the frequency domain analysis is $2^{16} - 1$, or 65,535. For example, when using a range setting of 1 g in one of the FFT modes, the maximum measurement is equal to 1 g times $2^{16} - 1$, divided by 2^{16} . See Table 15 for the resolution associated with each setting and Figure 14 for the location of this operation in the signal flow diagram. The real-time mode automatically uses the 20 g range setting.

Table 14. REC_CTRL2 (Base Address = 0x1C), Read/Write

Bits	Description (Default = 0x00FF)	
[15:8]	Not used (don't care)	
[7:6]	Measurement range, SR3	
	00 = 1 g, $01 = 5 g$, $10 = 10 g$, $11 = 20 g$	
[5:4]	Measurement range, SR2	
	00 = 1 g, $01 = 5 g$, $10 = 10 g$, $11 = 20 g$	
[3:2]	Measurement range, SR1	
	00 = 1 g, $01 = 5 g$, $10 = 10 g$, $11 = 20 g$	
[1:0]	Measurement range, SR0	
	00 = 1 q, 01 = 5 q, 10 = 10 q, 11 = 20 q	

Table 15. Range Settings and LSB Weights

Time Mode (ma/LSB)	FFT Mode (mg/LSB)
0.0305	0.0153
0.1526	0.0763
0.3052	0.1526
0.6104	0.3052
	(mg/LSB) 0.0305 0.1526 0.3052

Scale Adjustment

The x_SENS registers (see Table 16, Table 17, and Table 18) provide a fine-scale adjustment function for each axis. The following equation describes how to use measured and ideal values to calculate the scale factor for each register in LSBs:

$$SCFx = \begin{bmatrix} a_{XI} / a_{XM} - 1 \end{bmatrix} \times 2^{18}$$

where:

axi is the ideal x-axis value.

axM is the actual x-axis measurement.

These registers contain correction factors, which come from the factory calibration process. The calibration process records accelerometer output in four different orientations and computes the correction factors for each register.

These registers also provide write access for in-system adjustment. Gravity provides a common stimulus for this type of correction process. Use both +1 g and -1 g orientations to reduce the effect of offset on this measurement. In this case, the ideal measurement is 2 g, and the measured value is the difference of the accelerometer measurements at +1 g and -1 g orientations. The factory-programmed values are stored in flash memory and are restored by setting GLOB_CMD[3] = 1 (DIN = 0xBE08) (see Table 64).

Table 16. X_SENS (Base Address = 0x02), Read/Write

Bits	Description (Default = N/A)	
[15:0]	X-axis scale correction factor (SCFx), twos complement	

Table 17. Y_SENS (Base Address = 0x04), Read/Write

Bits	Description (Default = N/A)	
[15:0]	Y-axis scale correction factor (SC	EFy), twos complement

Table 18. Z SENS (Base Address = 0x06), Read/Write

Bits	Description (Default = N/A)
[15:0]	Z-axis scale correction factor (SCFz), twos complement

PRE-FFT WINDOWING

REC_CTRL1[13:12] provide three options for pre-FFT windowing of time data. For example, set REC_CTRL1[13:12] = 01 to use the Hanning window, which offers the best amplitude resolution of the peaks between frequency bins and minimal broadening of peak amplitudes. The rectangular and flat top windows are also available because they are common windowing options for vibration monitoring. The flat top window provides accurate amplitude resolution with a trade-off of broadening the peak amplitudes.

FFT

The FFT process converts each 512-sample time record into a 256-point spectral record that provides magnitude vs. frequency data. Each FFT result loads into an accumulator stage that averages multiple FFT results for the FFT record.

FFT Averaging

FFT_AVG1 (Table 19) and FFT_AVG2 (Table 20) contain user-configurable settings for the total number of FFT results in each record. Each byte contains a binary number that sets the number of averages for a particular sample rate setting (SR0 to SR3, per AVG_CNT register, Table 11). For example, set FFT_AVG1[15:8] = 0x0B (DIN = 0x8D0B) to set the total number of averages for the SR1 setting to 11. The default setting for the SR0 sample rate causes an average of 8 FFT results for one FFT record. The default settings for SR1, SR2, and SR3 cause each FFT to contain only one FFT result (no averaging).

Table 19. FFT_AVG1 (Base Address = 0x0C), Read/Write

Bits	Description (Default = 0x0108)
[15:8]	Number of FFT results (N_F in Figure 14) in a FFT record, for sample rate SR1 range = 1 to 255, binary format
[7:0]	Number of FFT results (N_F in Figure 14) in a FFT record, for sample rate SR0 range = 1 to 255, binary format

Table 20. FFT_AVG2 (Base Address = 0x0E), Read/Write

Bits	Description (Default = 0x0101)
[15:8]	for sample rate SR3 range = 1 to 255, binary format
[7:0]	Number of FFT results (N_F in Figure 14) in a FFT record, for sample rate SR2. range = 1 to 255, binary format

RECORDING TIMES

When using automatic FFT mode, the automatic recording period (REC_PRD) must be greater than the total recording time. Use the following equations to calculate the recording time:

Manual time mode

$$t_R = t_S + t_{PT} + t_{ST} + t_{AST}$$

 $t_S = (512/20480) \times 2^{AVG_CNT}$

Note that the *AVG_CNT* variable in this relationship refers to the decimal equivalent of the applicable nibble in the AVG_CNT register (See Table 11).

FFT modes

$$t_R = N_F \times (t_S + t_{PT} + t_{FFT}) + t_{ST} + t_{AST}$$

Table 21 provides a list of the processing times and settings that are used in these equations.

Table 21. Typical Processing Times

71	
Function	Time (ms)
Processing Time, t _{PT}	18.7
FFT Time, t _{FFT}	32.7
Number of FFT Averages, N _F	Per FFT_AVG1, FFT_AVG2
Storage Time, t _{st}	120.0
Alarm Scan Time, t _{AST}	2.21

The storage time (t_{ST}) applies only when a storage method is selected in REC_CTRL1[3:2] (see Table 9 for more details about the record storage settings). The alarm scan time (t_{AST}) applies only when the alarms are enabled in ALM_CTRL[4:0] (see Table 26 for more information). Understanding the recording time helps predict when data is available, for systems that cannot use DIO1 to monitor the status of these operations. Note that when using automatic FFT mode, the automatic recording period (REC_PRD) must be greater than the total recording time.

DATA RECORDS

After the ADIS16228 finishes processing FFT data, it stores the data into the data buffer, where it is available for external access using the SPI and x_BUF registers (see Table 49 to Table 51). REC_CTRL1[3:2] (see Table 9) provides programmable conditions for writing buffer data into the FFT records, which are in nonvolatile flash memory locations. Set REC_CTRL1[3:2] = 01 to store data buffer data into the flash memory records only when an alarm condition is met. Set REC_CTRL1[3:2] = 10 to store every set of FFT data into the flash memory locations. The flash memory record provides space for a total of 14 records. Each record stored in flash memory contains a header and frequency domain (FFT) data from all three axes (x, y, and z). When all 14 records are full, new records do not load into the flash memory. The REC_CNTR register (see Table 22) provides a running count for the number of records that are stored. Set GLOB_CMD[8] = 1 (DIN = 0xBF01) to clear all of the records in flash memory.

Table 22. REC_CNTR (Base Address = 0x78), Read Only

Bits Description (Default = 0x0000)	
[15:5]	Not used
[4:0]	Total number of records taken; range = 0 to 14, binary

When used in conjunction with automatic trigger mode and record storage, FFT analysis for each sample rate option requires no additional inputs. Depending on the number of FFT averages, the time between each sample rate selection may be quite large. Note that selecting multiple sample rates reduces the number of records available for each sample rate setting, as shown in Table 23.

Table 23. Available Records per Sample Rate Selected

Number of Sample Rates Selected	Available Records
1	14
2	7
3	4
4	3

FFT RECORD FLASH ENDURANCE

The REC_FLSH_CNT register (see Table 24) increments when all 14 records contain FFT data.

Table 24. REC FLSH CNT (Base Address = 0x5E), Read Only

Bits	Description
[15:0]	Flash write cycle count; record data only, binary

SPECTRAL ALARMS

The alarm function offers six spectral bands for alarm detection. Each spectral band has high and low frequency definitions, along with two different trigger thresholds (Alarm 1 and Alarm 2) for each accelerometer axis. Table 25 provides a summary of each register used to configure the alarm function.

Table 25. Alarm Function Register Summary

Register	Address	Description
ALM_F_LOW	0x20	Alarm frequency band, lower limit
ALM_F_HIGH	0x22	Alarm frequency band, upper limit
ALM_X_MAG1	0x24	X-Axis Alarm Trigger Level 1 (warning)
ALM_Y_MAG1	0x26	Y-Axis Alarm Trigger Level 1 (warning)
ALM_Z_MAG1	0x28	Z-Axis Alarm Trigger Level 1 (warning)
ALM_X_MAG2	0x2A	X-Axis Alarm Trigger Level 2 (fault)
ALM_Y_MAG2	0x2C	Y-Axis Alarm Trigger Level 2 (fault)
ALM_Z_MAG2	0x2E	Z-Axis Alarm Trigger Level 2 (fault)
ALM_PNTR	0x30	Alarm pointer
ALM_S_MAG	0x32	System alarm trigger level
ALM_CTRL	0x34	Alarm configuration
DIAG_STAT	0x3C	Alarm status
ALM_X_STAT	0x40	X-axis alarm status
ALM_Y_STAT	0x42	Y-axis alarm status
ALM_Z_STAT	0x44	Z-axis alarm status
ALM_X_PEAK	0x46	X-axis alarm peak
ALM_Y_PEAK	0x48	Y-axis alarm peak
ALM_Z_PEAK	0x4A	Z-axis alarm peak
ALM_X_FREQ	0x70	X-axis alarm frequency of peak alarm
ALM_Y_FREQ	0x72	Y-axis alarm frequency of peak alarm
ALM_Z_FREQ	0x74	Z-axis alarm frequency of peak alarm

The ALM_CTRL register (see Table 26) provides control bits that enable the spectral alarms of each axis, configures the system alarm, sets the record delay for the spectral alarms, and configures the clearing function for the DIAG_STAT error flags (see Table 65).

Table 26. ALM_CTRL (Base Address = 0x34), Read/Write

Bits	Description (Default = 0x0080)
[15:12]	Not used.
[11:8]	Response delay; range = 0 to 15. Represents the number of spectral records for each spectral alarm before a spectral alarm flag is set high.
7	Latch DIAG_STAT error flags. Requires a clear status command (GLOB_CMD[4]) to reset the flags to 0. 1 = enabled, 0 = disabled.
6	Enable DIO1 as an Alarm 1 output indicator and enable DIO2 as an Alarm 2 output indicator. 1 = enabled.
5	System alarm comparison polarity.
	1 = trigger when less than ALM_S_MAG[11:0].
	0 = trigger when greater than ALM_S_MAG[11:0].
4	System alarm. 1 = temperature, 0 = power supply.
3	Alarm S enable (ALM_S_MAG). $1 = \text{enabled}$, $0 = \text{disabled}$.
2	Alarm Z enable (ALM_Z_MAG). $1 = \text{enabled}$, $0 = \text{disabled}$.
1	Alarm Y enable (ALM_Y_MAG). $1 = \text{enabled}$, $0 = \text{disabled}$.
0	Alarm X enable (ALM_X_MAG). $1 = \text{enabled}$, $0 = \text{disabled}$.

ALARM DEFINITION

The alarm function provides six programmable spectral bands, as shown in Figure 20. Each spectral alarm band has lower and upper frequency definitions for all of the sample rate options (SRx). It also has two independent trigger level settings, which are useful for systems that value warning and fault condition indicators.

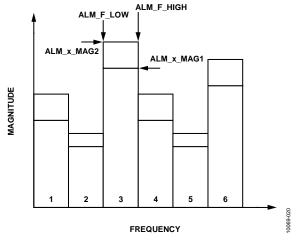


Figure 20. Spectral Band Alarm Setting Example, ALM_PNTR = 0x03

Select the spectral band for configuration by writing its number (1 to 6) to ALM_PNTR[2:0] (see Table 27). Then select the sample rate option using ALM_PNTR[9:8]. This number represents a binary number, which corresponds to the x in the SRx sample rates option associated with REC_CTRL1[11:8] (see Table 9). For example, set ALM_PNTR[7:0] = 0x05 (DIN = 0xB005) to select Alarm Spectral Band 5, and set ALM_PNTR[15:8] = 0x02 (DIN = 0xB102) to select the SR2 sample rate option.

Table 27. ALM_PNTR (Base Address = 0x30), Read/Write

Bits	Description (Default = 0x0000)
[15:10]	Not used
[9:8]	Sample rate option; range = 0 to 3 for SR0 to SR3
[7:3]	Not used
[2:0]	Spectral band number; range = 1 to 6

Alarm Band Frequency Definitions

After the spectral band and sample rate settings are set, program the lower and upper frequency boundaries by writing their bin numbers to the ALM_F_LOW register (see Table 28) and ALM_F_HIGH register (see Table 29). Use the bin width definitions listed in Table 12 to convert a frequency into a bin number for this definition. Calculate the bin number by dividing the frequency by the bin width that is associated with the sample rate setting. For example, if the sample rate is 5120 Hz and the lower band frequency is 400 Hz, divide that number by the bin width of 10 Hz to arrive at the 40th bin as the lower band setting. Then set ALM_F_LOW[7:0] = 0x28 (DIN = 0xA028) to establish 400 Hz as the lower frequency for the 5120 SPS sample rate setting.

Table 28. ALM F LOW (Base Address = 0x20), Read/Write

	,
Bits	Description (Default = 0x0000)
[15:8]	Not used
[7:0]	Lower frequency, bin number; range = 0 to 255

Table 29. ALM_F_HIGH (Base Address = 0x22), Read/Write

Bits	Description (Default = 0x0000)	
[15:8]	Not used	
[7:0]	Upper frequency, bin number; range = 0 to 255	

Alarm Trigger Settings

The ALM_x_MAG1 and ALM_x_MAG2 registers (see Table 30 to Table 35) provide two independent trigger settings for all three axes of acceleration data. They use the data format established by the range settings in the REC_CTRL2 register (see Table 14) and recording mode in REC_CTRL1[1:0] (see Table 9). For example, when using the 0 g to 1 g mode for FFT analysis, 32,768 LSB is the closest setting to 500 mg. Therefore, set ALM_Y_MAG2 = 0x8000 (DIN = 0xAD80, 0xAC00) to set the critical alarm to 500 mg, when using the 0 g to 1 g range option in REC_CTRL2 for FFT records. See Table 14 and Table 15 for more information about formatting each trigger level. Note that trigger settings that are associated with Alarm 2 should be greater than the trigger settings for Alarm 1. In other words, the alarm magnitude settings should meet the following criteria:

$$\begin{split} &ALM_X_MAG2 > ALM_X_MAG1\\ &ALM_Y_MAG2 > ALM_Y_MAG1\\ &ALM_Z_MAG2 > ALM_Z_MAG1 \end{split}$$

Table 30. ALM_X_MAG1 (Base Address = 0x24), Read/Write

Bits	Description (Default = 0x0000)	
[15:0]	X-axis Alarm Trigger Level 1, 16-bit unsigned (see Table 14 and Table 15 for the scale factor)	

Table 31. ALM_Y_MAG1 (Base Address = 0x26), Read/Write

Bits	Description (Default = 0x0000)
[15:0]	Y-axis Alarm Trigger Level 1, 16-bit unsigned (see Table 14 and Table 15 for the scale factor)

Table 32. ALM_Z_MAG1 (Base Address = 0x28), Read/Write

Bits	Description (Default = 0x0000)
[15:0]	Z-axis Alarm Trigger Level 1, 16-bit unsigned (see Table 14 and Table 15 for the scale factor)

Table 33. ALM_X_MAG2 (Base Address = 0x2A), Read/Write

Bits	Description (Default = 0x0000)
[15:0]	X-axis Alarm Trigger Level 2, 16-bit unsigned (see Table 14
	and Table 15 for the scale factor)

Table 34. ALM_Y_MAG2 (Base Address = 0x2C), Read/Write

Tuble 5 1. The vig 1 _ viria 2 (buse riddress = 0x20); redd, viria	
Bits	Description (Default = 0x0000)
[15:0]	Y-axis Alarm Trigger Level 2, 16-bit unsigned (see Table 14 and Table 15 for the scale factor)

Table 35. ALM_Z_MAG2 (Base Address = 0x2E), Read/Write

Bits	Description (Default = 0x0000)
[15:0]	Z-axis Alarm Trigger Level 2, 16-bit unsigned (see Table 14 and Table 15 for the scale factor)

Table 36. ALM_S_MAG (Base Address = 0x32), Read/Write

Bits	Description (Default = 0x0000)
[15:0]	System alarm trigger level, data format matches target from ALM_CTRL[4]

Enable Alarm Settings

Before configuring the spectral alarm registers, clear their current contents by setting GLOB_CMD[9] = 1 (DIN = 0xBF02). After completing the spectral alarm band definitions, save the settings by setting GLOB_CMD[12] = 1 (DIN = 0xBF10). The device ignores the save command if any of these locations has already been written to.

ALARM INDICATOR SIGNALS

DIO_CTRL[5:2] (see Table 66) and ALM_CTRL[6] (see Table 26) provide controls for establishing DIO1 and DIO2 as dedicated alarm output indicator signals. Use DIO_CTRL[5:2] to select the alarm function for DIO1 and/or DIO2; then set ALM_CTRL[6] = 1 to enable DIO1 to serve as an Alarm 1 indicator and DIO2 as an Alarm 2 indicator. This setting establishes DIO1 to indicate Alarm 1 (warning) conditions and DIO2 to indicate Alarm 2 (critical) conditions.

ALARM FLAGS AND CONDITIONS

The FFT header (see Table 58) contains both generic alarm flags (DIAG_STAT[13:8]; see Table 65) and spectral band-specific alarm flags (ALM_x_STAT; see Table 37, Table 38, and Table 39). The FFT header also contains magnitude (ALM_x_PEAK; see Table 40, Table 41, and Table 42) and frequency information (ALM_x_FREQ; see Table 43, Table 44, and Table 45) associated with the highest magnitude of vibration content in the record.

ALARM STATUS

The ALM_x_STAT registers (see Table 37, Table 38, and Table 39) provide alarm bits for each spectral band on the current sample rate option.

Table 37. ALM_X_STAT (Base Address = 0x40), Read Only

Bits	Description (Default = 0x0000)
15	Alarm 2 on Band 6; 1 = alarm set, 0 = no alarm
14	Alarm 1 on Band 6; $1 = alarm set$, $0 = no alarm$
13	Alarm 2 on Band 5; $1 = alarm set$, $0 = no alarm$
12	Alarm 1 on Band 5; $1 = alarm set$, $0 = no alarm$
11	Alarm 2 on Band 4; $1 = alarm set$, $0 = no alarm$
10	Alarm 1 on Band 4; $1 = alarm set$, $0 = no alarm$
9	Alarm 2 on Band 3; $1 = alarm set$, $0 = no alarm$
8	Alarm 1 on Band 3; $1 = alarm set$, $0 = no alarm$
7	Alarm 2 on Band 2; $1 = alarm set$, $0 = no alarm$
6	Alarm 1 on Band 2; $1 = alarm set$, $0 = no alarm$
5	Alarm 2 on Band 1; $1 = alarm set$, $0 = no alarm$
4	Alarm 1 on Band 1; $1 = alarm set$, $0 = no alarm$
3	Not used
[2:0]	Most critical alarm condition, spectral band; range = 1 to 6

Table 38. ALM_Y_STAT (Base Address = 0x42), Read Only

Bits	Description (Default = 0x0000)
15	Alarm 2 on Band 6; 1 = alarm set, 0 = no alarm
14	Alarm 1 on Band 6; 1 = alarm set, 0 = no alarm
13	Alarm 2 on Band 5; $1 = alarm set$, $0 = no alarm$
12	Alarm 1 on Band 5; 1 = alarm set, 0 = no alarm
11	Alarm 2 on Band 4; 1 = alarm set, 0 = no alarm
10	Alarm 1 on Band 4; 1 = alarm set, 0 = no alarm
9	Alarm 2 on Band 3; 1 = alarm set, 0 = no alarm
8	Alarm 1 on Band 3; 1 = alarm set, 0 = no alarm
7	Alarm 2 on Band 2; 1 = alarm set, 0 = no alarm
6	Alarm 1 on Band 2; 1 = alarm set, 0 = no alarm
5	Alarm 2 on Band 1; 1 = alarm set, 0 = no alarm
4	Alarm 1 on Band 1; $1 = alarm set$, $0 = no alarm$
3	Not used
[2:0]	Most critical alarm condition, spectral band; range = 1 to 6

Table 39. ALM_Z_STAT (Base Address = 0x44), Read Only

Bits	Description (Default = 0x0000)
15	Alarm 2 on Band 6; 1 = alarm set, 0 = no alarm
14	Alarm 1 on Band 6; 1 = alarm set, 0 = no alarm
13	Alarm 2 on Band 5; 1 = alarm set, 0 = no alarm
12	Alarm 1 on Band 5; 1 = alarm set, 0 = no alarm
11	Alarm 2 on Band 4; 1 = alarm set, 0 = no alarm
10	Alarm 1 on Band 4; 1 = alarm set, 0 = no alarm
9	Alarm 2 on Band 3; 1 = alarm set, 0 = no alarm
8	Alarm 1 on Band 3; 1 = alarm set, 0 = no alarm
7	Alarm 2 on Band 2; 1 = alarm set, 0 = no alarm
6	Alarm 1 on Band 2; 1 = alarm set, 0 = no alarm
5	Alarm 2 on Band 1; 1 = alarm set, 0 = no alarm
4	Alarm 1 on Band 1; 1 = alarm set, 0 = no alarm
3	Not used
[2:0]	Most critical alarm condition, spectral band; range = 1 to 6

WORST-CASE CONDITION MONITORING

The ALM_x_PEAK registers (see Table 40, Table 41, and Table 42) contain the peak magnitude for the worst-case alarm condition in each axis. The ALM_x_FREQ registers (see Table 43, Table 44, and Table 45) contain the frequency bin number for the worst-case alarm condition.

Table 40. ALM_X_PEAK (Base Address = 0x46), Read Only

Bits	Description (Default = 0x0000)	
[15:0]	Alarm peak, x-axis, accelerometer data format	

Table 41. ALM_Y_PEAK (Base Address = 0x48), Read Only

	escription (Default = 0x0000)
[15:0] Ala	larm peak, y-axis, accelerometer data format

Table 42. ALM_Z_PEAK (Base Address = 0x4A), Read Only

Bits	Description (Default = 0x0000)
[15:0]	Alarm peak, z-axis, accelerometer data format

Table 43. ALM_X_FREQ (Base Address = 0x70), Read Only

Bits	Description (Default = 0x0000)
[15:8]	Not used
[7:0]	Alarm frequency for x-axis peak alarm level, FFT bin number; range = 0 to 255

Table 44. ALM_Y_FREQ (Base Address = 0x72), Read Only

Bits	Description (Default = 0x0000)
[15:8]	Not used
[7:0]	Alarm frequency for y-axis peak alarm level, FFT bin number; range = 0 to 255

Table 45. ALM_Z_FREQ (Base Address = 0x74), Read Only

Bits	Description (Default = 0x0000)		
[15:8]	Not used		
[7:0]	Alarm frequency for z-axis peak alarm level, FFT bin number; range = 0 to 255		

READING OUTPUT DATA

The ADIS16228 samples, processes, and stores vibration data from three axes (x, y, and z) into the data buffer and FFT records (if selected). In manual time capture mode, the record for each axis contains 512 samples. In manual and automatic FFT mode, each record contains the 256-point FFT result for each accelerometer axis. Table 46 provides a summary of registers that provide access to processed sensor data.

Table 46. Output Data Registers

Register	Address	Description
TEMP_OUT	0x08	Internal temperature
SUPPLY_OUT	0x0A	Internal power supply
BUF_PNTR	0x10	Data buffer index pointer
REC_PNTR	0x12	FFT record index pointer
X_BUF	0x14	X-axis accelerometer buffer
Y_BUF	0x16	Y- axis accelerometer buffer
Z_BUF	0x18	Z- axis accelerometer buffer
GLOB_CMD	0x3E	FFT record retrieve command
TIME_STAMP_L	0x4C	Time stamp, lower word
TIME_STAMP_H	0x4E	Time stamp, upper word
REC_INFO1	0x6E	FFT record header information
REC_INFO2	0x76	FFT record header information

READING DATA FROM THE DATA BUFFER

After completing a spectral record and updating each data buffer, the ADIS16228 loads the first data sample from each data buffer into the x_BUF registers (see Table 49, Table 50, and Table 51) and sets the buffer index pointer in the BUF_PNTR register (see Table 47) to 0x0000. The index pointer determines which data samples load into the x_BUF registers. For example, writing 0x009F to the BUF_PNTR register (DIN = 0x9100, DIN = 0x909F) causes the 160th sample in each data buffer location to load into the x_BUF registers. The index pointer increments with every x_BUF read command, which causes the next set of capture data to load into each capture buffer register automatically. This enables an efficient method for reading all 256 samples in a record, using sequential read commands, without having to manipulate the BUF_PNTR register.

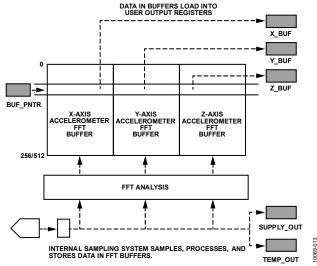


Figure 21. Data Buffer Structure and Operation

Table 47. BUF_PNTR (Base Address = 0x10), Read/Write

Bits	Description (Default = 0x0000)		
[15:9]	Not used		
[8:0]	Data bits; range = 0 to 255 (FFT), 0 to 511 (time)		

ACCESSING FFT RECORD DATA

The FFT records can be stored in flash memory. The REC_PNTR register (see Table 48) and GLOB_CMD[13] (see Table 64) provide access to the FFT records, as shown in Figure 22. For example, set REC_PNTR[7:0] = 0x0A (DIN = 0x920A) and GLOB_CMD[13] = 1 (DIN = 0xBF20) to load FFT Record 10 in the FFT buffer for SPI/register access.

Table 48. REC_PNTR (Base Address = 0x12), Read/Write

Bits	Description (Default = 0x0000)		
[15:4]	Not used		
[3:0]	Data bits		

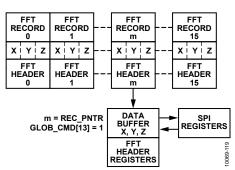


Figure 22. FFT Record Access

DATA FORMAT

Table 49, Table 50, and Table 51 list the bit assignments for the x_BUF registers. The acceleration data format depends on the range scale setting in REC_CTRL2 (see Table 14) and the recording mode settings in REC_CTRL1 (see Table 9). Table 52 provides some data formatting examples for the FFT mode, and Table 53 offers some data formatting examples for the 16-bit, twos complement format used in manual time mode.

Table 49. X_BUF (Base Address = 0x14), Read Only

Bits	Description (Default = 0x8000)			
[15:0]	X-acceleration data buffer register.			
	See Table 15 for scale sensitivity.			
	Format = twos complement (time), binary (FFT).			

Table 50. Y_BUF (Base Address = 0x16), Read Only

Bits	Description (Default = 0x8000)
[15:0]	Y-acceleration data buffer register.
	See Table 15 for scale sensitivity.
	Format = twos complement (time), binary (FFT).

Table 51. Z_BUF (Base Address = 0x18), Read Only

Bits	Description (Default = 0x8000)
[15:0]	Z-acceleration data buffer register.
	See Table 15 for scale sensitivity.
	Format = twos complement (time), binary (FFT).

Table 52. FFT Mode, 5 g Range, Data Format Examples

Acceleration (mg)	LSB	Hex	Binary
4,999.9237	65,535	0xFFFF	1111 1111 1111 1111
$100 \times 5 \div 65,536$	100	0x0064	0000 0000 0110 0100
$2 \times 5 \div 65,536$	2	0x0002	0000 0000 0000 0010
$1 \times 5 \div 65,536$	1	0x0001	0000 0000 0000 0001
0	0	0x0000	0000 0000 0000 0000

Table 53. Manual Time Mode, 5 g Range, Data Format Examples

Acceleration (mg)	LSB	Hex	Binary
+4999.847	+32,767	0x7FFF	1111 1111 1111 1111
~1000	+6,554	0x199A	0001 0001 10011010
$+2 \times 5 \div 32,768$	+2	0x0002	0000 0000 0000 0010
$+1 \times 5 \div 32,768$	+1	0x0001	0000 0000 0000 0001
0	0	0x0000	0000 0000 0000 0000
$-1 \times 5 \div 32,768$	-1	0xFFFF	1111 1111 1111 1111
$-2 \times 5 \div 32,768$	-2	0xFFFE	1111 1111 1111 1110
~-1000	-6554	0xE666	1110 0110 0110 0110
-5000	-32,768	0x8000	1000 0000 0000 0000

REAL-TIME DATA COLLECTION

When using real-time mode, select the output channel by reading the associated x_BUF register. For example, set DIN = 0x1600 to select the y-axis sensor for sampling. After selecting the channel, use the data-ready signal to trigger subsequent data reading of the Y_BUF register. In this mode, use the time domain data formatting for a range setting of 20 g, as shown in Table 15.

POWER SUPPLY/TEMPERATURE

At the end of each spectral record, the ADIS16228 also measures power supply and internal temperature. It accumulates a 5.12 ms record of power supply measurements at a sample rate of 50 kHz and takes 64 samples of internal temperature data over a period of 1.7 ms. The average of the power supply and internal temperature loads into the SUPPLY_OUT register (see Table 54) and the TEMP_OUT register (see Table 56), respectively. When using real-time mode, these registers update only when this mode starts.

Table 54. SUPPLY_OUT (Base Address = 0x0A), Read Only

Bits	Description (Default = 0x8000)		
[15:12]	Not used		
[11:0]	Power supply, binary, $3.3 \text{ V} = 0 \times A8F$, 1.22 mV/LSB		

Table 55. Power Supply Data Format Examples

Supply Level (V)	LSB	Hex	Binary
3.6	2949	0xB85	1011 1000 0101
3.3 + 0.0012207	2704	0xA90	1010 1001 0000
3.3	2703	0xA8F	1010 1000 1111
3.3 - 0.0012207	2702	0xA8E	1010 1000 1110
3.15	2580	0xA14	1010 0001 0100

Table 56. TEMP_OUT (Base Address = 0x08), Read Only

Bits	Description (Default = 0x8000)
[15:12]	Not used
[11:0]	Temperature data, offset binary, 1278 LSB = $+25^{\circ}$ C, -0.47° C/LSB

Table 57. Internal Temperature Data Format Examples

Temperature (°C)	LSB	Hex	Binary
125	1065	0x429	0100 0010 1001
25 + 0.47	1277	0x4FD	0100 1111 1101
25	1278	0x4FE	0100 1111 1110
25 – 0.47	1279	0x4FF	0100 1111 1111
0	1331	0x533	0101 0011 0011
-40	1416	0x588	0101 1000 1000

FFT EVENT HEADER

Each FFT record has an FFT header that contains information that fills all of the registers listed in Table 58. The information in these registers contains recording time, record configuration settings, status/error flags, and several alarm outputs. The registers listed in Table 58 update with every record event and also update with record-specific information when using GLOB_CMD[13] (see Table 64) to retrieve a data set from the FFT record in flash memory.

Table 58. FFT Header Register Information

Register	Address	Description
DIAG_STAT	0x3C	Alarm status
ALM_X_STAT	0x40	X-axis alarm status
ALM_Y_STAT	0x42	Y-axis alarm status
ALM_Z_STAT	0x44	Z-axis alarm status
ALM_X_PEAK	0x46	X-axis alarm peak
ALM_Y_PEAK	0x48	Y-axis alarm peak
ALM_Z_PEAK	0x4A	Z-axis alarm peak
TIME_STMP_L	0x4C	Time stamp, lower word
TIME_STMP_H	0x4E	Time stamp, upper word
REC_INFO1	0x6E	FFT record header information
ALM_X_FREQ	0x70	X-axis alarm frequency of peak alarm
ALM_Y_FREQ	0x72	Y-axis alarm frequency of peak alarm
ALM_Z_FREQ	0x74	Z-axis alarm frequency of peak alarm
REC_INFO2	0x76	FFT record header information

The REC_INFO1 register (see Table 59) and the REC_INFO2 register (see Table 60) capture the settings associated with the current FFT record.

Table 59. REC_INFO1 (Base Address = 0x6E), Read Only

Bits	Description	
[15:14]	Sample rate option	
	00 = SR0, 01 = SR1, 10 = SR2, 11 = SR3	
[13:12]	Window setting	
	00 = rectangular, $01 = Hanning$, $10 = flat top$, $11 = N/A$	
[11:10]	Signal range	
	00 = 1 g, $01 = 5 g$, $10 = 10 g$, $11 = 20 g$	
[9:8]	Not used (don't care)	
[7:0]	FFT averages; range = 1 to 255	

Table 60. REC_INFO2 (Base Address = 0x76), Read Only

Bits	Description
[15:4]	Not used (don't care)
[3:0]	AVG_CNT setting

The TIME_STMP_x registers (see Table 61 and Table 62) provide a relative time stamp that identifies the time for the current FFT record.

Table 61. TIME_STMP_L (Base Address = 4C), Read Only

		,,	
Bits	Description (Default = 0x0000)		
[15:0]	Record time stamp, low integer, bin	ary, secor	nds

Table 62. TIME_STMP_H (Base Address = 0x4E), Read Only

		,,,	
Bits	Description (Default = 0x0000)		
[15:0]	Record time stamp, high integer, bir	nary, seconds	

SYSTEM TOOLS

Table 63 provides an overview of the control registers that provide support for system-level functions.

Table 63. System Tool Register Addresses

Register Name	Address	Description
FLASH_CNT	0x00	Flash memory write cycle count
DIO_CTRL	0x36	Digital input/output configuration
GPIO_CTRL	0x38	General-purpose input/output control
DIAG_STAT	0x3C	Status/error flags
GLOB_CMD	0x3E	Global commands
LOT_ID1	0x52	Lot Identification Code 1
LOT_ID2	0x54	Lot Identification Code 2
PROD_ID	0x56	Product identification
SERIAL_NUM	0x58	Serial number
USER_ID	0x5C	User identification register

GLOBAL COMMANDS

The GLOB_CMD register (see Table 64) provides an array of single-write commands for convenience. Setting the assigned bit to 1 activates each function. When the function completes, the bit restores itself to 0. For example, clear the capture buffers by setting GLOB_CMD[8] = 1 (DIN = 0xBF01). All of the commands in the GLOB_CMD register require that the power supply be within normal limits for the execution times listed in Table 64.

Table 64. GLOB_CMD (Base Address = 0x3E), Write Only

Bits	Description	Execution Time
15	Clear autonull correction	35 μs
14	Retrieve spectral alarm band information from the ALM_PNTR setting	40 μs
13	Retrieve record data from flash memory	1.9 ms
12	Save spectral alarm band registers to flash memory	461 μs
11	Record start/stop	N/A
10	Set BUF_PNTR = 0x0000	36 μs
9	Clear spectral alarm band registers from flash memory	25.8 ms
8	Clear records	25.9 ms
7	Software reset	52 ms
6	Save registers to flash memory	29.3 ms
5	Flash test, compare sum of flash memory with factory value	5 ms
4	Clear DIAG_STAT register	36 μs
3	Restore factory register settings and clear the capture buffers	84 ms
2	Self-test, result in DIAG_STAT[5]	32.9 ms
1	Power-down	N/A
0	Autonull	822 ms

STATUS/ERROR FLAGS

The DIAG_STAT register (see Table 65) provides a number of status/error flags that reflect the conditions observed in a recording during SPI communication and diagnostic tests. An error condition is indicated by a setting of 1; and all of the error flags are sticky, which means that they remain until they are reset by setting GLOB_CMD[4] = 1 (DIN = 0xBE10) or by starting a new recording event. DIAG_STAT[14:8] indicates which ALM_x_MAGx thresholds were exceeded during a recording event. The flag in DIAG_STAT[3] indicates that the total number of SCLK clocks is not a multiple of 16.

Table 65. DIAG_STAT (Base Address = 0x3C), Read Only

Bits	Description (Default = 0x0000)
15	Not used (don't care)
14	System alarm flag
13	Z-axis, Spectral Alarm 2 flag
12	Y-axis, Spectral Alarm 2 flag
11	X-axis, Spectral Alarm 2 flag
10	Z-axis, Spectral Alarm 1 flag
9	Y-axis, Spectral Alarm 1 flag
8	X-axis, Spectral Alarm 1 flag
7	Data ready/busy indicator (0 = busy, 1 = data ready)
6	Flash test result, checksum flag
5	Self-test diagnostic error flag
4	Recording escape flag, indicates use of the SPI-driven interruption command, 0xE8
3	SPI communication failure (SCLKs ≠ even multiple of 16)
2	Flash update failure
1	Power supply > 3.625 V
0	Power supply < 3.125 V

POWER-DOWN

To power down the ADIS16228, set GLOB_CMD[1] = 1 (DIN = 0xBE02). To reduce power consumption, set REC_CTRL1[7] = 1, which automatically results in a power-down after a record is complete. Toggle the \overline{CS} line from high to low to wake up the device and place it in an idle state, where it waits for the next command. When DOI1 is configured as an external trigger, toggling it can wake up the device, as well. Using DIO1 for this purpose avoids the potential for multiple devices contending for DOUT when waking up with the \overline{CS} line approach. After completing the record cycle, the device remains awake. Use GLOB_CMD[1] to put it back to sleep after reading the record data.

OPERATION MANAGMENT

The ADIS16228 SPI port supports two different communication commands while it is processing data or executing a command associated with the GLOB_CMD register (see Table 64): reading DIAG_STAT (DIN = 0x3C00) (see Table 65) and the escape code (DIN = 0xE8E8). The SPI ignores all other commands when the processor is busy.

Software Busy Indicator

Use the DIAG_STAT read command to poll DIAG_STAT[7], which is equal to 0 when the processor is busy and equal to 1 when the processor is idle and data is ready for SPI communications.

Software Escape Code

The only SPI command that is available when the processor is busy capturing data is the escape code, which is 0xE8E8. This command is not available for interrupting any other processing tasks. Send this command in a repeating pattern, with a small delay between each write cycle, to the DIN pin while monitoring DIAG_STAT[7]. The following code example illustrates this process:

```
DIAG_STAT = 0;
DIAG_STAT = read_reg(0x3C);
while ((DIAG_STAT & 0x0080) == 0)
{
    write_reg(0xE8E8)
    delay_us(50)
    DIAG_STAT = read_reg(0x3C)
}
```

INPUT/OUTPUT FUNCTIONS

The DIO_CTRL register (see Table 66) provides configuration control options for the two digital input/output lines, DIO1 and DIO2.

Busy Indicator

The busy indicator is an output signal that indicates internal processor activity. This signal is active during data recording events or internal processing (GLOB_CMD functions, for example). The factory default setting for DIO_CTRL sets DIO1 as a positive, active high, busy indicator signal. When configured in this manner, use this signal to alert the master processor to read data from data buffers.

Trigger Input

The trigger function provides an input pin for starting record events with a signal pulse. Set DIO_CTRL[7:0] = 0x2F (DIN = 0xB62F) to configure DIO2 as a positive trigger input and keep DIO1 as a busy indicator. To start a trigger, the trigger input signal must transition from low to high and then from high to low. The recording process starts on the high-to-low transition, as shown in Figure 23, and the pulse duration must be at least 2.6 μ s.

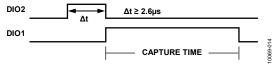


Figure 23. Manual Trigger/Busy Indicator Sequence Example

Alarm Indicator

DIO_CTRL[5:2] provide controls for establishing DIO1 and/or DIO2 as a general alarm output indicator that goes active when any of the flags in DIAG_STAT[13:8] is active. For example, set DIO_CTRL[7:0] = 0x12 (DIN = 0xB612) to configure DIO2 as a generic alarm indicator with an active high polarity. ALM_CTRL[6] (see Table 26) provides an additional control, which enables DIO2 to reflect Alarm 2 and DIO1 to reflect Alarm 1 when they are selected as alarm indicators in DIO_CTRL[5:2]. For example, set DIO_CTRL[7:0] = 0x17 (DIN = 0xB617) and set ALM_CTRL[6] = 1 (DIN = 0xB440) to establish DIO2 as an active high Alarm 2 indicator and DIO1 as an active high Alarm 1 indicator. Set GLOB_CMD[4] = 1 (DIN = 0xBE10) to clear the DIAG_STAT error flags and restore the alarm indicator signal to its inactive state.

Table 66, DIO CTRL (Base Address = 0x36), Read/Write

Bits	Description (Default = 0x000F)
[15:6]	Not used
[5:4]	DIO2 function selection
	00 = general-purpose input/output (use GPIO_CTRL)
	01 = alarm indicator output (per ALM_CTRL)
	10 = trigger input
	11 = busy/data-ready indicator output
[3:2]	DIO1 function selection
	00 = general-purpose input/output (use GPIO_CTRL)
	01 = alarm indicator output (per ALM_CTRL)
	10 = trigger input
	11 = busy/data-ready indicator output
1	DIO2 line polarity
	1 = active high
	0 = active low
0	DIO1 line polarity
	1 = active high
	0 = active low

General-Purpose Input/Output

If the DIO_CTRL register configures either DIO1 or DIO2 as a general-purpose digital line, use the GPIO_CTRL register (see Table 67) to configure its input/output direction, set the output level when configured as an output, and monitor the status of an input.

Table 67. GPIO_CTRL (Base Address = 0x38), Read/Write

Table 07. GF10_CTRL (base Address = 0x36), Read/ Wfite		
Bits	Description (Default = 0x0000)	
[15:10]	Not used	
9	DIO2 output level	
	1 = high; 0 = low	
8	DIO1 output level	
	1 = high; 0 = low	
[7:2]	Reserved	
1	DIO2 direction control	
	1 = output; 0 = input	
0	DIO1 direction control	
	1 = output; 0 = input	

SELF-TEST

Set $GLOB_CMD[2] = 1$ (DIN = 0xBE04) (see Table 64) to run an automatic self-test routine, which reports a pass/fail result to DIAG_STAT[5] (see Table 65).

FLASH MEMORY MANAGEMENT

Set $GLOB_CMD[5] = 1$ (DIN = 0xBE20) to run an internal checksum test on the flash memory, which reports a pass/fail result to DIAG_STAT[6]. The FLASH_CNT register (see Table 68) provides a running count of flash memory write cycles. This is a tool for managing the endurance of the flash memory. Figure 24 quantifies the relationship between data retention and junction temperature.

Table 68. FLASH_CNT (Base Address = 0x00), Read Only

	=		1
Bits	Description		
[15:0]	Binary counter for writing to flash memo	ory	

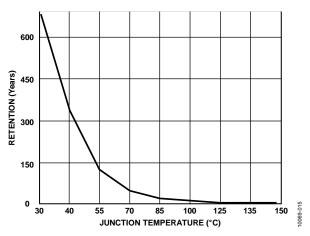


Figure 24. Flash®/EE Memory Data Retention

DEVICE IDENTIFICATION

Table 69. LOT_ID1 (Base Address = 0x52), Read Only

Bits	Description
[15:0]	Lot identification code

Table 70. LOT ID2 (Base Address = 0x54), Read Only

Bits	Description
[15:0]	Lot identification code

Table 71. PROD_ID (Base Address = 0x56), Read Only

Bits	Description (Default = 0x3F64)	
[15:0]	0x3F64 = 16,228	

Table 72. SERIAL_NUM (Base Address = 0x58), Read Only

Bits	Description
[15:0]	Serial number, lot specific

Table 73 shows a blank register that is available for writing user-specific identification.

Table 73. USER_ID (Base Address = 0x5C), Read/Write

Bits	Description (Default = 0x000)
[15:0]	User-written identification

APPLICATIONS INFORMATION

INTERFACE BOARD

The ADIS16228/PCBZ provides the ADIS16228 on a small printed circuit board (PCB) that simplifies the connection to an existing processor system. This PCB includes a silkscreen, for proper placement, and four mounting holes that have threads for M2 \times 0.4 mm machine screws. The second set of mounting holes on the interface boards are in the four corners of the PCB and provide clearance for 4-40 machine screws. The third set of mounting holes provides a pattern that matches the ADISUSBZ evaluation system, using M2 \times 0.4mm \times 4 mm machine screws. These boards are made of IS410 material and are 0.063 inches thick.

J1 is a 16-pin connector, in a dual row, 2 mm geometry that enables simple connection to a 1 mm ribbon cable system. For example, use Molex P/N 87568-1663 for the mating connector and 3M P/N 3625/16 for the ribbon cable. For direct connection to the ADISUSB evaluation system, use these parts to make a 16-pin cable or remove pins 13, 14, 15 and 16. See UG-363 for more information. The LEDs (D1 and D2) are not populated, but the pads are available to install to provide a visual representation of the DIO1 and DIO2 signals. The pads accommodate Chicago Miniature Lighting Part No. CMD28-21VRC/TR8/T1, which works well when R1 and R2 are approximately $400~\Omega$ (0603 pad sizes).

FLEX CONNECTOR CARE

Do not attempt to unplug the connector by pulling on the package body. Although the flexible connector is very reliable in normal operation, it may break when subjected to unreasonable handling. When broken, the flexible connector cannot be repaired.

MATING CONNECTOR

The mating connector for the ADIS16228, J2, is AVX P/N 04-6288-015-000-846. Figure 26 provides a close-up view of

this connector, which clamps down on the flex cable to press its metal pads onto the metal pads inside the mating connector.

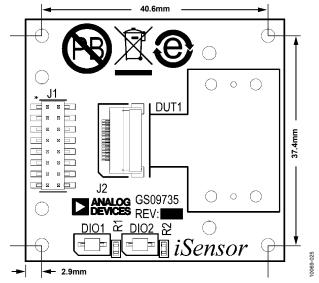


Figure 25. PCB Assembly View and Dimensions

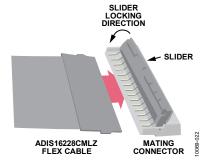


Figure 26. Mating Connector Detail

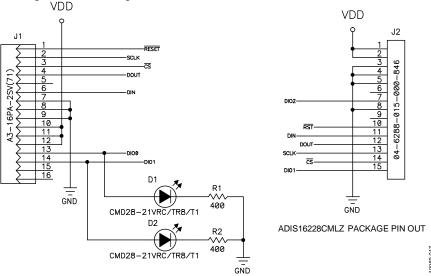


Figure 27. Electrical Schematic

OUTLINE DIMENSIONS

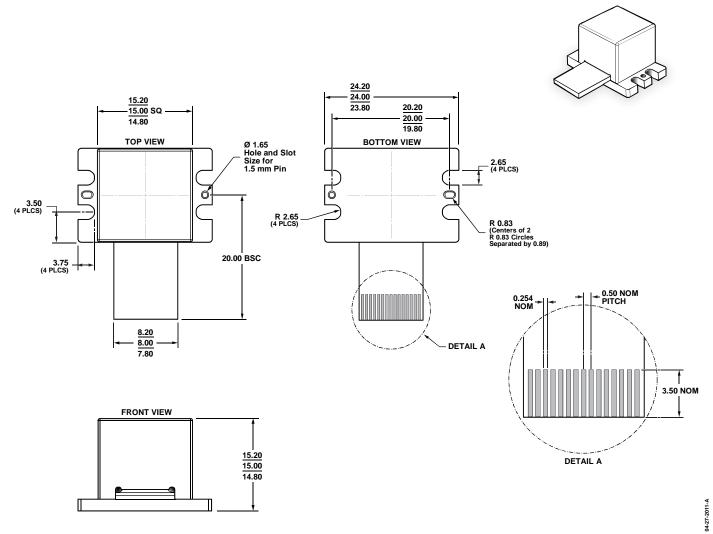


Figure 28. 15-Lead Module with Connector Interface (ML-15-1) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADIS16228CMLZ	-40°C to +125°C	15-Lead Module with Connector Interface	ML-15-1
ADIS16228/PCBZ		Evaluation Board	

¹ Z = RoHS Compliant Part.

