

© 2016 NXP B.V.

Sensorless PMSM Field-Oriented Control

on Kinetis KV and KE
By: Josef Tkadlec

1. Introduction

This application note describes the implementation of

the sensorless Motor Control Reference Solution

Package (MCRSP) software for a 3-phase Permanent

Magnet Synchronous Motor (PMSM), including

a motor parameters identification algorithm, running on

32-bit Kinetis V and E series MCUs. The sensorless

control software itself and the PMSM control theory in

general is described in Sensorless PMSM Field-

Oriented Control (document DRM148). The NXP

Freedom board (FRDM-MC-LVPMSM), Tower

System modular development platform module

(TWR-MC-LV3PH), and High-Voltage Platform

power stages (HVP-MC3PH) are used as hardware

platforms for the PMSM control reference solution.

The hardware-dependent part of the sensorless control

software is addressed as well, including detailed

peripheral setup and the Motor Control Peripheral

Drivers (MCDRV). The motor parameters

identification theory and the algorithms are also

described in this document. The last part of this

document introduces and explains the user interface

represented by the Motor Control Application Tuning

(MCAT) page based on FreeMASTER run-time

debugging tool. These tools represent a simple and

user-friendly way of motor parameter identification,

algorithm tuning, software control, debugging, and

diagnostics.

NXP Semiconductors Document Number: AN5237

Application Note Rev. 2 , 09/2016

Contents

1. Introduction .. 1
2. Development Platforms .. 2

2.1. 9BFRDM-MC-LVPMSM .. 2
2.2. 10BTWR-MC-LV3PH ... 3
2.3. 11BHVP-MC3PH .. 3

3. MCU Features and Peripheral Settings 4
3.1. 12BKV1x family .. 4
3.2. 13BKV3x family .. 9
3.3. 14BKV4x family .. 12
3.4. 15BKV5x family .. 16
3.5. KE1xZ family .. 19
3.6. KE1xF family .. 22

4. Motor Control Peripheral Drivers 24
4.1. 16BMotor Control Peripheral Drivers initialization 25
4.2. 17BMotor Control Peripheral Drivers API 26

5. Tuning and Controlling the Application 27
5.1. 18BPMSM parameter identification 29
5.2. 19BPMSM sensorless application control and tuning

using MCAT .. 34
6. Conclusion .. 48
7. Acronyms and Abbreviations ... 49
8. References .. 49
9. Revision History ... 50

http://www.nxp.com/doc/DRM148

Development Platforms

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

2 NXP Semiconductors

2. Development Platforms

There are these three standard NXP power stages:

 FRDM-MC-LVPMSM

 TWR-MC-LV3PH

 HVP-MC3PH

2.1. 9BFRDM-MC-LVPMSM

This evaluation board (in a shield form factor) effectively turns a Freedom development board into a

complete motor-control reference design, compatible with the existing Freedom development boards—

FRDM-KV31F, FRDM-KV10Z, and FRDM-KE15Z. The Freedom motor-control headers are

compatible with Arduino™ R3 pin layout.

The FRDM-MC-LVPMSM board has a power-supply input voltage of 24–48 V DC with a reverse

polarity protection circuitry. An auxiliary power supply of 5.5 V DC is available to provide power to

the FRDM MCU boards. The output current reaches up to 5 A RMS. The inverter is realized by the

3-phase bridge inverter (six MOSFETs) and the 3-phase MOSFET gate driver. Analog quantities (such

as 3-phase motor currents, DC-Bus voltage, and DC-Bus current) are measured on this board. There is

also an interface for speed/position sensors (Encoder Hall). The block diagram of a complete Freedom

motor-control development kit is shown in this figure:

Figure 1. Freedom motor-control development platform block diagram

The FRDM-MC-LVPMSM board does not require a complicated setup and there is only one way to

connect this shield board to the Freedom MCU board. See the user’s guide for your version of MCRSP

(document PMSMCRSPUG15T). For more information about the Freedom development platform,

visit 15TUwww.nxp.com/freedomU15T.

http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/freedom

Development Platforms

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 3

2.2. 10BTWR-MC-LV3PH

This module effectively turns a Tower System development module into a complete motor-control

reference design, compatible with the existing Tower System Kinetis V and E modules. This module

provides all necessary feedback signals to drive PMSM and BLDC motors. The TWR-MC-LV3PH

module has the power-supply input voltage of 12–24 V DC, extendable up to 50 V DC, with reverse

polarity protection circuitry. An auxiliary power supply of 5 V DC and 3.3 V DC provides power supply

for the Tower System MCU modules. The output current reaches up to 5 A RMS. The inverter is

realized by the 3-phase bridge inverter (six MOSFETs) and the 3-phase MOSFET gate driver. Analog

quantities (such as 3-phase motor currents, 3-phase motor back-EMF voltage, DC-bus voltage, and DC-

bus current) are measured on this board. There is an interface for speed/position sensors (Encoder Hall)

and a connector for a braking resistor. There is also a user LED, a power-on LED, and six PWM LED

diodes for diagnostics. The block diagram of a complete Tower System motor-control development kit

is shown in this figure:

Figure 2. Tower System motor-control development platform block diagram

The TWR-MC-LV3PH module does not require a complicated setup. Keep in mind that the side with

the white stripe must be connected to the primary (white) elevator. See the user’s guides for the TWR-

MC-LV3PH (document 15TTWRMCLV3PHUG15T) and for your version of MCRSP

(document PMSMCRSPUG). For more information about the Tower System visit 15Twww.nxp.com/tower 15T.

2.3. 11BHVP-MC3PH

The 3-phase High-Voltage Development Platform (HVP) is a 115/230 V, 1 kW power stage that is an

integral part of the embedded motion-control series of development tools. It is supplied in the

HVP-MC3PH kit. Combined with the HVP daughter board, it provides a ready-made software

development platform for more than one-horsepower motors. The block diagram of a complete

high-voltage motor-control development kit is shown in the following figure.

http://www.nxp.com/doc/TWRMCLV3PHUG
http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/tower

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

4 NXP Semiconductors

Figure 3. High-Voltage Development Platform block diagram

The HVP-MC3PH power stage does not require any complicated setup and there is only one way to

connect a daughter board to the HVP. See the user’s guides for the HVP power stage

(document HVPMC3PHUG) and for your version of MCRSP (document PMSMCRSPUG).

NOTE

Due to high voltage, the HVP platform can represent a safety risk when

not handled properly. For more information about the High-Voltage

Development Platform, visit 15Twww.nxp.com/hvp 15T.

3. MCU Features and Peripheral Settings

The peripherals used for motor control vary among different Kinetis V MCUs. The following sections

describe the peripheral settings and application timing for each MCU. There are also differences among

the MC platforms for different MCUs. These differences are summarized in tables.

3.1. 12BKV1x family

The KV10Z and KV11Z MCU families are highly scalable members of the Kinetis V series and provide

a cost-competitive motor-control solution. Built upon the ARM P

®
P CortexP

®
P-M0 core running at 75 MHz

with up to 128 KB of flash and up to 16 KB of RAM, the MCUs deliver a platform that enables the

customers to build a scalable solution portfolio. The additional features include dual 16-bit ADCs

sampling at up to 1.2 MS/s in 12-bit mode and 20 channels of flexible motor-control timers (PWMs)

across six independent time bases. For more information, see KV11F Sub-Family Reference Manual

(document KV11P64M75RM).

http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/hvp
http://www.nxp.com/doc/KV11P64M75RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 5

3.1.1. 20BHardware timing and synchronization

A correct and precise timing is crucial in motor-control applications. The motor-control dedicated

peripherals handle the timing and synchronization on the hardware layer. In addition, you can set the

PWM frequency as a multiple of the ADC interrupt (FOC calculation) frequency; in this case,

FOCRfreqR = PWMRfreqR/2. The timing diagram is shown in this figure:

Figure 4. Hardware timing and synchronization on KV11Z and KV10Z

 The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized

at the PWM top and PWM bottom signals. The FTM_TRIG is generated on the PWM reload,

which triggers the PDB (resets the PDB counter).

 The PDB generates the first pre-trigger for the first ADC (phase current) sample with a delay of

approximately TRdeadtime R/ 2. This delay ensures correct current sampling at duty cycles close

to 100 %.

 When the conversion of the first ADC sample (phase current) is completed, the ADC ISR is

entered. At first, the next FTM_TRIG is disabled (TRIG off). This ensures that the

PDB counter is not reset at the next PWM reload. The FOC is then calculated.

 The PDB ISR is called in the middle of the next PWM period (PDB delay). This interrupt

enables the FTM_TRIG (TRIG on) at the next PWM reload. The PDB ISR has lower priority

than the ADC ISR. The PDB delay length determines the ratio between the PWM and FOC

frequencies.

 The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for DC-bus

voltage measurement) immediately after the first conversion is completed.

PWM

reload

PWM

reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG

off

TRIG

on

Tdeadtime

PDB

delay

pre-

trig 0
pre-

trig 1

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

6 NXP Semiconductors

3.1.2. 21BPeripheral settings

The peripherals used for motor control are described in this section. On KV10Z and KV11Z, a 6-channel

FlexTimer (FTM) is used for 6-channel PWM generation, and two 16-bit SAR ADCs are used for phase

currents and DC-bus voltage measurement. The FTM and ADC are synchronized by the Programmable

Delay Block (PDB). One channel from another independent FTM is used for slow loop interrupt

generation.

3.1.2.1. 54BPWM generation—FTM0

 The FTM is clocked from the 75 MHz System clock.

 Only six channels are used, the other two are masked in the OUTMASK register.

 The channels (0+1, 2+3, and 4+5) are combined into pairs, with each pair running in a

complementary mode.

 The Fault mode is enabled for each combined pair with automatic fault clearing (the PWM

outputs are re-enabled at the first PWM reload after the fault input returns to zero).

 The PWM period (frequency) is determined as a time needed for the FTM to count from CNTIN

to MOD. By default, CNTIN = -MODULO / 2 = -3750 and MOD = MODULO / 2 - 1 = 3749.

Because the FTM is clocked from the 75 MHz System clock, it takes 0.0001 s (10 kHz).

 Inserting dead time is enabled for each combined pair. The dead time length is calculated as

System clock 75 MHz × TRdeadtimeR. The dead time varies among platforms.

 The FTM generates a trigger to PDB at counter initialization.

 The FTM fault input is enabled, but its polarity and source vary among platforms.

3.1.2.2. 55BAnalog sensing—ADC0, ADC1

 The ADCs operate as 12-bit, single-ended converters.

 The clock source for both ADCs is the 25 MHz Bus clock divided by 2 = 12.5 MHz.

 For ADC calibration purposes, the ADC clock is set to 3.125 MHz. Continuous conversion and

averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the SC

register is filled with its default values and the clock is set back to 12.5 MHz.

 Both ADCs are triggered from the PDB pre-triggers.

 An interrupt that serves the FOC fast-loop algorithm is generated after the first conversion is

completed.

3.1.2.3. 56BPWM and ADC synchronization—PDB0

 Unlike FTM, the PDB is clocked from the Bus clock, which is 3× slower than the System clock

(used for FTM). Therefore the modulo value at PDB is divided by 3.

 The PDB is triggered from the FTM0_TRIG.

 At each channel, the pre-trigger 0 is generated 0.5 × TRdeadtimeR after the FTM0_TRIG.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 7

 At each channel, the pre-trigger 1 is generated immediately after the first conversion is

completed using the back-to-back mode.

 The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC.

 The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.

This interrupt enables the FTM_TRIG (see 15TFigure 4 15T).

 The PDB Sequence Error and PDB Delay interrupts share a common interrupt vector.

Which event generates the interrupt is determined at the beginning of the interrupt according to

the ERR flag.

3.1.2.4. 57BOver-current detection at FRDM platform—CMP1

 The plus input to the CMP is taken from the analog pin.

 The minus input to the CMP is taken from the 6-bit DAC0 reference. The DAC reference is set

to 3.197 V (62 / 64 × VRDDR) which corresponds to 7.73 A (in 8.25 A scale).

 The CMP filter is enabled and four consecutive samples must match.

3.1.2.5. 58BSlow-loop interrupt generation—FTM2

 The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.

 The FTM counts from CNTIN = 0 to SPEED_MODULO.

 The interrupt is enabled and generated at the counter reload that serves the slow loop.

3.1.2.6. 59BCommunication with MC33937 MOSFET driver—SPI

 The SPI runs in the master mode.

 The SPI chip select 1 signal is active in logic high.

 The baud rate is 3.12 MHz.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

8 NXP Semiconductors

3.1.3. 22BPeripheral settings differences among platforms

There are differences in peripheral settings among different platforms. This table summarizes these

differences:

Table 1. KV10 and KV11 platform differences

Peripheral Feature
Platform

FRDM Tower System HVP

FTM0

PWM polarity high sides active high

low sides active high

high sides active low

low sides active high

high sides active high

low sides active high

Fault source FLT0, CMP1 out FLT1, input pin FLT0, input pin

Fault polarity Active high Active high Active low

Dead time 0.5 s 0.5 s 1.5 s

SPI Driver on SPI No Yes No

PDB Pre-trigger 0 delay 0.25 s 0.25 s 0.75 s

3.1.4. 23BCPU load and memory usage

The following information apply to the demo application built using IARP

®
P Embedded Workbench P

®
P IDE

in release configuration (maximum optimization for speed). 15TTable 415T shows the memory usage and CPU

load. The memory usage is calculated from the linker .map file, including 2 KB FreeMASTER recorder

buffer (allocated in RAM) and 3.1 KB FreeMASTER TSA (Target-Side Addressing) table (allocated in

flash). The CPU load is measured using the SysTick timer. The CPU load is dependent on the fast loop

(FOC calculation) and slow loop (speed loop) frequency. In this case, it applies to the fast loop of 10

kHz and the slow loop of 1 kHz. The total CPU load is calculated according to these equations:

Eq. 1 𝑪𝑷𝑼𝒇𝒂𝒔𝒕 = 𝒄𝒚𝒄𝒍𝒆𝒔𝒇𝒂𝒔𝒕 ∙
𝒇𝒇𝒂𝒔𝒕

𝒇𝑪𝑷𝑼
∙ 𝟏𝟎𝟎 [%]

Eq. 2 𝑪𝑷𝑼𝒔𝒍𝒐𝒘 = 𝒄𝒚𝒄𝒍𝒆𝒔𝒔𝒍𝒐𝒘 ∙
𝒇𝒔𝒍𝒐𝒘

𝒇𝑪𝑷𝑼
∙ 𝟏𝟎𝟎 [%]

Eq. 3 𝑪𝑷𝑼𝒕𝒐𝒕𝒂𝒍 = 𝑪𝑷𝑼𝒇𝒂𝒔𝒕 + 𝑪𝑷𝑼𝒔𝒍𝒐𝒘 [%]

where:

𝑪𝑷𝑼𝒇𝒂𝒔𝒕 —CPU time consumed by the fast loop

𝒄𝒚𝒄𝒍𝒆𝒔𝒇𝒂𝒔𝒕 —number of cycles consumed by the fast loop

𝒇𝒇𝒂𝒔𝒕 —frequency of the fast loop calculation (10 kHz)

𝒇𝑪𝑷𝑼 —CPU frequency

𝑪𝑷𝑼𝒔𝒍𝒐𝒘 —CPU time consumed by the slow loop

𝒄𝒚𝒄𝒍𝒆𝒔𝒔𝒍𝒐𝒘 —number of cycles consumed by the slow loop

𝒇𝒔𝒍𝒐𝒘 —frequency of the slow loop calculation (1 kHz)

𝑪𝑷𝑼𝒕𝒐𝒕𝒂𝒍 —total CPU load consumed by the motor control

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 9

Table 2. KV10 and KV11 CPU load and memory usage

— MKV10Z MKV11Z

CPU load [%] 73.5 59.3

Flash usage [B] 24 232 24 288

RAM usage [B] 3 853 3 857

3.2. 13BKV3x family

The KV31F MCU is a highly scalable member of the Kinetis V series and provides a high-performance,

cost-competitive motor-control solution. Built upon the ARM Cortex-M4 core running at 120 MHz,

with up to 512 KB of flash and up to 96 KB of RAM combined with the floating-point unit, it delivers a

platform enabling customers to build a scalable solution portfolio. The additional features include dual

16-bit ADCs sampling at up to 1.2 MS/s in 12-bit mode, 20 channels of flexible motor-control timers

(PWMs) across four independent time bases, and a large RAM block, enabling local execution of fast

control loops at full clock speed. For more information, see KV31F Sub-Family Reference Manual

(document KV31P100M120SF7RM).

3.2.1. 24BHardware timing and synchronization

A correct and precise timing is crucial in motor-control applications. The motor-control dedicated

peripherals handle the timing and synchronization on the hardware layer. You can set the PWM

frequency as a multiple of the ADC interrupt (FOC calculation) frequency, in this case

FOCRfreqR = PWMRfreqR/2. The timing diagram is shown in this figure:

Figure 5. Hardware timing and synchronization on KV31F

PWM

reload

PWM

reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG

off

TRIG

on

Tdeadtime

PDB

delay

pre-

trig 0
pre-

trig 1

http://www.nxp.com/doc/KV31P100M120SF7RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

10 NXP Semiconductors

 The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized

on the PWM top and PWM bottom signals. The FTM_TRIG is generated at the PWM reload,

which triggers the PDB (resets the PDB counter).

 The PDB generates a first pre-trigger for the first ADC (phase current) sample with a delay of

approximately TRdeadtime R/ 2. This delay ensures correct current sampling at duty cycles close

to 100 %.

 When the conversion of the first ADC sample (phase current) is completed, the ADC ISR is

entered. At first, the next FTM_TRIG is disabled (TRIG off). This ensures that the

PDB counter does not reset at the next PWM reload. The FOC is then calculated.

 In the middle of the next PWM period (PDB delay) the PDB ISR is called. This interrupt

enables the FTM_TRIG (TRIG on) at the next PWM reload. The PDB ISR has lower priority

than the ADC ISR. The PDB delay length determines the ratio between the PWM and FOC

frequencies.

 The PDB uses back-to-back mode to automatically generate the pre-trig 1 (to measure the

DC-bus voltage) immediately after the first conversion is completed.

3.2.2. 25BPeripheral settings

This section describes only the peripherals used for motor control. KV31F uses a 6-channel FlexTimer

(FTM) to generate a 6-channel PWM, and two 16-bit SAR ADCs to measure the phase currents and

DC-bus voltage. The FTM and ADC are synchronized via Programmable Delay Block (PDB).

One channel from another independent FTM is used for slow-loop interrupt generation.

3.2.2.1. 60BPWM generation—FTM0

 The FTM is clocked from the 60 MHz Bus clock.

 Only six channels are used, the other two are masked in the OUTMASK register.

 Channels 0+1, 2+3, and 4+5 are combined in pairs and they are running in a complementary

mode.

 The Fault mode is enabled for each combined pair with automatic fault clearing (PWM outputs

are re-enabled at the first PWM reload after the fault input returns to zero).

 The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -3000 and MOD = MODULO / 2 - 1 = 2999.

The FTM is clocked from the 60 MHz System clock, so it takes 0.0001 s (10 kHz).

 Dead time insertion is enabled for each combined pair. The dead time length is calculated as

System clock 60 MHz × TRdeadtimeR. The dead time varies among platforms.

 The FTM generates a trigger for the PDB on counter initialization.

 The FTM fault input is enabled, but its polarity and source vary among platforms.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 11

3.2.2.2. 61BAnalog sensing—ADC0 and ADC1

 The ADCs operate as 12-bit, single-ended converters.

 The clock source for both ADCs is the 48 MHz IRC48 clock, divided by 2 = 24 MHz.

 For ADC calibration purposes, the ADC clock is set to 6 MHz. Continuous the conversion and

averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the SC

register is filled with its default values and the clock is set back to 24 MHz.

 Both ADCs are triggered by the PDB pre-triggers.

 There is an interrupt that serves the FOC fast-loop algorithm, and it is generated after the first

conversion is completed.

3.2.2.3. 62BPWM and ADC synchronization—PDB0

 Like the FTM, the PDB is clocked from the 60 MHz Bus clock.

 The PDB is triggered by the FTM0_TRIG.

 The pre-trigger 0 at each channel is generated 0.5 × TRdeadtimeR after the FTM0_TRIG.

 The pre-trigger 1 at each channel is generated immediately after the first conversion is completed

using the back-to-back mode.

 The PDB Sequence Error interrupt is enabled. This interrupt is generated when a certain result

register is not read and the same pre-trigger occurs at the ADC.

 The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.

This interrupt enables the FTM_TRIG (15TFigure 515T).

 The PDB Sequence Error and PDB Delay interrupts both share a common interrupt vector.

Which event generated the interrupt is determined at the beginning of the interrupt according to

the ERR flag.

3.2.2.4. 63BFRDM platform over-current detection—CMP1

 The plus input for the CMP is taken from the analog pin.

 The minus input for the CMP is taken from the 6-bit DAC0 reference. The DAC reference is set

to 3.197 V (62 / 64 × VRDDR), which corresponds to 7.73 A (in the 8.25 A scale).

 The CMP filter is enabled and four consecutive samples must match.

3.2.2.5. 64BSlow-loop interrupt generation—FTM2

 The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.

 The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.

 The interrupt that serves the slow loop is enabled and generated at the reload.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

12 NXP Semiconductors

3.2.2.6. 65BCommunication with MC33937 MOSFET driver—SPI

 The SPI runs in the master mode.

 The SPI chip-select 1 signal is active in logic high.

 The baud rate is 3.12 MHz.

3.2.3. 26BPeripheral settings differences among platforms

There are differences in peripheral settings among different platforms. This table summarizes these

differences:

Table 3. KV31 platform differences

Peripheral Feature
Platform

Freedom Tower System HVP

FTM0

PWM polarity
high sides active high

low sides active high

high sides active low

low sides active high

high sides active high

low sides active high

Fault source FLT1, CMP1 out
GPIO pin checked in SW,

no HW connection to FTM.
FAULT 0, input pin

Fault polarity Active high Active high Active low

Dead time 0.5 s 0.5 s 1.5 s

SPI Driver on SPI No Yes No

PDB Pre-trigger 0 delay 0.25 s 0.25 s 0.75 s

3.2.4. 27BCPU load and memory usage

The following information apply to the demonstration application built using IAR Embedded

Workbench IDE. 15TTable 4 15T shows the memory usage and CPU load. The memory usage is calculated from

the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 3.1 KB

FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using

the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop)

frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1

kHz. The total CPU load is calculated according to 15TEq. 3 15T.

Table 4. KV31 CPU load and memory usage

— MKV31F

CPU load [%] 29,4

Flash usage [B] 24 896

RAM usage [B] 3 797

3.3. 14BKV4x family

The KV46F family of Kinetis MCUs is a high-performance solution built upon the ARM Cortex-M4

core running at 168 MHz with floating-point unit and up to 256 KB of flash and 32 KB of RAM. It is

targeted mainly at motor-control applications. Advanced peripherals, such as high-resolution

Pulse-Width Modulation (PWM) modules with a total of 30 PWM channels and dual 12-bit

Analog-to-Digital Converters (ADCs) make these devices ideal for high-end motor-control applications.

For more information, see KV4x Reference Manual (document KV4XP100M150RM).

http://www.nxp.com/doc/KV4XP100M150RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 13

3.3.1. 28BHardware timing and synchronization

A correct and precise timing is crucial in motor-control applications. The motor-control peripherals

handle the timing and synchronization on the hardware layer. You can set the PWM frequency as a

multiple of the ADC interrupt (FOC calculation) frequency, in this case FOCRfreqR = PWMRfreq R/ 2.

The timing diagram is shown in this figure:

Figure 6. Hardware timing and synchronization on KV46F

 The top signal (SM0 counter) shows the eFlexPWM counter. The dead time is emphasized in

the PWM top and PWM bottom signals. The SM0 submodule generates the master reload at

every second opportunity.

 The SM3 counter runs with a SM0 counter / 2 frequency, and its reload is synchronized with

the master reload.

 The SM3 generates a trigger (val4 – TRIG0) for the ADC scan with a delay of approximately

TRdeadtime R/ 2. This delay ensures correct current sampling at duty cycles close to 100 %.

 When the ADC scan completes, the ADC ISR is entered. The FOC calculation is made in this

interrupt.

3.3.2. 29BPeripheral settings

Only the peripherals used for motor control are described in this section. On KV46F, three submodules

from the enhanced FlexPWM (eFlexPWM) are used to generate a 6-channel PWM, and two 12-bit

cyclic ADCs are used to measure the phase currents and DC-bus voltage. The eFlexPWM and ADC are

synchronized using the fourth eFlexPWM submodule. One channel from the independent FTM is also

used to generate the slow-loop interrupt.

master

reload

ADC ISR

PWM bottom

PWM top

SM0 counter
Tdeadtime

SM3 counter

master

reload

master

reload

val 4 - TRIG0

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

14 NXP Semiconductors

3.3.2.1. 66BPWM generation—PWMA

 The eFlexPWM is clocked from the 74 MHz Fast Peripheral clock.

 Six channels from three submodules are used to generate a 3-phase PWM. Submodule 0

generates a master reload event every n P

th
P opportunity, depending on user-defined

M1_FOC_FREQ_VS_PWM_FREQ. Submodules 1, 2, and 3 are reloaded when the master reload

occurs.

 Submodules 1 and 2 are clocked from submodule 0.

 The counters at submodules 1 and 2 are synchronized with the master sync signal from

submodule 0. The counter at submodule 3 is synchronized with the master reload signal from

submodule 0.

 Submodule 3 is used for synchronization with the ADC. The clock for submodule 3 is divided

by 2 (37 MHz). The Val 4 register generates the output trigger TRdeadtime R/ 2 after the PWM reload.

 The fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault

clearing. The PWM outputs are re-enabled at the first PWM reload after the fault input returns to

zero). The PWM fault input pin and its polarity vary among platforms.

 The PWM period (frequency) is the time the counter needs to count from INIT to VAL1.

By default INIT = -MODULO / 2 = -3700 and VAL1 = MODULO / 2 - 1 = 3699. The eFlexPWM

clock runs at 74 MHz, so the frequency is 0.0001 s (10 kHz).

 Dead time insertion is enabled. The dead time length is calculated as the Fast Peripheral clock

74 MHz × TRdeadtimeR. The dead time varies among platforms.

3.3.2.2. 67BAnalog sensing—ADC12

 The ADC12 wrapper contains two independent ADCs. The ADCs operate as 12-bit, single-ended

converters. ADC12 operates in a triggered parallel mode (ADC0 and ADC1 convert

SAMPLE0+SAMPLE8 and SAMPLE1+SAMPLE9 simultaneously). The ADC scan is triggered

by the SYNC0 signal.

 The clock source for ADC12 is the 74 MHz Fast Peripheral clock divided by 3 = 24.6 MHz.

 Only SAMPLE0, SAMPLE1, SAMPLE8, and SAMPLE9 are enabled.

 The end-of-scan interrupt that serves the FOC fast loop algorithm is generated after the entire

scan is completed.

3.3.2.3. 68BPeripheral interconnections—XBARA

 The PWMA_TRG0 output trigger generated by submodule 3 is connected to the ADC_SYNC0

input.

 The over-current pin input signal is connected to the PWMA fault input that varies among

platforms.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 15

3.3.2.4. 69BSlow loop interrupt generation—FTM1

 The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.

 The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.

 The interrupt enabled and generated at the reload serves the slow loop.

3.3.2.5. 70BCommunication with MC33937 MOSFET driver—SPI

 The SPI runs in the master mode.

 The SPI chip select 1 signal is active in logic high.

 The baud rate is 3.12 MHz.

3.3.3. 30BPeripheral settings differences among platforms

There are some differences in peripheral settings among different platforms. This table summarizes

those differences:

Table 5. KV46 platform differences

Peripheral Feature
Platform

Tower System HVP

PWMA

PWM polarity
high sides active low

low sides active high

high sides active high

low sides active high

Fault source FAULT 0, input pin FAULT 1, input pin

Fault polarity Active high Active low

Dead time 0.5 s 1.5 s

SM3_VAL4 10 dec (delay 0.27 s) 28 dec (delay 0.76 s)

SPI Driver on SPI Yes No

3.3.4. 31BCPU load and memory usage

The following information apply to the demonstration application built using IAR Embedded

Workbench IDE. 15TTable 6 15T shows the memory usage and CPU load. The memory usage is calculated from

the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 3.1 KB

FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using

the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop)

frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1

kHz. The total CPU load is calculated according to 15TEq. 3 15T.

Table 6. KV46 CPU load and memory usage

— MKV46F

CPU load [%] 20.6

Flash usage [B] 24 772

RAM usage [B] 3 753

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

16 NXP Semiconductors

3.4. 15BKV5x family

The KV58F family of Kinetis MCUs is a high-performance solution built upon the ARM Cortex-M7

core running at 220 MHz with floating-point unit and up to 1 MB of flash and 64 KB of RAM.

The advanced peripherals, such as high-resolution Pulse-Width Modulation (PWM) modules with a total

of 42 PWM channels and four 12-bit high-speed Analog-to-Digital Converters (ADCs) with a sampling

rate of 5 MSPS, make these devices ideal for high-end multi-motor control applications. For more

information, see KV5x Reference Manual (document KV5XP144M220RM 15T).

3.4.1. 32BHardware timing and synchronization

A correct and precise timing is crucial in motor-control applications. Therefore, the motor-control

dedicated peripherals handle the timing and synchronization on the hardware layer. You can set the

PWM frequency as a multiple of the ADC interrupt (FOC calculation) frequency, in this case

FOCRfreqR = PWMRfreq R/ 2. The timing diagram is shown in this figure:

Figure 7. Hardware timing and synchronization on KV58F

 The top signal (SM0 counter) shows the eFlexPWM counter. The dead time is emphasized in

the PWM top and PWM bottom signals. The SM0 submodule generates the master reload

every second opportunity.

 The SM3 counter runs with a frequency of SM0 counter / 2 and its reload is synchronized

with master reload.

 The SM3 generates a trigger (val4 – TRIG0) for the ADC scan with a delay of approximately

TRdeadtime R/ 2. This delay ensures correct current sampling at duty cycles close to 100 %.

 When the ADC scan is completed, the ADC ISR is entered. The FOC calculation is done in this

interrupt.

master

reload

ADC ISR

PWM bottom

PWM top

SM0 counter
Tdeadtime

SM3 counter

master

reload

master

reload

val 4 - TRIG0

http://www.nxp.com/doc/KV5XP144M220RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 17

3.4.2. 33BPeripheral settings

Only the peripherals used for motor control are described in this section. On KV46F, three submodules

from the enhanced FlexPWM (eFlexPWM) are used to generate a 6-channel PWM, and two 12-bit

high-speed ADCs are used to measure the phase currents and DC-bus voltage. The eFlexPWM and

HSADC are synchronized via the fourth eFlexPWM submodule. One channel from an independent FTM

is used to generate the slow-loop interrupt.

3.4.2.1. 71BPWM generation—PWMA

 eFlexPWM is clocked from the 100 MHz Fast Peripheral clock.

 Six channels from three submodules are used to generate a 3-phase PWM. Submodule 0

generates the master reload event every nP

th
P opportunity, depending on user-defined

M1_FOC_FREQ_VS_PWM_FREQ. Submodules 1, 2, and 3 are reloaded when the master reload

occurs.

 Submodules 1 and 2 are clocked from submodule 0.

 The counters at submodules 1 and 2 are synchronized with the master sync signal from

submodule 0. The counter at submodule 3 is synchronized with the master reload signal from

submodule 0.

 Submodule 3 is used for synchronization with the ADC. The clock for submodule 3 is divided

by 2 (50 MHz). The Val 4 register generates the output trigger TRdeadtime R/ 2 after the PWM

reload.

 The fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault

clearing (PWM outputs are re-enabled the first PWM reload after the fault input returns to zero).

The PWM fault input pin and its polarity vary among platforms.

 The PWM period (frequency) is determined as a time for the counter to count from INIT to

VAL1. By default INIT = -MODULO / 2 = -5000 and VAL1 = MODULO / 2 - 1 = 4999.

The eFlexPWM clock is 100 MHz, so the PWM period is 0.0001 s (10 kHz).

 The dead time insertion is enabled. The dead time length is calculated as the Fast peripheral
clock 100 MHz × TRdeadtimeR. The dead time varies among the platforms.

3.4.2.2. 72BAnalog sensing—ADC12

 The HSADC wrappers are similar to the cyclic ADC12 wrapper at KV46. There are two

wrappers—HSADC0 and HSADC1. The HSADC0A and HSADC1A are used for MC analog

sensing.

 The clock source for HSADC0A and HSADC1A is the 100 MHz Fast Peripheral clock divided

by 4 = 25 MHz.

 The ADCs operate as 12-bit, single-ended converters. ADC12 operates in a triggered sequential

mode (HSADC0A converts SAMPLE0 and SAMPLE1, and HSADC1A also converts

SAMPLE0 and SAMPLE1). Each HSADC scan is triggered by the SYNC0 generated by

the eFlexPWM.

 Only SAMPLE0 and SAMPLE1 are enabled at each ADC.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

18 NXP Semiconductors

 The end-of-scan interrupt that serves the FOC fast-loop algorithm is generated after the entire

scan (SAMPLE0, SAMPLE1) is completed by HSADC0.

3.4.2.3. 73BPeripheral interconnections—XBARA

 The PWM0_OUT_TRG30 output trigger generated by submodule 3 is connected to the

HSADC0A_SYNC and HSADC1A_SYNC inputs.

 The over-current pin input signal is connected to the PWM0_FAULT0 fault input.

3.4.2.4. 74BSlow-loop interrupt generation—FTM2

 The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.

 The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.

 The interrupt that serves the slow loop is enabled and generated at reload.

3.4.2.5. 75BCommunication with MC33937 MOSFET driver—SPI

 SPI runs in a master mode.

 The SPI chip select 1 signal is active in logic high.

 The baud rate is 3.12 MHz.

3.4.3. 34BPeripheral settings differences among platforms

There are differences in peripheral settings among different platforms. This table summarizes those

differences:

Table 7. KV58 platform differences

Peripheral Feature
Platform

Tower System

PWMA

PWM polarity
high sides active low

low sides active high

Fault source FAULT 0, input pin

Fault polarity Active high

Dead time 0.5 s

SM3_VAL4 13 dec (delay 0.26 s)

SPI Driver on SPI Yes

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 19

3.4.4. 35BCPU load and memory usage

The following information apply to the demonstration application built using IAR Embedded

Workbench IDE. 15TTable 8 15T shows the memory usage and CPU load. The memory usage is calculated from

the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 3.1 KB

FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using

the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop)

frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1

kHz. The total CPU load is calculated according to 15TEq. 3 15T.

Table 8. KV58 CPU load and memory usage

— MKV58F

CPU load [%] 28.7

Flash usage [B] 25 917

RAM usage [B] 3 793

3.5. KE1xZ family

The KE15Z is a part of Kinetis E series of ARM Cortex-M0+ MCUs. The Kinetis E series family is a

product portfolio with an enhanced ESD/EFT performance for cost-sensitive, high-reliability

applications used in the environments with high electrical noise.

Built upon the ARM Cortex-M0+ core running at 72 MHz with up to 256 KB of flash and 32 KB of

RAM, it delivers a platform that enables you to build a scalable solution portfolio. For more

information, see KE1xZ Sub-Family Reference Manual (document KE1xZP100M72SF0RM).

http://www.nxp.com/doc/KE1xZP100M72SF0RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

20 NXP Semiconductors

3.5.1. Hardware timing and synchronization

A correct and precise timing is crucial in motor-control applications. The motor-control dedicated

peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown

in this figure:

Figure 8. Hardware timing and synchronization on KV11Z and KV10Z

3.5.2. Peripheral settings

This section describes only the peripherals used for motor control. The KE15Z uses a 6-channel

FlexTimer (FTM) to generate a 6-channel PWM and two 12-bit SAR ADCs to measure the back-EMF

voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via the

Programmable Delay Block (PDB). One channel from another independent FTM is used for the

slow-loop interrupt generation.

3.5.2.1. PWM generation—FTM0

 The FTM is clocked from the 72-MHz System clock.

 Only six channels are used, the other two are masked in the OUTMASK register.

 Channels 0+1, 2+3, and 4+5 are combined in pairs and running in a complementary mode.

 The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -3600 and MOD = MODULO / 2 - 1 = 3599. The

FTM is clocked from the 72-MHz System clock, so the PWM period is 0.0001 s (10 kHz).

 The dead time insertion is enabled for each combined pair. The dead time length is calculated as

System clock 72 MHz × Tdeadtime. The dead time length is 0.5 s.

 The FTM generates a trigger for the PDB on the counter initialization.

PWM

reload

PWM

reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG

off

TRIG

on

Tdeadtime

PDB

delay

pre-

trig 0
pre-

trig 1

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 21

3.5.2.2. Analog sensing—ADC0 and ADC1

 The ADCs operate as 12-bit, single-ended converters.

 The clock source for both ADCs is the 24-MHz Bus clock divided by 2 = 12 MHz.

 For the ADC calibration purposes, the ADC clock is set to 3 MHz. The continuous conversion

and averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the

SC register is filled with its default values and the clock is set back to 12 MHz.

 Both ADCs are triggered by the PDB pre-triggers.

 An interrupt that serves for the fast-loop algorithm calculation is generated when the first

conversion is completed.

3.5.2.3. PWM and ADC synchronization—PDB0

 Like the FTM, the PDB is clocked from the 72-MHz System clock.

 The PDB is triggered by the FTM0_TRIG.

 At each channel, the pre-trigger 0 is generated 0.5 × Tdeadtime after the FTM0_TRIG.

 At each channel, the pre-trigger 1 is generated immediately after the first conversion is

completed using the back-to-back mode.

 The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.

This interrupt enables the FTM_TRIG (see Figure 8).

 The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC. For more information about the

PDB error sequence handling, see Tips and Tricks Using PDB in Motor Control Applications on

Kinetis (document AN4822).

3.5.2.4. Slow-loop interrupt generation—FTM2

 The slow loop is usually 10× (or more) slower than the fast loop. Therefore, the FTM2 is clocked

from the System clock / 16 to keep its modulo value reasonably low.

 The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.

 The interrupt that serves the slow loop is enabled and generated at the reload.

3.5.3. CPU load and memory usage

The following information apply to the demonstration application built using the IAR Embedded

Workbench IDE. Table 9 shows the memory usage and CPU load. The memory usage is calculated from

the linker .map file, including the 2 KB FreeMASTER Recorder buffer (allocated in RAM) and 3.1 KB

FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using

the SysTick timer. The CPU load depends on the fast-loop (FOC calculation) and slow-loop

(speed-loop) frequencies. In this case, it applies to the fast-loop frequency of 10 kHz and the slow-loop

frequency of 1 kHz. The total CPU load is calculated according to Eq. 3.

http://www.nxp.com/doc/AN4822

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

22 NXP Semiconductors

Table 9. KE15Z CPU load and memory usage

— MKE15Z

CPU load [%] 58,2

Flash usage [B] 20 665

RAM usage [B] 3 727

3.6. KE1xF family

The KE18F is a part of Kinetis E series of ARM Cortex-M4 MCUs. This device is a 32-bit Kinetis MCU

based on the ARM Cortex-M4 processor. It is an extension of the existing Kinetis E series MCU family

with an enhanced CPU performance and additional memories and peripherals. This sub-family provides

up to 168 MHz CPU performance, 512 KB flash, and 64 KB SRAM.

For more information, see KE1xZ Sub-Family Reference Manual (document KE1xFP100M168SF0RM).

3.6.1. Hardware timing and synchronization

A correct and precise timing is crucial in motor-control applications. The motor-control-dedicated

peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown

in this figure:

Figure 9. Hardware timing and synchronization on KV11Z and KV10Z

3.6.2. Peripheral settings

This section describes only the peripherals used for motor control. The KE18F uses a 6-channel

FlexTimer (FTM) to generate a 6-channel PWM, and two 12-bit SAR ADCs to measure the back-EMF

voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via the

PWM

reload

PWM

reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG

off

TRIG

on

Tdeadtime

PDB

delay

pre-

trig 0
pre-

trig 1

http://www.nxp.com/doc/KE1xFP100M168SF0RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 23

Programmable Delay Block (PDB). One channel from another independent FTM is used for the

slow-loop interrupt generation.

3.6.2.1. PWM generation—FTM0

 The FTM is clocked from the 168-MHz System clock.

 Only six channels are used, the other two are masked in the OUTMASK register.

 Channels 0+1, 2+3, and 4+5 are combined in pairs and running in a complementary mode.

 The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -8400 and MOD = MODULO / 2 - 1 = 8399. The

FTM is clocked from the 168-MHz System clock, so it takes 0.0001 s (10 kHz).

 The dead time insertion is enabled for each combined pair. The dead time length is calculated as

System clock 168 MHz × Tdeadtime. The dead time length is 0.5 s.

 The FTM generates a trigger for the PDBs on the counter initialization.

3.6.2.2. Analog sensing—ADC0 and ADC2

 The ADCs operate as 12-bit, single-ended converters.

 The clock source for both ADCs is the 84-MHz Bus clock divided by 2 = 42 MHz.

 For the ADC calibration purposes, the ADC clock is set to 10.5 MHz. The continuous conversion

and averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the

SC register is filled with its default values and the clock is set back to 42 MHz.

 Both ADCs are triggered by the PDB pre-triggers.

 The interrupt that serves for the fast-loop algorithm calculation is generated when the first

conversion is completed.

3.6.2.3. PWM and ADC synchronization—PDB0, PDB2

 Like the FTM, the PDB is clocked from the 168-MHz System clock.

 The PDB is triggered by the FTM0_TRIG.

 At each channel, the pre-trigger 0 is generated 0.5 × Tdeadtime after the FTM0_TRIG.

 At each channel, the pre-trigger 1 is generated immediately after the first conversion is

completed using the back-to-back mode.

 The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.

This interrupt enables the FTM_TRIG (see Figure 9).

 The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC. For more information about the

PDB error sequence handling, see Tips and Tricks Using PDB in Motor Control Applications on

Kinetis (document AN4822).

http://www.nxp.com/doc/AN4822

Motor Control Peripheral Drivers

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

24 NXP Semiconductors

3.6.2.4. Slow-loop interrupt generation—FTM2

 The slow loop is usually 10× (or more) slower than the fast loop. Therefore, the FTM2 is clocked

from the System clock / 16 to keep its modulo value reasonably low.

 The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.

 The interrupt that serves the slow loop is enabled and generated at the reload.

3.6.2.5. Communication with MC33937 MOSFET driver—LPSPI

 The SPI runs in the master mode.

 The SPI chip select 2 signal is active in the logic high.

 The baud rate is 0.5 MHz.

3.6.3. CPU load and memory usage

The following information apply to the demonstration application built using the IAR Embedded

Workbench IDE. Table 10 shows the memory usage and CPU load. The memory usage is calculated

from the linker .map file, including the 2 KB FreeMASTER Recorder buffer (allocated in RAM) and

3.1 KB FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is

measured using the SysTick timer. The CPU load depends on the fast-loop (FOC calculation) and

slow-loop (speed-loop) frequencies. In this case, it applies to the fast-loop frequency of 10 kHz and the

slow-loop frequency of 1 kHz. The total CPU load is calculated according to Eq. 3.

Table 10. KE18F CPU load and memory usage

— MKE18F

CPU load [%] 13,9

Flash usage [B] 23 247

RAM usage [B] 3 785

4. Motor Control Peripheral Drivers

Motor Control Peripheral Drivers (MCDRV) represent a simple way of peripheral initialization and

access for the purposes of 3-phase ACIM or PMSM control. The features provided by the MCDRV

library are 3-phase PWM generation and 3-phase current measurement, as well as the DC-bus voltage

and auxiliary quantity measurement. The principles of both the 3-phase current measurement and PWM

generation using the Space Vector Modulation (SVM) technique are described in Sensorless PMSM

Field-Oriented Control (document DRM148).

The MCDRV are divided into two parts:

 The first part is the peripheral initialization module, consisting of mcdrv_<platform>-

<device>.c and mcdrv_<platform>-<device>.h files, which are unique for each supported

device. The header file includes all MCDRV setup options including the ADC channel

assignment. The source file contains the functions to initialize all peripherals used for motor

control. This module is described in 15TSection 4.2, “Motor Control Peripheral Drivers API 15T15T” 15T.

 The second part consists of the peripheral driver library modules for each supported periphery.

http://www.nxp.com/doc/DRM148

Motor Control Peripheral Drivers

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 25

Generally, all ADC and PWM periphery drivers share the same API within their class. This

enables the higher-level code to be platform-independent, as the peripheral driver function calls

were replaced by universally named macros. The list of supported peripherals and the API of

their drivers is described in 15TSection 4.2, “Motor Control Peripheral Drivers API 15T15T” 15T.

4.1. 16BMotor Control Peripheral Drivers initialization

The MCDRV initialization module consists of a set of MCU peripheral-initialization functions, as well

as all the definitions that you can specify. The functions are contained in device-specific

mcdrv_<platform><device>.c source and mcdrv_<platform><device>.h header files. Out of all

functions in the MCDRV initialization module, call the MCDRV_Init_M1() function during MCU

startup and before calling any other MCDRV functions. All peripherals used by a given device for

motor-control purposes are initialized within this function.

The mcdrv_<platform><device>.h header files offer several macros that you can define:

 M1_MCDRV_ADC—this macro specifies the ADC periphery used. If you select an unsupported

periphery, the preprocessor error is issued.

 M1_MCDRV_PWM3PH—this macro specifies the PWM periphery used. If you select an

unsupported periphery, the preprocessor error is issued.

 M1_PWM_FREQ—PWM frequency, for example, 10 kHz.

 M1_FOC_FREQ_VS_PWM_FREQ—enables you to call the fast loop interrupt every 1 P

st
P, 2P

nd
P,

3P

rd
P, and nP

th
P PWM reload. This is convenient when the PWM frequency must be higher than the

maximal fast-loop interrupt length (running out of CPU performance).

 M1_PWM_PAIR_PH[A..C]—these macros enable simple assignment of the physical motor

phases to the PWM periphery channels or submodules. Change the order of the motor phases

this way.

 M1_ADC[0,1]_PH_[A..C]—these macros serve to assign the ADC channels for phase-current

measurement. The general rule is that at least one of the phase currents must be measurable on

both ADC converters and the remaining two phase currents must be measurable on different

ADC converters. The reason for this is that the selection of the phase-current pair to measure

depends on the current SVM sector. When this rule is broken, preprocessor error is issued.

For more information about the 3-phase current measurement, see Sensorless PMSM

Field-Oriented Control (document 15TDRM148 15T). The unassigned ADC channels are set to the

MCDRV_CHAN_OFF value.

 M1_ADC[0,1]_UDCB and M1_ADC[0,1]_AUX—use these defines to select the ADC channel

to measure the DC-bus voltage and one user-defined auxiliary quantity, which is not used

directly for motor control (the IPM temperature is measured by default). The rule for the ADC

channel assignment is that the DC-bus voltage and the auxiliary quantity must be measurable on

different ADC converters. If this rule is broken, preprocessor error is issued.

http://www.fsls.co/doc/DRM148
http://www.fsls.co/doc/DRM148

Motor Control Peripheral Drivers

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

26 NXP Semiconductors

4.2. 17BMotor Control Peripheral Drivers API

The ADC and PWM motor-control drivers share the same API within their class. To ensure the device

independency of MCDRV API, all driver functions are accessible via universally named macros in the

mcdrv_<platform>-<device>.h files.

The available API for the ADC MC drivers is:

 bool_t M1_MCDRV_ADC_PERIPH_INIT()—by default, this function is called during the ADC

peripheral initialization procedure invoked by the MCDRV_Init_M1() function, and it must not

be called again after the peripheral initialization is done.

 bool_t M1_MCDRV_CURR_3PH_CHAN_ASSIGN(MCDRV_ADC_T*)—calling this function

assigns the proper ADC channels for the next 3-phase current measurement based on the SVM

sector. This function always returns true.

 bool_t M1_MCDRV_CURR_3PH_CALIB_INIT(MCDRV_ADC_T*)—this function initializes the

phase-current channel-offset measurement. This function always returns true.

 bool_t M1_MCDRV_CURR_3PH_CALIB(MCDRV_ADC_T*)—this function reads the current

information from the unpowered phases of a standstill motor and filters them using moving

average filters. The goal is to obtain the value of the measurement offset. The length of the

window for moving average filters is set to eight samples by default. This function always

returns true.

 bool_t M1_MCDRV_CURR_3PH_CALIB_SET(MCDRV_ADC_T*)—this function asserts the

phase-current measurement offset values to the internal registers. Call this function after

a sufficient number of M1_MCDRV_CURR_3PH_CALIB() calls. This function always

returns true.

 bool_t M1_MCDRV_ADC_GET (MCDRV_ADC_T*)—this function reads and calculates the

actual values of the 3-phase currents, DC-bus voltage, and auxiliary quantity. This function

always returns true.

The API for the PWM MC drivers is:

 bool_t M1_MCDRV_PWM_PERIPH_INIT (M1_MCDRV_PWM_T*)—this function is called by

default during the PWM periphery-initialization procedure invoked by the MCDRV_Init_M1()

function. This function always returns true.

 bool_t M1_MCDRV_PWM3PH_SET(M1_MCDRV_PWM_T*)—this function updates the PWM

phase duty cycles based on the required values stored in the M1_MCDRV_PWMIO_DUTY

variable. This function always returns true.

 bool_t M1_MCDRV_PWM3PH_EN(M1_MCDRV_PWM_T*)—calling this function enables all

PWM channels. This function always returns true.

 bool_t M1_MCDRV_PWM3PH_DIS (M1_MCDRV_PWM_T*)—calling this function disables all

PWM channels. This function always returns true.

 bool_t M1_MCDRV_PWM3PH_FAULT_GET(M1_MCDRV_PWM_T*)—this function returns

the state of the over-current fault flags and automatically clears the flags (if set). This function

returns true when the over-current event occurs, otherwise, it returns false.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 27

5. Tuning and Controlling the Application

This section provides information about the tools and recommended procedures for controlling the

sensorless PMSM Field-Oriented Control (FOC) application. The application contains the

embedded-side driver of FreeMASTER real-time debug monitor and data visualization tool for

communication with the PC. It supports non-intrusive monitoring as well as the modification of target

variables in real time, which is very useful for algorithm tuning. Besides the target-side driver,

FreeMASTER requires installing the PC application as well. For more information,

visit 15Twww.nxp.com/freemaster 15T.

Control and tune the PMSM sensorless FOC application easily using Motor Control Application Tuning

(MCAT) page for PMSM. The MCAT for PMSM is a user-friendly modular page, which runs within

FreeMASTER. To launch it, execute the .pmp file located next to your project. See the user’s guide for

your version of MCRSP_PMSM for more information (document MCRSPPMSMUG). 15TFigure 1015T shows

the MCAT for PMSM welcome page. The tool consists of a tab menu (point one), tuning mode selector

(point two), and the workspace (point three). Each tab represents a submodule, which enables tuning or

controlling different aspects of the application. Besides the MCAT page for PMSM, several scopes,

recorders, and variables in the variable watch window are predefined in the FreeMASTER project file to

further simplify motor parameter tuning and debugging. The Basic and Expert tuning modes are

available. Selecting the Expert mode grants you the access to modify all parameters and fields available

in MCAT. The Basic mode is intended for inexperienced users. When FreeMASTER is not connected to

the target, the “App ID” line shows “offline”. When the communication with the target MCU (with

correct software) is established, the “App ID” line displays the MCU and platform, and all stored

parameters for the given MCU are loaded.

http://www.nxp.com/freemaster
http://www.nxp.com/doc/MCRSPPMSMUG

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

28 NXP Semiconductors

Figure 10. MCAT layout

In the default configuration, these tabs are available:

 “Introduction”—welcome page with the PMSM sensorless FOC diagram and a short description

of the application.

 “Motor Identif”—PMSM semi-automated parameter-measurement control page. The PMSM

parameter identification is described in detail later on in this document.

 “Parameters”—this page enables you to modify the motor parameters, the specification of

hardware and application scales, and fault limits.

 “Current Loop”—current-loop PI controller gains and output limits.

 “Speed Loop”—this tab contains fields to specify the speed controller proportional and integral

gains as well as the output limits and parameters of the speed ramp.

 “Sensorless”—this page enables you to tune the parameters of the BEMF observer, tracking

observer, and open-loop startup.

 “Control Struc”—the application control page enables you to select and control the PMSM using

different techniques (scalar—Volt/Hertz control, voltage FOC, current FOC, and speed FOC).

The application state is also shown in this tab.

 “Output file”—this tab enables the user to view all calculated constants that are required by the

PMSM sensorless FOC application. It also enables you to generate the m1_pmsm_appconfig.h

file, which is then used to preset all application parameters permanently at project rebuild.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 29

 “Control page”—this tab contains graphical elements such as speed gauges, DC-bus voltage

measurement bar, and variety of switches that enable simple, quick, and user-friendly application

control. Here you can control the fault-clearing and demo mode, which sets various predefined

required speeds over time.

Most tabs offer the possibility to immediately write the parameters specified in MCAT into the target

using the “Update target” button, and save them to or restore them from the hard drive file using the

“Reload Data” and “Store Data” buttons.

The following sections provide simple instructions for identifying the parameters of a connected PMSM,

and tuning the application appropriately.

5.1. 18BPMSM parameter identification

Because the model-based control methods of PMSM drives are the most effective and usable, obtaining

an accurate model of a motor is an important part of the drive design and control. To implement the

FOC algorithms, you must know the values of stator resistance RRsR, direct inductance LRdR, quadrature

inductance LRqR, and BEMF constant KReR.

5.1.1. 36BPower stage characterization

Each inverter introduces the total error voltage URerrorR, which is caused by the dead time,

current-clamping effect, and transistor voltage drop. The total error voltage URerrorR depends on the phase

current iRsR and this dependency is measured during the power stage characterization process. An example

of the inverter error characteristic is shown in 15TFigure 1115T. The power stage characterization is a part of

MCAT, which can be controlled using the “Motor Identif” tab. To perform the characterization, connect

the motor with a known stator resistance RRsR, and set this value in the “Calib Rs” field. Then specify the

“Calibration Range”, which is the range of the stator current iRsR, in which the measurement of URerror Ris to

be performed. Start the characterization by clicking the “Calibrate” button. The characterization

gradually performs 65 iRsdR current steps (from iRsR = -IRs,calibR to iRsR = IRs,calibR), with each step lasting 300 ms.

The whole process then takes about 20 seconds and the motor must withstand this load. The acquired

characterization data is saved to a file and used later for the phase-voltage correction during the RRsR

measurement process. Perform the following RRsR measurement with a maximum current IRs,calibR. It is

recommended to use a motor with a low RRsR for characterization purposes.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

30 NXP Semiconductors

Figure 11. Example power stage characteristic

The power stage characterization is necessary only when you use your own hardware. When using NXP

power stages with the application, omit the characterization process. The acquired characterization data

is saved to a file, so it is necessary to do it only once for a given hardware.

5.1.2. 37BStator resistance measurement

Stator resistance RRsR is measured using the DC current IRphNR value, which is applied to the motor for

1200 ms. DC voltage URDCR is maintained using current controllers. Their parameters are selected

conservatively to ensure stability. Stator resistance RRsR is calculated using Ohm’s law as:

Eq. 4 𝑹𝒔 =
𝑼𝑫𝑪−𝑼𝒆𝒓𝒓𝒐𝒓

𝑰𝒑𝒉𝑵
 [Ω]

5.1.3. 38BStator inductance

For the stator inductance LRSR identification purposes, a sinusoidal measurement voltage is applied to the

motor. During LRSR measurement, voltage control is enabled. The frequency and amplitude of the

sinusoidal voltage are obtained during the tuning process, before the actual measurement. The tuning

process starts with a 0 V amplitude and F start frequency, which are applied to the motor. The amplitude

is gradually increased by Ud inc up to half of the DC-bus voltage (DCbus/2) until IRsR AC is reached.

If IRsR AC is not reached even with DCbus/2 and F start, the frequency of the measurement signal is again

gradually decreased by F dec down to F min, until IRsR AC is reached. If IRsR AC is still not reached, the

measurement continues with DCbus/2 and F min. The tuning process is shown in the following figure.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 31

Figure 12. Tuning Ls measurement signal

When the tuning process is complete, the sinusoidal measurement signal (with the amplitude and

frequency obtained during the tuning process) is applied to the motor. The total impedance of the RL

circuit is then calculated from the voltage and current amplitudes, and LRsR is calculated from the total

impedance of the RL circuit.

Eq. 5 𝒁𝑹𝑳 =
𝑼𝒅

𝑰𝒅 𝒂𝒎𝒑𝒍
 [Ω]

Eq. 6 𝑿𝑳𝒔 = √𝒁𝑹𝑳
𝟐−𝑹𝑺

𝟐 [Ω]

Eq. 7 𝑳𝒔 =
𝑿𝑳𝒔

𝟐𝝅𝒇
 [H]

The direct inductance (LRdR) and quadrature inductance (LRqR) measurements are done in the same way as

the LRSR measurement. Before the LRdR and LRqR measurements take place, DC current is applied to the D-axis,

which aligns the rotor. For LRdR measurement, the sinusoidal voltage is applied in the D-axis, and for LRqR

measurement, the sinusoidal voltage is applied in the Q-axis.

5.1.4. 39BBEMF constant measurement

Before the actual BEMF constant (KReR) measurement, MCAT calculates the current controllers and

BEMF-observer constants from the previously measured RRsR, LRdR, and LRqR. To measure the KReR, the motor

must be spinning. The IRdR is controlled using IRsR DC, and the electrical open-loop position is generated by

integrating the required speed, derived from N nom. When the motor reaches the required speed,

the BEMF voltages obtained by the BEMF observer are filtered, and KReR is calculated as follows:

Eq. 8 𝑲𝒆 =
𝑼𝑩𝑬𝑴𝑭

𝝎𝒆𝒍
 [

𝑽.𝒔

𝒓𝒂𝒅
]

Ud inc

Ud inc

Ud inc

Ud

UDCbus/2

300 ms

F start

300 ms

F start

300 ms

F start

300 ms

F start – F dec

300 ms 300 ms 300 ms

F start – 2*F dec F start – 3*F dec F min

Amplitude tuning Frequency tuning

t

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

32 NXP Semiconductors

While KReR is being measured, look at the motor to determine whether it is spinning properly. If the motor

is not spinning properly, perform these steps:

 Ensure that the number of pole-pairs (pp) is correct. The required speed for the KReR measurement

is also calculated from pp, so an incorrect pp causes an incorrect KReR.

 Increase the value of IRsR DC to produce a higher torque when spinning during the open loop.

 Decrease the value of N nom to decrease the required speed for the KReR measurement.

5.1.5. 40BNumber of pole-pairs assistant

The number of pole-pairs cannot be measured without a position sensor, however, there is a simple

assistant to determine the number of pp. The number of pole-pairs assistant performs one electrical

revolution and stops for a few seconds, and then repeats it. Because the pp value is a ratio between the

electrical and mechanical speeds, it is determined as the number of stops per one mechanical revolution.

It is recommended not to count the stops during the first mechanical revolution, because the alignment

which affects the number of stops occurs during the first revolution. During the pp measurement,

the current loop is enabled, and current IRdR is controlled to IRsR DC. The electrical position is generated by

integrating the open-loop speed. If the rotor does not move after starting the number of pole-pairs

assistant, stop the assistant, increase IRsR DC, and restart the assistant.

5.1.6. 41BPMSM electrical parameter measurement process

Control and set up the motor identification process using the MCAT “Motor Identif” tab, which is

shown in Figure 1315T. To measure your own motor, follow these steps (shown in 15TFigure 14 15T):

 Select your hardware board. You can select the standard NXP hardware or use your own. If you

use your own hardware, specify its scales (I max, U DCB max, Fast Loop Period).

 If you don’t know the number of motor pole-pairs, use the number of pole-pairs assistant

described in 15TSection 5.1.5, “Number of pole-pairs assistant”15T.

 If you use your own hardware for the first time, perform the power stage characterization

described in 15TSection, 5.1.1, “Power stage characterization”15T.

 Enter the motor measurement parameters (depending on “Basic” or “Expert” mode) and start the

measurement by pressing the “Measure” button. You can observe which parameter is being

measured in the “Status” bar.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 33

Figure 13. PMSM identification tab

Figure 14. Measurement process diagram

Connect motor

Enter Application

Scales, Is DC and Is AC

pp know ?

Enter pp

Run Number

of pp assistant

User HW

board ?

Perform Measurement

Perform

Characterization

Faults or

Warnings?

Measurement successful

Yes

Yes

Yes

No
No

No

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

34 NXP Semiconductors

Faults and warnings may occur during the measurement. Do not confuse these faults with application

faults such as over-current, under-voltage, and others. The list of these faults and their description and

possible troubleshooting is shown in this table:

Table 11. Measurement faults and warnings

Fault

no.
Fault description Fault reason Troubleshooting

01 Motor not connected
IRsR > 50 mA cannot be reached with the

available DC-bus voltage.
Check that the motor is connected.

02 RRsR too high for calibration
Calibration I cannot be reached with the

available DC-bus voltage.

Use a motor with a lower RRsR for power

stage characterization.

03
Current measurement IRsR

DC not reached

User-defined IRsR DC is not reached, so the

measurement is taken with a lower IRsR DC.

Raise the DC-bus voltage to reach the IRsR

DC or lower the IRsR DC to avoid this

warning.

04

Current amplitude

measurement IRsR AC not

reached

User-defined IRsR AC is not reached, so the

measurement is taken with a lower IRsR AC.

Raise the DC-bus voltage or lower the

F min to reach the IRsR AC or lower the IRsR AC

to avoid this warning.

05 Wrong characteristic data

Characteristic data that is used for

voltage correction does not correspond to

the actual power stage.

Select “User HW” and perform the

calibration.

5.2. 19BPMSM sensorless application control and tuning using MCAT

Use FreeMASTER enabled with the MCAT page to control and tune the PMSM sensorless FOC

application easily. The MCAT for PMSM submodule tabs are described here.

5.2.1. 42BApplication control using MCAT

Control the application using the “Control Struc” tab (shown in Figure 15 15T). The “State Control” area on

the left-hand side of the screen shows the current application state and enables turning the main

application switch on or off (turning the running application off disables all PWM outputs).

The “Cascade Control Structure Composition” area is on the right-hand side of the screen.

Choose between the scalar and FOC control using the appropriate buttons. Enable the selected parts of

the FOC cascade structure by selecting “Voltage FOC”, “Current FOC”, or “Speed FOC”. This is useful

for application tuning and debugging.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 35

Figure 15. MCAT for PMSM control page

The scalar control diagram is in Figure 1615T. It is the simplest type of a motor-control technique. Keep the

ratio between the magnitude of the stator voltage and the frequency (frequency information is hidden in

the “Speed_req” value) at the nominal ratio. This control method is sometimes called Volt per Hertz or

V/Hz. Pay attention when entering the required voltage and speed in the Expert tuning mode. The ratio

stays constant in the Basic mode and only the speed is required. The position-estimation BEMF observer

and the tracking observer algorithms are running in the background even if the estimated position

information is not directly used. See Sensorless PMSM Field-Oriented Control (document DRM148) for

more information 15T. This is useful for BEMF observer tuning.

Figure 16. Scalar control mode

http://www.nxp.com/doc/DRM148

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

36 NXP Semiconductors

The block diagram of the voltage FOC is shown in the following figure 15T. As opposed to scalar control,

the position feedback is closed using the BEMF observer, and the stator voltage magnitude is not

dependent on motor speed. Specify the d-axis and q-axis stator voltages using the “Ud_req” and

“Uq_req” fields. This control method is useful for the BEMF observer functionality check.

Figure 17. Voltage FOC control mode

The current FOC (or torque control) requires transforming the rotor position feedback (as well as the

currents) into the d-q reference frame. The reference variables “Id_req” and “Iq_req” are available for

motor control (see 15Tthe following figure15T). The d-axis current component iRsd_req Ris responsible for the rotor-

flux control, while the q-axis current component of the current isq_req generates torque, and the motor runs

when it is applied. When changing the polarity of the current isq_req, the motor changes the rotation

direction. When tuning the BEMF observer correctly, tune the current PI controllers using the current

FOC control structure.

Figure 18. Current (torque) control mode

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 37

Activate the speed PMSM sensorless FOC (whose diagram is shown in the following figure) by

enabling the “Speed FOC” control structure. Enter the required speed into the “Speed_req” field. The d-

axis current reference is kept at 0 during the entire FOC operation. This control scheme is used for the

speed PI controller design, which is the final stage of the PMSM sensorless application tuning.

Figure 19. Speed FOC control mode

5.2.2. 43BPMSM sensorless application tuning using MCAT

This section provides a guide for running your motor in several steps. It is highly recommended to go

through all the steps carefully to eliminate any issues during the tuning process. The state diagram in the

following figure shows a typical PMSM sensorless control tuning process. The tuning phases are

described in the following sections.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

38 NXP Semiconductors

Figure 20. Running a new PMSM

5.2.3. 44BInitial configuration setting and update

1. Open the PMSM sensorless control application FreeMASTER project containing the dedicated

MCAT plug-in module.

2. Select the “Basic” mode—recommended for users who are not experienced in motor-control

theory. The number of required input parameters is reduced.

3. Select the “Parameters” tab.

4. Leave the measured motor parameters as they are, or specify the parameters manually. Obtain

the motor parameters from the motor data sheet or using the PMSM parameters measurement

procedure described in PMSM electrical parameters measurement (document 15TAN4680 15T).

All parameters provided in the following table are accessible in both the Basic and the Expert

modes. The motor inertia J expresses the overall system inertia that is very often difficult to

obtain. Obtain the additional methods to identify the drive inertia from other resources, for

example, from IEEE. The J parameter is used to calculate the speed controller constant. You can

also use manual controller tuning to calculate this constant.

Connect motor

Motor params.

identification

Application parameters

specification

- Enter (or keep default)

parameters at all tabs

- Click Store Data and

Update Target

Select Scalar Control and

spin the motor

Motor aligns

properly with

the two stage

alignment

false

Increase V/rpm factor if

motor spins with glitches

Parameters tab:

- Switch to Expert

- Tune Alignment

parameters

- Click update

Select Speed FOC and

spin the motor

Amplitude and

shape of all currents

similar

false

true

Estimated speed

without significant

noise or glitches

false Sensorless tab:

- Switch to Expert

- Tune BEMF and

Tracking observer

- Click update

true

Check HW

true

Motor starts and

smoothly switches

to closed loop

false
Sensorless tab:

- Switch to Expert

- Tune Open Loop

Start-up

- Click update

Estimated Speed

follows the Required

speed well

false
Speed tab:

- Switch to Expert

- Tune Speed PI

controller

- Click update

true

Motor runs with

required dynamics

false
Tune:

- Current Loop

- BEMF & Tracking

observers

- Speed Loop

parameters

true

Generate output

Header file with

final configuration

true

http://www.fsls.co/doc/AN4680

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 39

Table 12. MCAT motor parameters

Parameter Units Description Typical range

pp — Motor pole-pairs 1–10

Rs [Ω] One-phase stator resistance 0.3–50

Ld [H] One-phase direct inductance 0.00001–0.1

Lq [H] One-phase quadrature inductance 0.00001–0.1

Ke [V.sec/rad] BEMF constant 0.001–1

J [kg.m2] System inertia 0.000001–1

Iph nom [A] Motor nominal phase current 0.5–8

Uph nom [V] Motor nominal phase voltage 10–300

N nom [rpm] Motor nominal speed 1000–2000

5. Set the hardware scales—modifying these two fields is not required when using a reference to

the standard power stage board. These scales specify the maximum measurable current and

voltage analog quantities.

6. Check the fault limits—these fields are not accessible in the “Basic” mode and they are

calculated using the motor parameters and hardware scales. See this table:

Table 13. Fault limits

Parameter Units Description Typical range

U DCB trip [V]
Voltage value when the external braking resistor switch is

turned on

U DCB

Over~U DCB max

U DCB under [V] Trigger value when the under-voltage fault is detected 0~U DCB Over

U DCB over [V] Trigger value when the over-voltage fault is detected
U DCB

Under~U max

N over [rpm] Trigger value when the over-speed fault is detected N nom~N max

N min [rpm] Minimal actual speed value for the sensorless control (0.05~0.2) * N max

E block [V]

Bemf voltage threshold for blocked rotor detection. If the

Bemf voltage drops down under this threshold, the blocked

rotor fault sets on (see 15TFigure 1915T).

0.1 * E max

Figure 21. 42TBlocked rotor detection

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

40 NXP Semiconductors

7. 42TCheck 0T42T 0T42Tthe0T42T 0T42Tapplication scales0T42T—0T42Tthese0T42T 0T42Tfields are not accessible in the Basic mode and are

calculated using 0T42T 0T42Tthe 0T42T 0T42Tmotor parameters and hardware scales. 20T42T

Table 14. Application scales

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1 * N nom

E max [V] BEMF scale Ke * N max

kt [Nm/A] Motor torque constant —

8. Check the alignment parameters—these fields are not accessible in the Basic mode and are

calculated using the motor parameters and hardware scales. The parameters express the required

voltage value applied to the motor during rotor alignment and its duration.

9. Click the “Store Data” button to save the modified parameters into the inner file.

5.2.4. 45BControl structure modes

1. Select scalar control by clicking the “DISABLED” button in the “Scalar Control” section.

The button color changes to red, and the text changes to “ENABLED”.

2. Turn the application switch on. The application state changes to RUN.

3. Set the required speed value in the “Speed_req” field (e.g., 500 rpm in the “Scalar Control”

section). The motor starts running (see the following figure).

Figure 22. MCAT scalar control

4. Select the “Phase Currents” recorder from FreeMASTER project tree “Scalar and Voltage

Control”.

5. Find the optimal ratio for the V/Hz profile by changing the V/Hz factor directly or using the

UP/DOWN buttons. The shape of the motor currents must be close to a sinusoidal shape:

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 41

Figure 23. Phase currents

6. Select the “Position” recorder to check the observer functionality. The difference between the

“Position Electrical Scalar” and the “Position Estimated” must be minimal (see the following

figure 115T) for the Back-EMF position and speed observer to work properly. The position difference

depends on the motor load. The higher the load, the bigger the difference between the positions

(due to the load angle).

Figure 24. Generated and estimated positions

7. If an opposite speed direction is required, set a negative value in the “Speed_req” field.

8. A proper observer functionality and measurement of analog quantities is expected at this step.

9. Enable the voltage FOC mode by clicking the “DISABLED” button in the “Voltage FOC”

section while the main application switch is turned off.

10. Turn the main application switch on and put a non-zero value into the “Uq_req” field. The FOC

algorithm uses the estimated position to run the motor.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

42 NXP Semiconductors

5.2.5. 46BAlignment tuning

The alignment procedure sets the rotor to an accurate initial position and enables applying a full start-up

torque to the motor. The rotor-alignment parameters are available for editing in the Expert mode.

A correct initial position is needed mainly for high start-up loads (compressors, washers, and others).

The aim of the alignment is to have the rotor in a stable position (without oscillations) before the startup.

1. The alignment voltage is a value applied to the d-axis during alignment. Increase this value for a

higher shaft load.

2. The alignment duration expresses the time for which the alignment routine is to be called. Tune

this parameter to have the rotor without oscillations or movement at the end of the alignment

process.

5.2.6. 47BCurrent loop tuning

Parameters for the current D,Q PI controllers are fully calculated in the Basic mode using the motor

parameters and no action is required in this mode. If the calculated loop parameters do not correspond to

the required response, tune the bandwidth and attenuation parameters.

1. Switch the tuning mode to “Expert”.

2. Set the required loop bandwidth and attenuation and click the “Update Target” button in the

“Current Loop” tab. The tuning loop bandwidth parameter defines the speed of the loop

response, whilst the tuning loop attenuation parameter defines the actual quantity-overshoot

magnitude.

3. Select the “Current Controller Id” recorder.

4. Select the “Control Structure” tab, switch to the “Current FOC”, set the “Iq_req” to a very low

value (e.g., 0.01), and set the required step to “Id_req”. The control-loop response is shown in

the recorder (see Figure 6).

5. Tune the loop bandwidth and attenuation until you achieve the required response. The example

waveforms show the correct and incorrect settings of the current loop parameters:

— The loop bandwidth is low (110 Hz) and the settling time of the “Id” current is long:

Figure 25. Slow step response of Id current controller

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 43

— The loop bandwidth (400 Hz) is optimal and the response time of the “Id” current is

sufficient:

Figure 26. Optimal step response of Id current controller

— The loop bandwidth is high (700 Hz) and the response time of the “Id” current is very

fast, but it contains oscillation and overshoot:

Figure 27. Fast step response of Id current controller

5.2.7. 48BActual speed filter

The estimated speed from the BEMF observer is fed into the speed PI controller through the IIR filter.

Modify the filter cut-off frequency in the Expert mode in the “Speed Loop” tab. The speed loop sample

time is typically several milliseconds, so the actual speed filter cut-off frequency mostly ranges from

5 Hz to 100 Hz.

Track the filter output in the “Speed” scope. Write the modified filter cut-off frequency value to the

MCU by clicking the “Update Target” button.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

44 NXP Semiconductors

5.2.8. 49BSpeed ramp tuning

The “Speed” command is applied to the speed controller through a speed ramp. The ramp function

contains two increments (up and down) that express motor acceleration and deceleration per second.

If the increments are very high, they can cause an over-current fault during acceleration and an

over-voltage fault during deceleration. In the “Speed” scope, you can see whether the “Speed Actual

Filtered” waveform shape equals the “Speed Ramp” profile.

Increments are common for the scalar and speed control. The increment fields are located in the

“Speed Loop” tab and they are accessible in both tuning modes. Clicking the “Update Target” button

writes the changes to the MCU. An example speed profile is shown in the following figure. The ramp

down increment is set to 500rpm/sec, while the up increment is set to 3,000 rpm/sec.

The start-up ramp increment is located in the “Sensorless” tab and its value is usually higher than the

value of the speed loop ramp.

Figure 28. Speed profile

5.2.9. 50BOpen-loop startup

Tune the start-up process by a set of parameters located in the “Sensorless” tab. You can access two of

them (ramp increment and current) in both tuning modes. The start-up tuning can be processed in all

control modes, except for the scalar control. Set the optimal values to achieve a proper motor startup.

An example start-up state of low-dynamic drives (fans, pumps) is shown in Figure 2915T.

1. Select the “Startup” recorder from the FreeMASTER project tree.

2. Set the start-up ramp increment to a higher value than the speed-loop ramp increment.

3. Set the start-up current according to the required start-up torque. For drives such as fans or

pumps, the start-up torque is not very high and you can set it to 15 % of the nominal current.

4. Set the required merging speed—the threshold when the open-loop and estimated-position

merging starts, mostly set in the range of 5 %~10 % of the nominal speed.

5. Set the merging coefficient—the position-merging process duration, where 100 % corresponds to

a half of the electrical revolution. The higher the value is, the faster the merge is done. Values

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 45

close to 1 % are set for drives where a high start-up torque and a smooth transition between

the open loop and the closed loop are required.

6. Click the “Update Target” button to write the changes to the MCU.

7. Switch to the “Control Structure” tab, and enable “Speed FOC”.

8. Set the required speed higher than the merging speed.

9. Check the start-up response in the recorder.

10. Tune the start-up parameters until you achieve an optimal response.

11. If the rotor does not run, increase the start-up current.

12. If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp increment,

increase the merging speed, and set the merging coefficient to 5 %.

Figure 29. Motor startup

5.2.10. 51BBEMF observer tuning

The BEMF observer and tracking observer parameters are fully calculated in the Basic mode using the

motor parameters and no action is required in this mode. If the calculated loop parameters do not

correspond to the optimal response, tune the bandwidth and attenuation parameters.

1. Switch the tuning mode to “Expert”.

2. Select the “Observer” recorder from the FreeMASTER project tree.

3. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is typically

set to a value close to the current loop bandwidth.

4. Set the required bandwidth and attenuation of the tracking observer—the bandwidth is typically

set in the range from 10 Hz to 20 Hz for most low-dynamic drives (fans, pumps).

5. Click the “Update Target” button to write the changes to the MCU.

6. Check the observer response in the recorder.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

46 NXP Semiconductors

5.2.11. 52BSpeed PI controller tuning

The motor speed control loop is a first-order function with a mechanical time constant that depends on

the motor inertia and friction. If these mechanical constants are available, tune the PI controller

constants using the loop bandwidth and attenuation. The values of the motor and load inertias and

frictions are very often unknown and it is quite difficult to obtain them. Therefore, manual tuning of the

P and I portions of the speed controllers is available to obtain the required speed response (see the

example response in Figure 1015T). There are dozens of approaches for tuning the PI controller constants.

These steps provide an example of setting and tuning the speed PI controller for a PM synchronous

motor.

1. Select “Speed Controller” from the FreeMASTER project tree.

2. Select the “Speed loop” tab.

3. Check “Manual Constant Tuning”—that is, the bandwidth and attenuation fields are disabled,

and “SL_Kp” and “SL_Ki” are enabled.

4. Tune the proportional gain:

— Set the “SL_Ki” integral gain to zero.

— Set the speed ramp to 1000 rpm/sec (or higher).

— Switch to the “Control Structure” tab and run the motor at a convenient speed

(about 30 % of the nominal speed).

— Set the step in the required speed to 40 % of N nom.

— Switch back to the “Speed Loop” tab.

— Keep tuning the proportional gain “SL_Kp” until the system responds properly to the

required value (without oscillations or excessive overshoot):

– If “SL_Kp” is set low, then the system response is slow.

– If the “SL_Kp” is set high, then the system response is tighter.

– If the “SL_Ki” is set to zero, then the system may not achieve the required speed.

— Click the “Update Target” button to write the changes to the MCU.

5. Tune the integral gain:

— Increase the “SL_Ki” slowly to minimize the difference between the required and actual

speeds to zero.

— Adjust the “SL_Ki” so that you do not see any oscillation or large overshoot of the actual

speed value while applying the required speed step.

— Click the “Update Target” button to write the changes to the MCU.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 47

6. Keep tuning the loop bandwidth and attenuation until you achieve the required response.

The waveform examples with correct and incorrect settings of the current loop parameters are

shown in the following figures:

— The “SL_Ki” value is low, and the “Speed Actual Filtered” does not achieve the

“Speed Ramp”:

Figure 30. Speed controller response—“SL_Ki” is low, “Speed Ramp” not achieved

— The “SL_Kp” value is low, “Speed Actual Filtered” greatly overshoots, and the long

settling time is not wanted:

Figure 31. Speed controller response—“SL_Kp” is low, “Speed Actual Filtered” greatly overshoots

Conclusion

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

48 NXP Semiconductors

— Speed loop response has a small overshoot, and the “Speed Actual Filtered” settling time

is sufficient. Such response is considered optimal:

Figure 32. Speed controller response—speed loop response with small overshoot

5.2.12. 53BGenerating MCAT output file

When you successfully finish tuning the application and want to store all calculated parameters to the

embedded application, navigate to the “Output File” tab. View the list of all definitions generated by

MCAT. Clicking the “Generate Configuration File” button overwrites the old version of the

m1_pmsm_appconfig.h file, which contains these definitions. Provide a correct path to the file for a

proper generation of the motor parameter file. To change the path, navigate the cursor to the right corner

of the MCAT screen, and a symbol with a screw driver and a wrench appears. When clicking this

symbol, the “Application Settings Page” appears. Modify the path to the m1_pmsm_appconfig.h file in

the “Project Path Selection” area.

6. Conclusion

This application note describes the implementation of a sensorless Field-Oriented Control of the 3-phase

PMSM using 32-bit Kinetis V series devices and the High-Voltage Platform, Tower System, and

Freedom development platforms. The hardware-dependent part of the sensorless control software

(including a detailed peripheral setup), Motor Control Peripheral Drivers (MCDRV), and application

timing are described in 15TSection 3, “MCU Features and Peripheral Settings” 15T. The motor parameters

identification theory and the identification algorithms are described in 15TSection 5.1, “PMSM parameter

identification” 15T. The last part of the document describes the user interface represented by Motor Control

Application Tuning (MCAT) tool, based on FreeMASTER communication interface.

References

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

NXP Semiconductors 49

7. Acronyms and Abbreviations
Table 15. Acronyms and abbreviations

AC Alternating Current

ADC Analog-to-Digital Converter

AN Application Note

CPU Central Processing Unit

CMP Comparator

DC Direct Current

DRM Design Reference Manual

FOC Field-Oriented Control

FTM FlexTimer Module

GPIO General-Purpose Input/Output

I/O

Input/Output interfaces between a computer system and the external world (A CPU

reads an input to sense the level of an external signal and writes to an output to

change the level of an external signal.)

MCAT Motor Control Application Tuning tool

MCU Microcontroller Unit

PDB Programmable Delay Block

PI Proportional Integral controller

PWM Pulse-Width Modulation

UART Universal Asynchronous Receiver/Transmitter

8. References

These references are available on 15Tnxp.com15T:

 Sensorless PMSM Field-Oriented Control (document DRM148)

 Kinetis KV11: 75 MHz Cortex-M0+ 64/128 KB Flash (32-64 pin) (document KV11P64M75RM)

 KV31F Sub-Family Reference Manual (document KV31P100M120SF7RM)

 KV4x Reference Manual (document KV4XP100M168RM)

 KV5x Sub-Family Reference Manual (document KV5XP144M220RM)

 NXP High-Voltage Motor Control Platform User's Guide (document HVPMC3PHUG)

 HVP-KV31F120M User’s Guide (document HVPKV31F120MUG)

 Using FlexTimer in ACIM/PMSM Motor Control Applications (document AN3729)

 Tips and Tricks Using PDB in Motor Control Applications on Kinetis (document AN4822)

 Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642)

http://www.nxp.com/
http://www.nxp.com/doc/DRM148
http://www.nxp.com/doc/KV11P64M75RM
http://www.nxp.com/doc/KV31P100M120SF7RM
http://www.nxp.com/doc/KV4XP100M168RM
http://www.nxp.com/doc/KV5XP144M220RM
http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/HVPKV31F120MUG
http://www.nxp.com/doc/AN3729
http://www.nxp.com/doc/AN4822
http://www.nxp.com/doc/AN4642

Revision History

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 2, 09/2016

50 NXP Semiconductors

9. Revision History

This table summarizes the changes done to this document since the initial release:

Table 16. Revision history

Revision number Date Substantive changes

0 02/2016 Initial release.

1 06/2016 Updated FSLESL 4.1 to RTCESL 4.3. Added blocked rotor threshold detection. Bug fixes.

2 09/2016 Added KE1xZ and KE1xF MCUs.

Document Number: AN5237
Rev. 2

09/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.

Tower and Freedom are trademarks of NXP B.V. ARM, the ARM Powered logo, and

Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. IAR is a trademark and IAR Embedded Workbench is a registered

trademark of IAR Systems AB. All other product or service names are the property of

their respective owners. All rights reserved.

© 2016 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Sensorless PMSM Field-Oriented Control on Kinetis KV and KE
	1. Introduction
	2. Development Platforms
	2.1. 9BFRDM-MC-LVPMSM
	2.2. 10BTWR-MC-LV3PH
	2.3. 11BHVP-MC3PH

	3. MCU Features and Peripheral Settings
	3.1. 12BKV1x family
	3.1.1. 20BHardware timing and synchronization
	3.1.2. 21BPeripheral settings
	3.1.2.1. 54BPWM generation—FTM0
	3.1.2.2. 55BAnalog sensing—ADC0, ADC1
	3.1.2.3. 56BPWM and ADC synchronization—PDB0
	3.1.2.4. 57BOver-current detection at FRDM platform—CMP1
	3.1.2.5. 58BSlow-loop interrupt generation—FTM2
	3.1.2.6. 59BCommunication with MC33937 MOSFET driver—SPI

	3.1.3. 22BPeripheral settings differences among platforms
	3.1.4. 23BCPU load and memory usage

	3.2. 13BKV3x family
	3.2.1. 24BHardware timing and synchronization
	3.2.2. 25BPeripheral settings
	3.2.2.1. 60BPWM generation—FTM0
	3.2.2.2. 61BAnalog sensing—ADC0 and ADC1
	3.2.2.3. 62BPWM and ADC synchronization—PDB0
	3.2.2.4. 63BFRDM platform over-current detection—CMP1
	3.2.2.5. 64BSlow-loop interrupt generation—FTM2
	3.2.2.6. 65BCommunication with MC33937 MOSFET driver—SPI

	3.2.3. 26BPeripheral settings differences among platforms
	3.2.4. 27BCPU load and memory usage

	3.3. 14BKV4x family
	3.3.1. 28BHardware timing and synchronization
	3.3.2. 29BPeripheral settings
	3.3.2.1. 66BPWM generation—PWMA
	3.3.2.2. 67BAnalog sensing—ADC12
	3.3.2.3. 68BPeripheral interconnections—XBARA
	3.3.2.4. 69BSlow loop interrupt generation—FTM1
	3.3.2.5. 70BCommunication with MC33937 MOSFET driver—SPI

	3.3.3. 30BPeripheral settings differences among platforms
	3.3.4. 31BCPU load and memory usage

	3.4. 15BKV5x family
	3.4.1. 32BHardware timing and synchronization
	3.4.2. 33BPeripheral settings
	3.4.2.1. 71BPWM generation—PWMA
	3.4.2.2. 72BAnalog sensing—ADC12
	3.4.2.3. 73BPeripheral interconnections—XBARA
	3.4.2.4. 74BSlow-loop interrupt generation—FTM2
	3.4.2.5. 75BCommunication with MC33937 MOSFET driver—SPI

	3.4.3. 34BPeripheral settings differences among platforms
	3.4.4. 35BCPU load and memory usage

	3.5. KE1xZ family
	3.5.1. Hardware timing and synchronization
	3.5.2. Peripheral settings
	3.5.2.1. PWM generation—FTM0
	3.5.2.2. Analog sensing—ADC0 and ADC1
	3.5.2.3. PWM and ADC synchronization—PDB0
	3.5.2.4. Slow-loop interrupt generation—FTM2

	3.5.3. CPU load and memory usage

	3.6. KE1xF family
	3.6.1. Hardware timing and synchronization
	3.6.2. Peripheral settings
	3.6.2.1. PWM generation—FTM0
	3.6.2.2. Analog sensing—ADC0 and ADC2
	3.6.2.3. PWM and ADC synchronization—PDB0, PDB2
	3.6.2.4. Slow-loop interrupt generation—FTM2
	3.6.2.5. Communication with MC33937 MOSFET driver—LPSPI

	3.6.3. CPU load and memory usage

	4. Motor Control Peripheral Drivers
	4.1. 16BMotor Control Peripheral Drivers initialization
	4.2. 17BMotor Control Peripheral Drivers API

	5. Tuning and Controlling the Application
	5.1. 18BPMSM parameter identification
	5.1.1. 36BPower stage characterization
	5.1.2. 37BStator resistance measurement
	5.1.3. 38BStator inductance
	5.1.4. 39BBEMF constant measurement
	5.1.5. 40BNumber of pole-pairs assistant
	5.1.6. 41BPMSM electrical parameter measurement process

	5.2. 19BPMSM sensorless application control and tuning using MCAT
	5.2.1. 42BApplication control using MCAT
	5.2.2. 43BPMSM sensorless application tuning using MCAT
	5.2.3. 44BInitial configuration setting and update
	5.2.4. 45BControl structure modes
	5.2.5. 46BAlignment tuning
	5.2.6. 47BCurrent loop tuning
	5.2.7. 48BActual speed filter
	5.2.8. 49BSpeed ramp tuning
	5.2.9. 50BOpen-loop startup
	5.2.10. 51BBEMF observer tuning
	5.2.11. 52BSpeed PI controller tuning
	5.2.12. 53BGenerating MCAT output file

	6. Conclusion
	7. Acronyms and Abbreviations
	8. References
	9. Revision History

