

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

HMC187A* Product Page Quick Links

Last Content Update: 08/30/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits <a> □

• HMC187AMS8 Evaluation Board

Documentation <a>□

Data Sheet

· HMC187A Data Sheet

Tools and Simulations

• HMC187A S-Parameters

Reference Materials

Quality Documentation

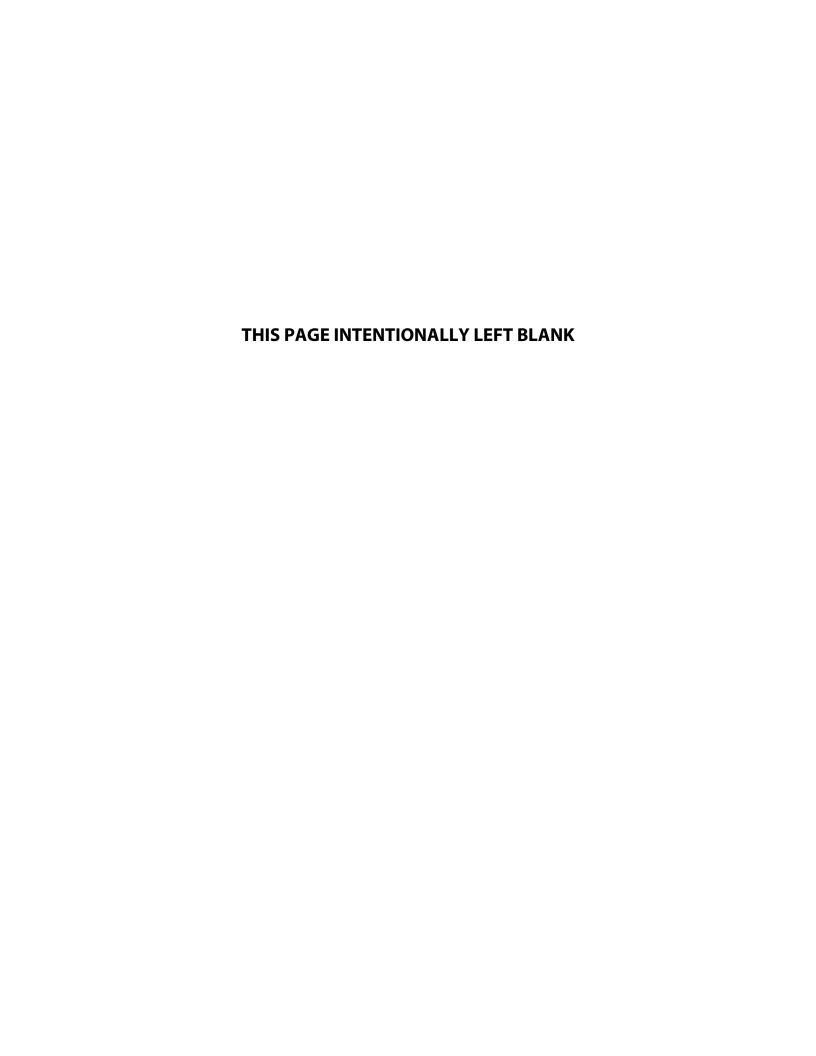
- PCN: MS, QS, SOT, SOIC packages Sn/Pb plating vendor change
- Semiconductor Qualification Test Report: MESFET-F (QTR: 2013-00247)

Design Resources -

- HMC187A Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

Discussions <a>□

View all HMC187A EngineerZone Discussions


Sample and Buy -

Visit the product page to see pricing options

Technical Support <a> □

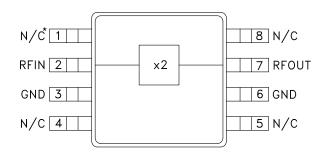
Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

Typical Applications

The HMC187AMS8(E) is ideal for:

- Wireless Local Loop
- LMDS, VSAT, and Point-to-Point Radios
- UNII & HiperLAN
- Test Equipment


Features

Conversion Loss: 15 dB

Fo, 3Fo, 4Fo Isolation: 40 dB

Input Drive Level: 10 to 20 dBm

Functional Diagram

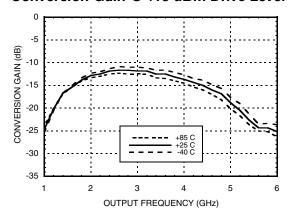
General Description

The HMC187AMS8(E) is a miniature frequency doubler MMIC in plastic 8-lead MSOP package. The suppression of undesired fundamental and higher order harmonics is 40 dB typical with respect to input signal levels. The doubler uses the same diode/balun technology used in Hittite MMIC mixers. The doubler is ideal for high volume applications where frequency doubling of a lower frequency is more economical than directly generating a higher frequency. The passive Schottky diode doubler technology contributes no measurable additive phase noise onto the multiplied signal.

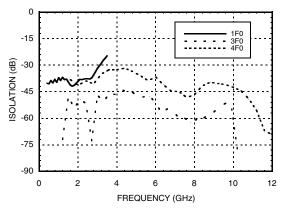
Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of Drive Level

	Input = +10 dBm		Input = +15 dBm			Input = +20 dBm				
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, Input		1.25 - 1.75			1.0 - 1.75			0.85 - 2.0		GHz
Frequency Range, Output	2.5 - 3.5		2.0 - 3.5			1.7 - 4.0			GHz	
Conversion Loss		18	22		14	17		15	18	dB
FO Isolation (with respect to input level)				35	45					dB
3FO Isolation (with respect to input level)				42	46					dB
4FO Isolation (with respect to input level)				30	40					dB

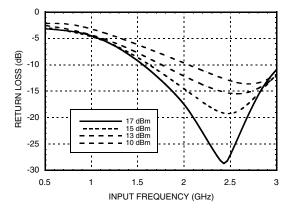
^{*} N/C denotes no internal connection, however, it is recommended to connect these pins to ground.


HICKOWAYE CORPORATION

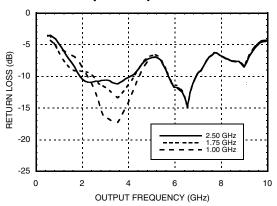
HMC187AMS8 / 187AMS8E


GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 0.85 - 2.0 GHz INPUT

Conversion Gain @ +15 dBm Drive Level



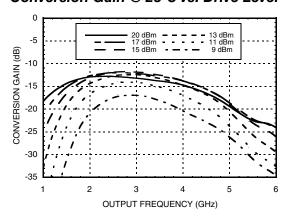
Isolation @ +15 dBm Drive Level*

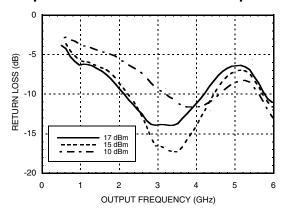


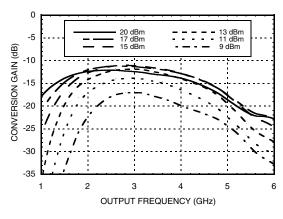
*With respect to input level

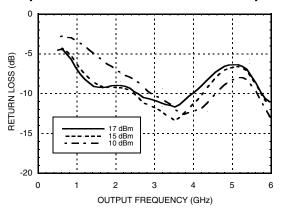
Input Return Loss vs. Drive Level

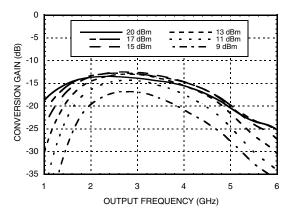
Output Return Loss for Several Input Frequencies

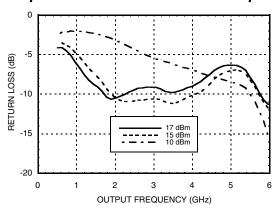



GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 0.85 - 2.0 GHz INPUT


Conversion Gain @ 25°C vs. Drive Level

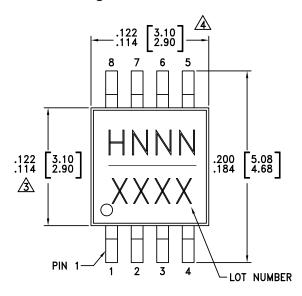

Output Return Loss with 1 GHz Input

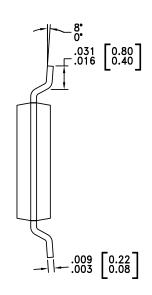

Conversion Gain @ -40°C vs. Drive Level

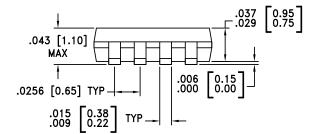

Output Return Loss with 1.75 GHz Input

Conversion Gain @ +85°C vs. Drive Level

Output Return Loss with 2.5 GHz Input


GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 0.85 - 2.0 GHz INPUT


Absolute Maximum Ratings


Input Drive	+27 dBm		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

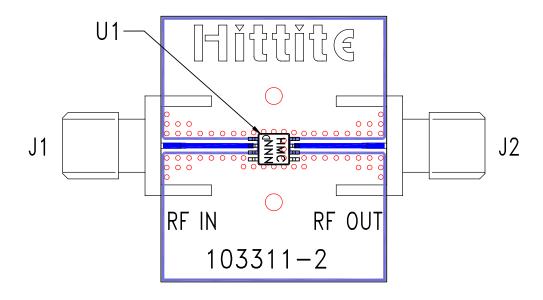
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC187AMS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H187A XXXX	
HMC187AMS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H187A XXXX	

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 0.85 - 2.0 GHz INPUT

Pin Description


Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3, 6	GND	All ground leads must be soldered to PCB RF/DC ground.	→ GND —
2	RFIN	Pin is DC coupled and matched to 50 Ohms.	RFIN O
7	RFOUT	Pin is DC coupled and matched to 50 Ohms.	RFOUT

GaAs MMIC SMT PASSIVE FREQUENCY DOUBLER, 0.85 - 2.0 GHz INPUT

Evaluation PCB

List of Materials for Evaluation PCB 103313 [1]

Item	Description
J1, J2	PCB Mount SMA Connector
U1	HMC187AMS8(E) Doubler
PCB [2]	103311 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package N/C and ground leads should be connected directly to the ground plane similar to that shown. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350