ANALOG DEVICES

1 pC Charge Injection, 100 pA Leakage, CMOS, $\pm 5 \text{ V}/+5 \text{ V}/+3 \text{ V}$ Dual SPDT Switch

FEATURES

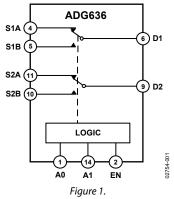
1 pC charge injection ±2.7 V to ±5.5 V dual supply +2.7 V to +5.5 V single supply Automotive temperature range: -40°C to +125°C 100 pA (maximum at 25°C) leakage currents 85 Ω typical on resistance Rail-to-rail operation Fast switching times Typical power consumption (<0.1 μW) TTL-/CMOS-compatible inputs 14-lead TSSOP package

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered instruments Communication systems Sample-and-hold systems Remote-powered equipment Audio and video signal routing Relay replacement Avionics

GENERAL DESCRIPTION

The ADG636 is a monolithic device, comprising two independently selectable CMOS single pole, double throw (SPDT) switches. When on, each switch conducts equally well in both directions.


The ADG636 operates from a dual ± 2.7 V to ± 5.5 V supply, or from a single supply of ± 2.7 V to ± 5.5 V.

This switch offers ultralow charge injection of ± 1.5 pC over the entire signal range and leakage current of 10 pA typical at 25°C. In addition, it offers on resistance of 85 Ω typical, which is matched to within 2 Ω between channels. The ADG636 also has low power dissipation yet is capable of high switching speeds.

The ADG636 exhibits break-before-make switching action and is available in a 14-lead TSSOP package.

FUNCTIONAL BLOCK DIAGRAM

ADG636

PRODUCT HIGHLIGHTS

- 1. Ultralow charge injection. Q_{INJ} : ±1.5 pC typical over the full signal range.
- 2. Leakage current <0.25 nA maximum at 85°C.
- 3. Dual ± 2.7 V to ± 5 V or single ± 2.7 V to ± 5.5 V supply.
- 4. Automotive temperature range: -40° C to $+125^{\circ}$ C.
- 5. Small 14-lead TSSOP package.

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG636* Product Page Quick Links

Last Content Update: 08/30/2016

Comparable Parts

View a parametric search of comparable parts

Documentation 🖵

Data Sheet

 ADG636: 1 pC Charge Injection, 100 pA Leakage, CMOS ±5 V/+5 V/+3 V Dual SPDT Switch Data Sheet

Reference Materials

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- Data-acquisition system uses fault protection
- Enhanced Multiplexing for MEMS Optical Cross Connects
- · Temperature monitor measures three thermal zones

Design Resources 🖵

- ADG636 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- · Symbols and Footprints

Discussions 🖵

View all ADG636 EngineerZone Discussions

Sample and Buy

Visit the product page to see pricing options

Technical Support

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagram	. 1
General Description	. 1
Product Highlights	. 1
Revision History	. 2
Specifications	. 3
Dual Supply	. 3
Single Supply	. 5

REVISION HISTORY

9/09—Rev. A to Rev. B
Changes to Table 610

8/08—Rev. 0 to Rev. A

Updated Format	Universal
Changes to Analog Switch Parameter	
Changes to Analog Switch Parameter	5
Changes to Analog Switch Parameter	7
Change to IDD Parameter	
Changes to Absolute Maximum Ratings	9
Added Table 5; Renumbered Sequentially	
Moved Truth Table	
Added Endnote to Table 6	
Changes to Figure 19	
Updated Outline Dimensions	
Changes to Ordering Guide	

1/02—Revision 0: Initial Version

Absolute Maximum Ratings9
ESD Caution9
Pin Configuration and Function Descriptions10
Typical Performance Characteristics 11
Test Circuits
Terminology15
Outline Dimensions
Ordering Guide16

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 5 V ± 10%, V_{SS} = -5 V ± 10%, GND = 0 V. All specifications -40°C to +125°C, unless otherwise noted.

Table 1.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			Vss to VDD	V	
					$V_{DD} = +4.5 V, V_{SS} = -4.5 V$
On Resistance, R _{ON}	85			Ωtyp	$V_s = \pm 3 V$, $I_{Ds} = -1 mA$, Figure 14
	115	140	160	Ωmax	$V_s = \pm 3 V$, $I_{Ds} = -1 mA$, Figure 14
On-Resistance Match Between	2			Ωtyp	$V_{s} = \pm 3 V, I_{Ds} = -1 mA$
Channels, ΔR _{ON}	4	5.5	6.5	Ωmax	$V_{s} = \pm 3 V, I_{Ds} = -1 mA$
On-Resistance Flatness, Relation)	25	5.5	0.5	Ωtyp	$V_{s} = \pm 3 V_{r} I_{Ds} = -1 \text{ mA}$
Of ACSIStance Hatticss, AFLAR(ON)	40	55	60	Ωmax	$V_{s} = \pm 3 V, I_{Ds} = -1 mA$
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, \text{ V}_{SS} = -5.5 \text{ V}$
Source Off Leakage, I _s (Off)	±0.01			nA typ	$V_{\rm S} = \pm 4.5 \text{ V}, V_{\rm D} = \mp 4.5 \text{ V}, \text{ Figure 15}$
	±0.1	±0.25	±2	nA max	$V_{\rm S} = \pm 4.5 \text{ V}, V_{\rm D} = \mp 4.5 \text{ V}, \text{ Figure 15}$
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{s} = \pm 4.5 V, V_{D} = \mp 4.5 V,$ Figure 15
5,2,2,7	±0.1	±0.25	±2	nA max	$V_{s} = \pm 4.5 V, V_{D} = \mp 4.5 V, Figure 15$
Channel On Leakage, I _D (On), I _S (On)	±0.01			nA typ	$V_{s} = V_{D} = \pm 4.5 V$, Figure 16
-	±0.1	±0.25	±6	nA max	$V_{s} = V_{D} = \pm 4.5 V$, Figure 16
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, IINL or IINH	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	µA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time	70			ns typ	$V_{S1A} = +3 V, V_{S1B} = -3 V, R_L = 300 \Omega, \\ C_L = 35 \text{ pF}, \text{ Figure } 17$
	100	120	150	ns max	$V_{S1A} = +3 V, V_{S1B} = -3 V, R_L = 300 \Omega, \\ C_L = 35 \text{ pF}, \text{ Figure } 17$
t _{on} Enable	100			ns typ	$R_L=300~\Omega,C_L=35~pF,V_S=3~V,$ Figure 19
	135	170	190	ns max	$R_L=300~\Omega,C_L=35~pF,V_S=3~V,$ Figure 19
toff Enable	55			ns typ	R_L = 300 $\Omega,$ C_L = 35 pF, V_S = 3 V, Figure 19
	80	90	100	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, Figure 19
Break-Before-Make Time Delay, t_{BBM}	20			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, Figure 18
			10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, Figure 18
Charge Injection	-1.2			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, Figure 20
Off Isolation	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$, Figure 21
Channel-to-Channel Crosstalk	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$, Figure 23
Bandwidth –3 dB	610			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Figure 22

Parameter	+25°C -40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Cs (Off)	5		pF typ	f = 1 MHz
C _D (Off)	8		pF typ	f = 1 MHz
C _D (On), C _s (On)	8		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
IDD	0.001		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	μA max	Digital inputs = 0 V or 5.5 V
lss	0.001		μA typ	Digital inputs = 0 V or 5.5 V
		1.0	µA max	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test.

SINGLE SUPPLY

 V_{DD} = 5 V ± 10%, V_{SS} = 0 V, GND = 0 V. All specifications -40°C to +125°C, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0V$ to V_{DD}	V	
					$V_{DD} = 4.5 V, V_{SS} = 0 V$
On Resistance, Ron	210			Ωtyp	$V_s = 3.5 V$, $I_{DS} = -1 mA$, Figure 14
	290	350	380	Ωmax	$V_s = 3.5 V$, $I_{DS} = -1 mA$, Figure 14
On Resistance Match Between Channels, ΔR_{ON}	3			Ω typ	$V_s = 3.5 V$, $I_{Ds} = -1 mA$
		12	13	Ωmax	$V_s = 3.5 V$, $I_{Ds} = -1 mA$
LEAKAGE CURRENTS					$V_{DD} = 5.5 V$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{s} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V},$ Figure 15
	±0.1	±0.25	±2	nA max	$V_s = 1 V/4.5 V, V_D = 4.5 V/1 V,$ Figure 15
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_s = 1 V/4.5 V, V_D = 4.5 V/1 V,$ Figure 15
	±0.1	±0.25	±2	nA max	$V_s = 1 V/4.5 V$, $V_D = 4.5 V/1 V$, Figure 15
Channel On Leakage, I _D (On), I _S (On)	±0.01			nA typ	$V_{s} = V_{D} = 4.5 \text{ V}/1 \text{ V}$, Figure 16
	±0.1	±0.25	±6	nA max	$V_{s} = V_{D} = 4.5 \text{ V}/1 \text{ V}$, Figure 16
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time	90			ns typ	$V_{S1A} = 3 V, V_{S1B} = 0 V, R_L = 300 \Omega, C_L = 35 pF, Figure 17$
	150	185	210	ns max	$V_{S1A} = 3 V$, $V_{S1B} = 0 V$, $R_L = 300 \Omega$, $C_L = 35 pF$, Figure 17
ton Enable	135			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, Figure 19
	180	235	275	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, Figure 19
toff Enable	70			ns typ	$R_L=300~\Omega,~C_L=35~pF,~V_S=3~V,$ Figure 19
	105	120	135	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, Figure 19
Break-Before-Make Time Delay, $t_{\mbox{\tiny BBM}}$	30			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, Figure 18
			10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$, Figure 18
Charge Injection	0.3			pC typ	$V_s = 0 V$, RS = 0 Ω , C _L = 1 nF, Figure 20
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$, Figure 21
Channel-to-Channel Crosstalk	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$, Figure 23
Bandwidth –3 dB	530			MHz typ	$R_L = 50 \Omega, C_L = 5 pF, Figure 22$
C _s (Off)	5			pF typ	f = 1 MHz
C_{D} (Off)	8			pF typ	f = 1 MHz
				1 12 27	

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = 5.5 V$
l _{DD}	0.001			μA typ	Digital inputs = 0 V or 5.5 V
			1.0	μA max	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test.

 V_{DD} = 3 V ± 10%, V_{SS} = 0 V, GND = 0 V. All specifications -40°C to +125°C, unless otherwise noted.

Table 3.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
					$V_{DD} = 2.7 V, V_{SS} = 0 V$
On Resistance, Ron		420	460	Ωtyp	$V_s = 1.5 V$, $I_{Ds} = -1 mA$, Figure 14
On Resistance Match Between Channels, ΔR_{ON}			5	Ωtyp	$V_{s} = 1.5 V$, $I_{Ds} = -1 mA$
LEAKAGE CURRENTS			-	-71	$V_{DD} = 3.3 \text{ V}$
Source Off Leakage, I _s (Off)	±0.01			nA typ	$V_{\rm S} = 1 \text{ V/3 V}, V_{\rm D} = 3 \text{ V/1 V},$
					Figure 15
	±0.1	±0.25	±2	nA max	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V},$ Figure 15
Drain Off Leakage, I_D (Off)	±0.01			nA typ	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V},$ Figure 15
	±0.1	±0.25	±2	nA max	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V},$ Figure 15
Channel On Leakage, I _D (On), I _s (On)	±0.01			nA typ	$V_{s} = V_{D} = 1 \text{ V/3 V}$, Figure 16
5 • • • • • •	±0.1	±0.25	±6	nA max	$V_{s} = V_{D} = 1 V/3 V$, Figure 16
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
	0.005			μA typ	VIN = VINL OF VINH
	0.000		±0.1	µA max	$V_{\rm IN} = V_{\rm INL}$ or $V_{\rm INH}$
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹	-			pi ()p	
Transition Time	170			ns typ	$V_{S1A} = 2 V, V_{S1B} = 0 V, R_L = 300 \Omega, C_L = 35 pF, Figure 17$
	320	390	450	ns max	$V_{S1A} = 2 V, V_{S1B} = 0 V, R_L = 300 \Omega,$ $C_L = 35 pF, Figure 17$
t _{on} Enable	250			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$, Figure 19
	360	460	530	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$, Figure 19
t _{off} Enable	110			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$, Figure 19
	175	205	230	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$, Figure 19
Break-Before-Make Time Delay, tBBM	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = 2 V$, Figure 18
			10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = 2 V$, Figure 18
Charge Injection	0.6			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, Figure 20
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$, Figure 21
Channel-to-Channel Crosstalk	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$, Figure 23
Bandwidth –3 dB	530			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Figure 22
C _s (Off)	5			pF typ	f = 1 MHz
C _D (Off)	8			pF typ	f = 1 MHz
C_D (On), C_s (On)	8			pF typ	f = 1 MHz

Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = 3.3 V$
lod	0.001			μA typ	Digital inputs = 0 V or 3.3 V
			1.0	µA max	Digital inputs = 0 V or 3.3 V

¹ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

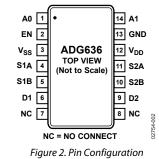
 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 4.

Parameter	Rating
V _{DD} to V _{SS}	13 V
V _{DD} to GND	–0.3 V to +6.5 V
Vss to GND	+0.3 V to -6.5 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V
Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D (Pulsed at 1 ms,	20 mA
10% Duty Cycle Maximum)	
Continuous Current, S or D	10 mA
Operating Temperature Range	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
TSSOP Package	
θ_{JA} Thermal Impedance	150°C/W
θ _{JC} Thermal Impedance	27°C/W
Lead Soldering	
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	220°C
Pb-Free Soldering	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec

¹ Overvoltages at EN, A0, A1, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin number	Mnemonic	Description
1	A0	Digital Input (LSB).
2	EN	Active High Digital Input.
3	Vss	Negative Power Supply. For single-supply operation, connect this pin to GND.
4	S1A	Source Terminal. Can be an input or output.
5	S1B	Source Terminal. Can be an input or output.
6	D1	Drain Terminal. Can be an input or output.
7	NC	Not Electrically Connected.
8	NC	Not Electrically Connected.
9	D2	Drain Terminal. Can be an input or output.
10	S2B	Source Terminal. Can be an input or output.
11	S2A	Source Terminal. Can be an input or output.
12	V _{DD}	Positive Power Supply.
13	GND	Ground (0 V) Power Supply.
14	A1	Digital Input (MSB).

Table 6. Truth Table

A1	AO	EN	On Switch	
X ¹	X ¹	0	None	
0	0	1	S1A, S2A	
0	1	1	S1B, S2A	
1	0	1	S1A, S2B	
1	1	1	S1B, S2B	

¹ X = logic state doesn't matter; it can be either 0 or 1.

TYPICAL PERFORMANCE CHARACTERISTICS

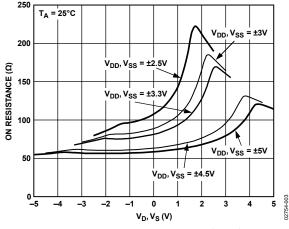


Figure 3. On Resistance vs. V_D (V_s), Dual Supply

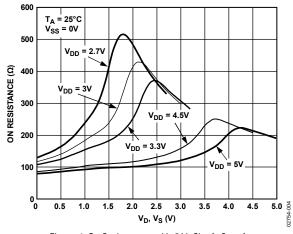


Figure 4. On Resistance vs. V_D (V_s), Single Supply

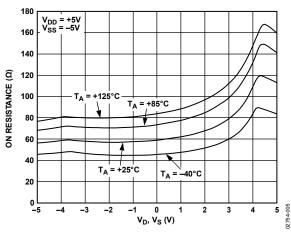


Figure 5. On Resistance vs. V_D (Vs) for Different Temperatures, Dual Supply

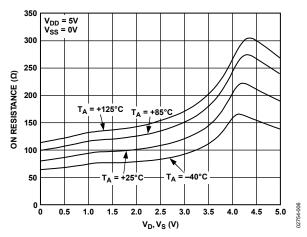
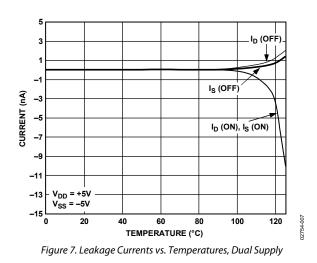



Figure 6. On Resistance vs. V_D (V_s) for Different Temperatures, Single Supply

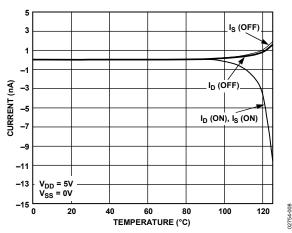
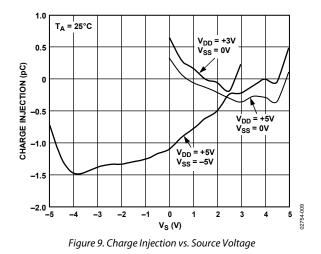
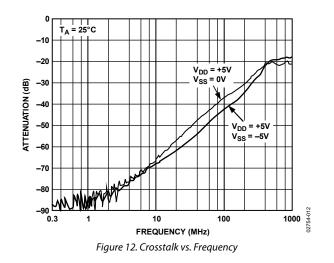
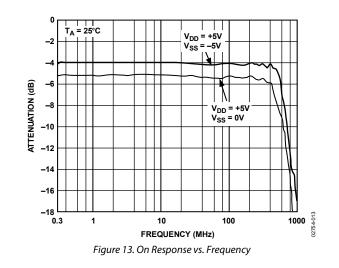





Figure 8. Leakage Currents vs. Temperature, Single Supply

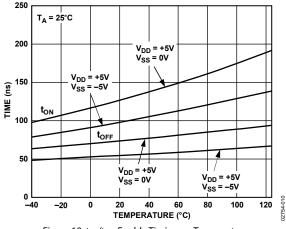
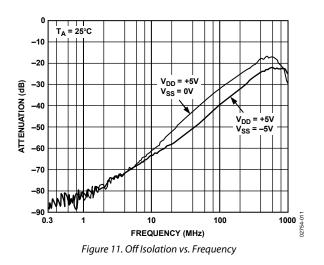
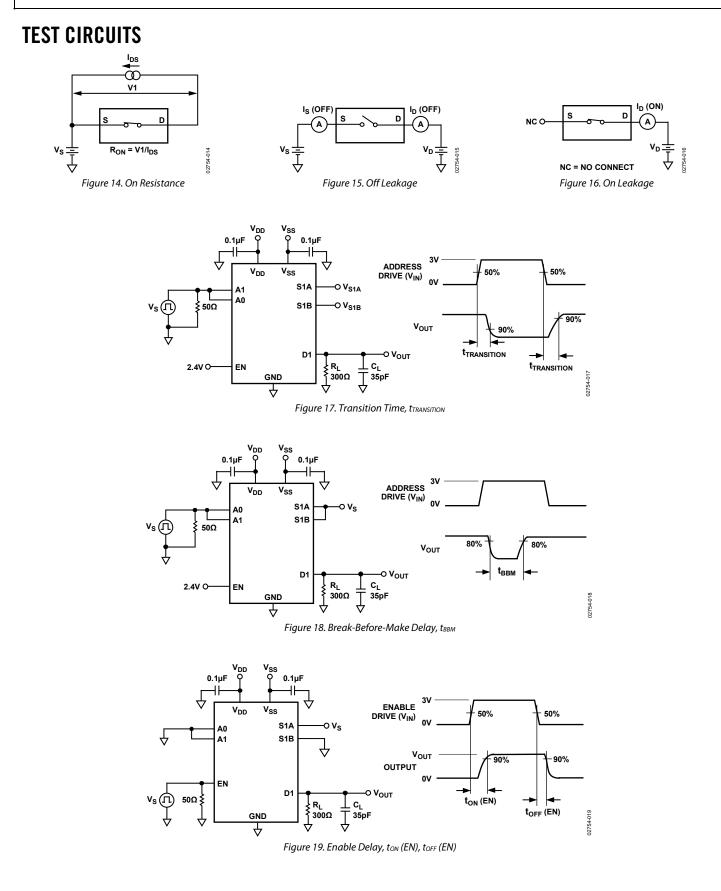
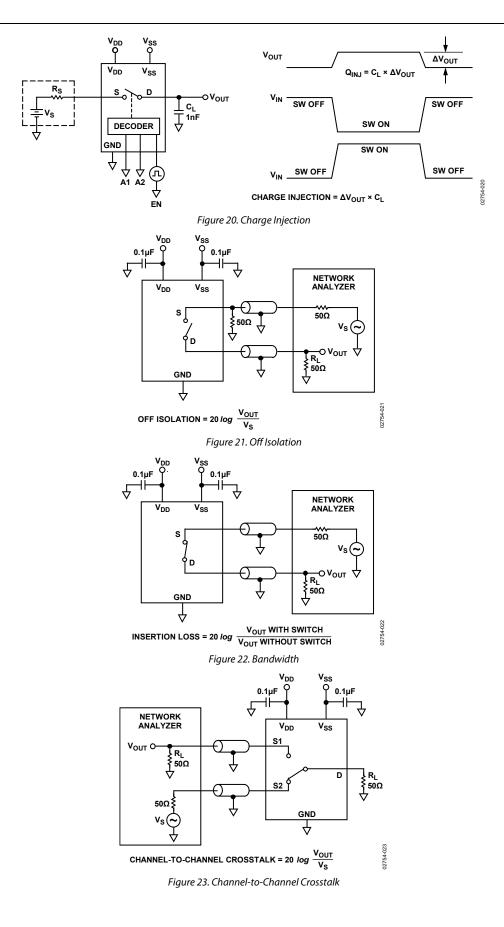





Figure 10. $t_{\text{ON}}/t_{\text{OFF}}$ Enable Timing vs. Temperature

TERMINOLOGY

VDD

Most positive supply potential.

Vss

Most negative power supply in a dual-supply application. In single-supply applications, this should be tied to ground at the device.

GND

Ground (0 V) reference.

\mathbf{I}_{DD}

Positive supply current.

Iss

Negative supply current.

S

Source terminal. May be an input or output.

D

Drain terminal. May be an input or output.

Ron

Ohmic resistance between Terminal D and Terminal S.

ΔR_{ON}

On resistance match between any two channels (that is, $R_{ON} \max - R_{ON} \min$).

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum values of on resistance as measured over the specified analog signal range.

Is (Off)

Source leakage current with the switch off.

I_D (Off) Drain leakage current with the switch off.

I_D (**On**), I_s (**On**) Channel leakage current with the switch on.

 $\mathbf{V}_{D},\mathbf{V}_{S}$ Analog voltage on Terminal D and Terminal S.

V_{INL} Maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ Minimum input voltage for Logic 1.

I_{INL(IINH)} Input current of the digital input.

Cs (Off) Channel input capacitance for the off condition.

 C_D (Off) Channel output capacitance for the off condition.

C_D (On), C_s (On) On switch capacitance.

C_{IN} Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and the switch on condition.

Delay time between the 50% and 90% points of the digital input and the switch off condition.

t_{TRANSITION}

toff (EN)

Delay time between the 50% and 90% points of the digital input and the switch on condition when switching from one address state to another.

$t_{\rm BBM}$

Off time or on time measured between the 80% points of both switches when switching from one address state to another.

Charge Injection

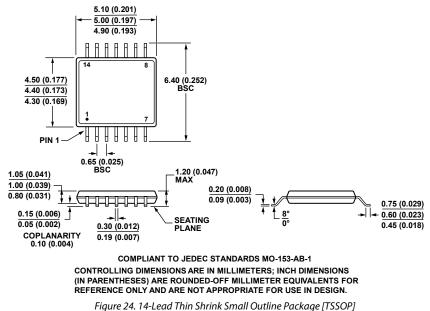
A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.


Bandwidth

The frequency response of the on switch.

Insertion Loss

Loss due to the on resistance of the switch.

OUTLINE DIMENSIONS

(RU-14)

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG636YRU	–40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG636YRU-REEL	–40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG636YRUZ ¹	–40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG636YRUZ-REEL ¹	–40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG636YRUZ-REEL71	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14

 1 Z = RoHS Compliant Part.

www.analog.com

061908-A

Rev. B | Page 16 of 16