

Is Now Part of

ON Semiconductor®

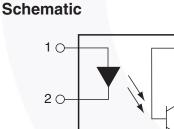
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

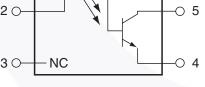
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

April 2015

4N25M, 4N26M, 4N27M, 4N28M, 4N35M, 4N36M, 4N37M 6-Pin General Purpose Phototransistor Optocouplers

Features


- Minimum Current Transfer Ratio at I_F = 10 mA, V_{CE} = 10 V:
 - 10% for 4N27M and 4N28M
 - 20% for 4N25M and 4N26M
 - 100% for 4N35M, 4N36M and 4N37M
- Safety and Regulatory Approvals:
 - UL1577, 4,170 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage


Applications

- Power Supply Regulators
- Digital Logic Inputs
- Microprocessor Inputs

Description

The general purpose optocouplers consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a standard plastic six-pin dual-in-line package.

O 6

PIN 1. ANODE 2. CATHODE 3. NO CONNECTION 4. EMITTER 5. COLLECTOR 6. BASE

Package Outlines

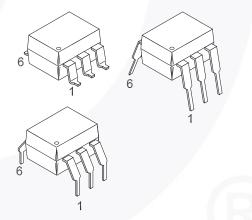


Figure 2. Package Outlines

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification		55/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit	
V	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC		V _{peak}	
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1594	V _{peak}	
V _{IORM}	Maximum Working Insulation Voltage	850	V _{peak}	
V _{IOTM}	Highest Allowable Over-Voltage	6000	V _{peak}	
	External Creepage	≥ 7	mm	
	External Clearance	≥ 7	mm	
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm	
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm	
Τ _S	Case Temperature ⁽¹⁾	175	°C	
I _{S,INPUT}	Input Current ⁽¹⁾	350	mA	
P _{S,OUTPUT}	Output Power ⁽¹⁾	800	mW	
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 V ⁽¹⁾	> 10 ⁹	Ω	

Note:

1. Safety limit values - maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

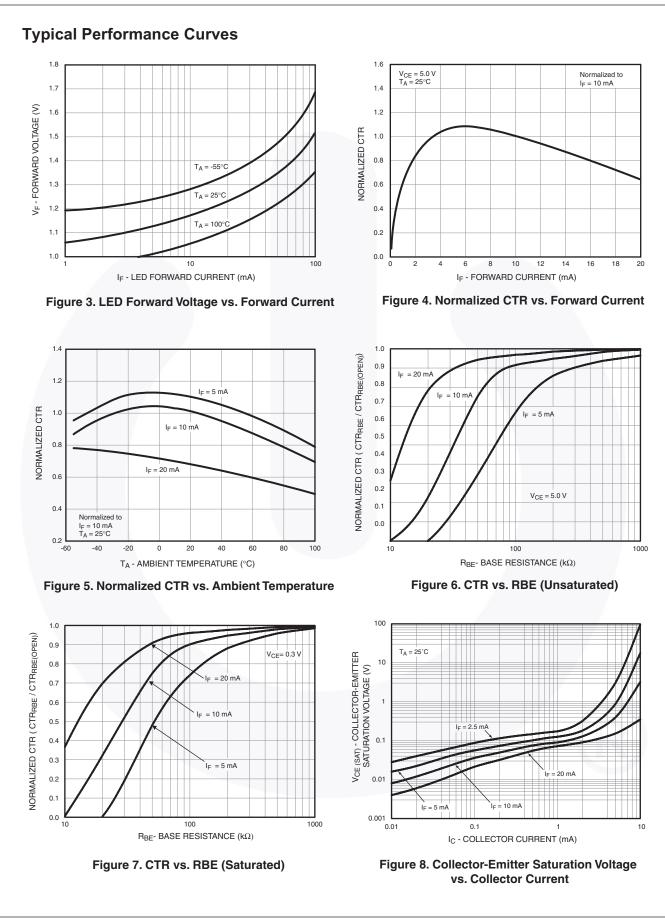
Symbol	Parameter	Value	Unit
TOTAL DEV	ICE		
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
ТJ	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C
D	Total Device Power Dissipation @ T _A = 25°C	270	mW
PD	Derate Above 25°C	2.94	mW/°C
EMITTER			
I _F	DC/Average Forward Input Current	60	mA
V _R	Reverse Input Voltage	6	V
l _F (pk)	Forward Current – Peak (300 µs, 2% Duty Cycle)	3	А
-	LED Power Dissipation @ T _A = 25°C	120	mW
PD	Derate Above 25°C	1.41	mW/°C
DETECTOR			
V _{CEO}	Collector-to-Emitter Voltage	30	V
V _{CBO}	Collector-to-Base Voltage	70	V
V _{ECO}	Emitter-to-Collector Voltage	7	V
	Detector Power Dissipation @ T _A = 25°C	150	mW
PD	Derate Above 25°C	1.76	mW/°C

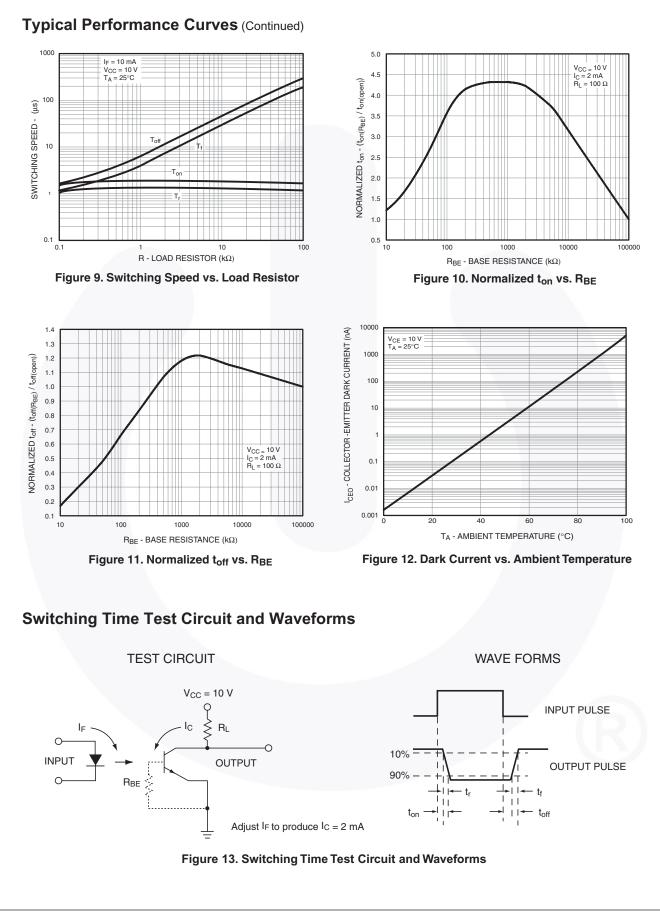
3

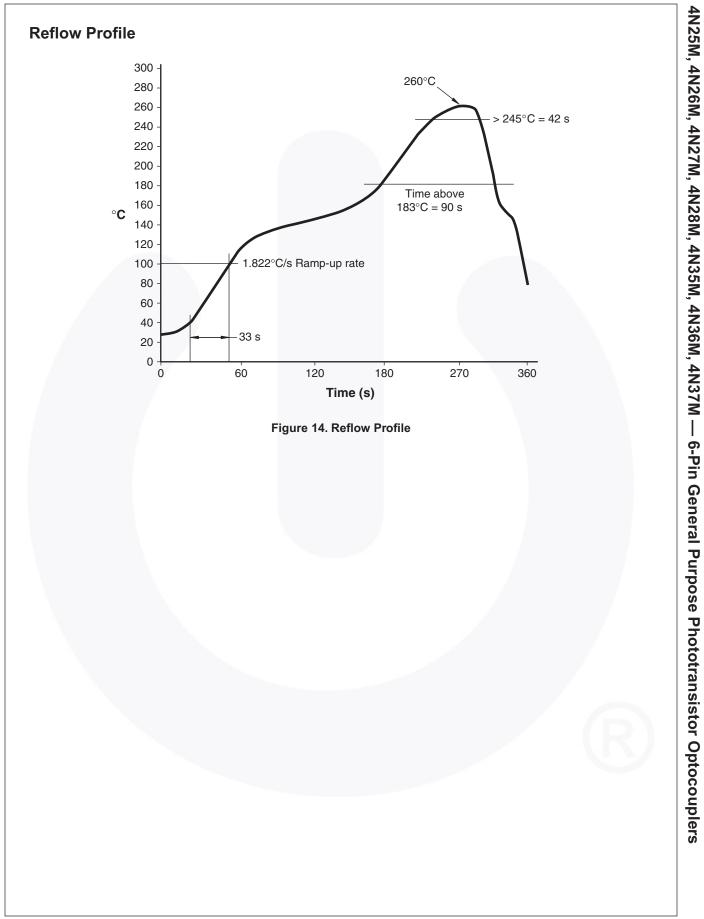
Electrical Characteristics

TA = 25°C unless otherwise specified.

Individual Component Characteristics

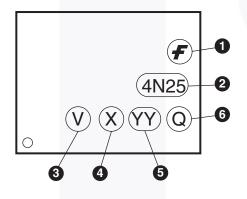

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
EMITTER						
V _F	Input Forward Voltage	I _F = 10 mA		1.18	1.50	V
I _R	Reverse Leakage Current	V _R = 6.0 V		0.001	10	μA
DETECTOR				•	•	
BV _{CEO}	Collector-to-Emitter Breakdown Voltage	I _C = 1.0 mA, I _F = 0	30	100		V
BV _{CBO}	Collector-to-Base Breakdown Voltage	I _C = 100 μA, I _F = 0	70	120		V
BV _{ECO}	Emitter-to-Collector Breakdown Voltage	$I_{E} = 100 \ \mu A, I_{F} = 0$	7	10		V
I _{CEO}	Collector-to-Emitter Dark Current	$V_{CE} = 10 \text{ V}, \text{ I}_{F} = 0$		1	50	nA
I _{CBO}	Collector-to-Base Dark Current	V _{CB} = 10 V	1		20	nA
C _{CE}	Capacitance	$V_{CE} = 0 V$, f = 1 MHz		8		pF


Transfer Characteristics


Symbol	Parameter	Test Conditions	Device	Min.	Тур.	Max.	Unit
DC CHARA	ACTERISTICS				1		
			4N35M, 4N36M, 4N37M	100			%
		I _F = 10 mA, V _{CE} = 10 V	4N25M, 4N26M	20			%
OTD	Current Transfer Ratio,		4N27M, 4N28M	10			%
CTR Collector-to-Emitter	Collector-to-Emitter	$I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ $T_A = -55^{\circ}\text{C}$	4N35M, 4N36M, 4N37M	40			%
		$I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ $T_A = +100^{\circ}\text{C}$	4N35M, 4N36M, 4N37M	40			%
	Collector-to-Emitter	I _C = 2 mA, I _F = 50 mA	4N25M, 4N26M, 4N27M, 4N28M			0.5	V
	Saturation Voltage	$I_{C} = 0.5 \text{ mA}, I_{F} = 10 \text{ mA}$	4N35M, 4N36M, 4N37M			0.3	V
AC CHARA	ACTERISTICS					1	
T	Non-Saturated	$I_{F} = 10 \text{ mA}, V_{CC} = 10 \text{ V}, \\ R_{L} = 100 \ \Omega \text{ (Figure 13)}$	4N25M, 4N26M, 4N27M, 4N28M		2		μs
T _{ON}	Turn-on Time	$I_{C} = 2 \text{ mA}, V_{CC} = 10 \text{ V},$ $R_{L} = 100 \Omega \text{ (Figure 13)}$	4N35M, 4N36M, 4N37M		2	10	μs
T _{OFF}	Turn-off Time	$I_F = 10$ mA, $V_{CC} = 10$ V, R _L = 100 Ω (Figure 13)	4N25M, 4N26M, 4N27M, 4N28M		2	6	μs
		$I_{C} = 2 \text{ mA}, V_{CC} = 10 \text{ V},$ $R_{L} = 100 \Omega \text{ (Figure 13)}$	4N35M, 4N36M, 4N37M		2	10	μs

Isolation Characteristics

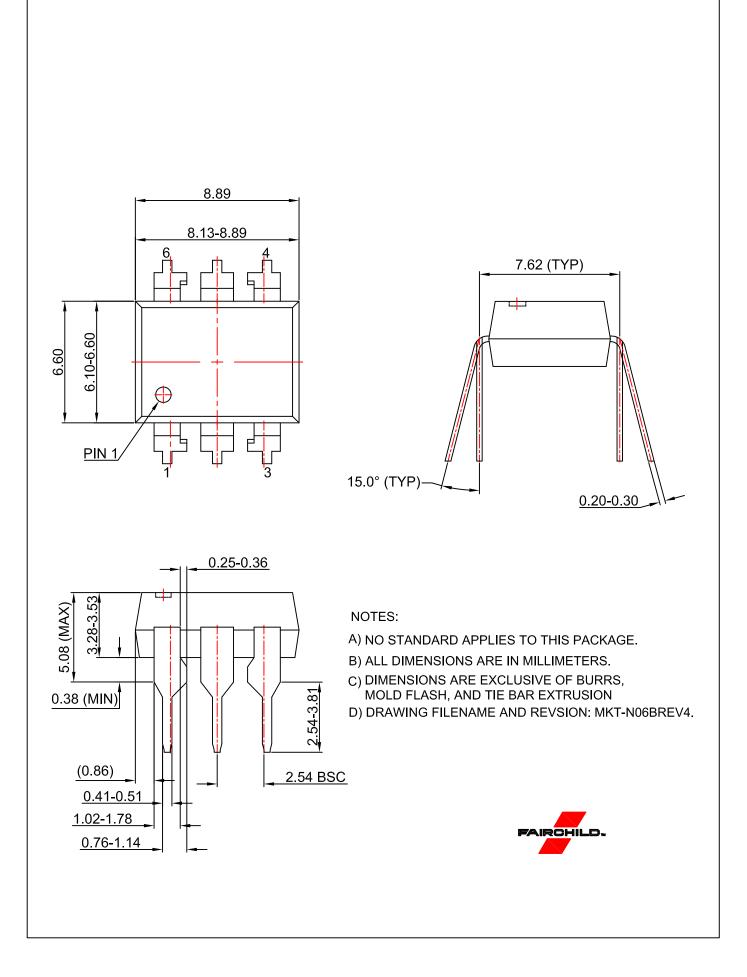
Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage	t = 1 Minute	4170			VAC _{RMS}
C _{ISO}	Isolation Capacitance	V _{I-O} = 0 V, f = 1 MHz		0.2		pF
R _{ISO}	Isolation Resistance	V_{I-O} = ±500 VDC, T _A = 25°C	10 ¹¹			Ω

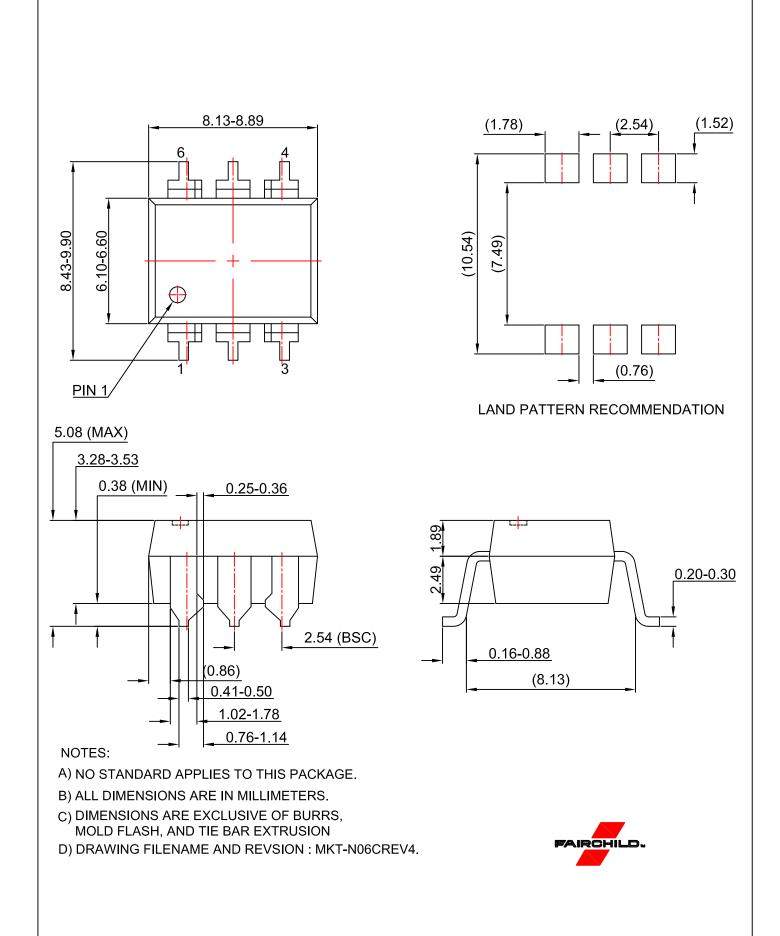

Ordering Information

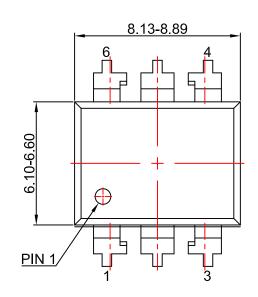
Part Number	Package	Packing Method
4N25M	DIP 6-Pin	Tube (50 Units)
4N25SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
4N25SR2M	SMT 6-Pin (Lead Bend) Tape and Reel (1000 Ur	
4N25VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option Tube (50 Units)	
4N25SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
4N25SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option Tape and Reel (1000 Uni	
4N25TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option Tube (50 Units)	

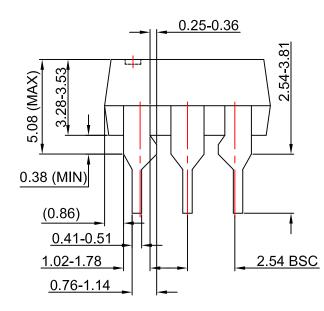
Note:

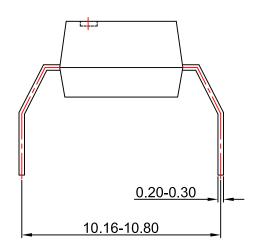
2. The product orderable part number system listed in this table also applies to the 4N26M, 4N27M, 4N28M, 4N35M, 4N36M, and 4N37M devices.

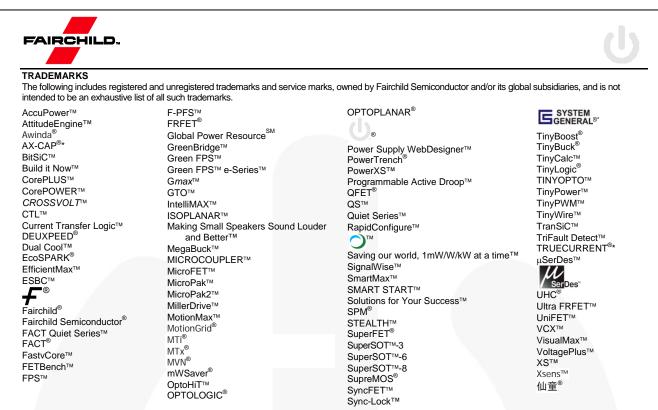

Marking Information




Figure 15. Top Mark


Table 1. Top Mark Definitions


1	Fairchild Logo	
2	Device Number	
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)	
4	One-Digit Year Code, e.g., "5"	
5	Digit Work Week, Ranging from "01" to "53"	
6	Assembly Package Code	



NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06Drev4

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177