

Is Now Part of



# **ON Semiconductor**®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d



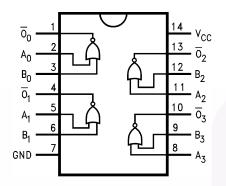
## 74VHC02 Quad 2-Input NOR Gate

### Features

- High Speed: t<sub>PD</sub> = 3.6ns (Typ.) at V<sub>CC</sub> = 5V
- Low power dissipation:  $I_{CC} = 2\mu A$  (Max.) at  $T_A = 25^{\circ}C$
- High noise immunity: V<sub>NIH</sub> = V<sub>NIL</sub> = 28% V<sub>CC</sub> (Min.)
- Power down protection is provided on all inputs
- Low noise: V<sub>OLP</sub> = 0.8V (Max.)
- Pin and function compatible with 74HC02

### **General Description**

The VHC02 is an advanced high-speed CMOS 2-Input NOR Gate fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The internal circuit is composed of 3 stages, including buffer output, which provide high noise immunity and stable output. An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.


## **Ordering Information**

| Order Number | Package<br>Number | Package Description                                                             |
|--------------|-------------------|---------------------------------------------------------------------------------|
| 74VHC02M     | M14A              | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150"<br>Narrow |
| 74VHC02SJ    | M14D              | 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide                   |
| 74VHC02MTC   | MTC14             | 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide     |

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

## **Connection Diagram**



## **Pin Description**

| Pin Names                       | Description |  |  |  |
|---------------------------------|-------------|--|--|--|
| A <sub>n</sub> , B <sub>n</sub> | Inputs      |  |  |  |
| Ō <sub>n</sub>                  | Outputs     |  |  |  |

Logic Symbol IEEE/IEC  $A_0 \longrightarrow 1 \longrightarrow \overline{0}_0$   $B_0 \longrightarrow \overline{0}_1$   $B_1 \longrightarrow \overline{0}_2$   $B_2 \longrightarrow \overline{0}_2$  $B_3 \longrightarrow \overline{0}_3$ 

## **Truth Table**

| Α | В | ō |
|---|---|---|
| L | L | Н |
| L | Н | L |
| Н | L | L |
| Н | Н | L |

## **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol           | Parameter                                | Rating                          |
|------------------|------------------------------------------|---------------------------------|
| V <sub>CC</sub>  | Supply Voltage                           | _0.5V to +7.0V                  |
| V <sub>IN</sub>  | DC Input Voltage                         | _0.5V to +7.0V                  |
| V <sub>OUT</sub> | DC Output Voltage                        | –0.5V to V <sub>CC</sub> + 0.5V |
| I <sub>IK</sub>  | Input Diode Current                      | –20mA                           |
| I <sub>OK</sub>  | Output Diode Current                     | ±20mA                           |
| I <sub>OUT</sub> | DC Output Current                        | ±25mA                           |
| I <sub>CC</sub>  | DC V <sub>CC</sub> / GND Current         | ±50mA                           |
| T <sub>STG</sub> | Storage Temperature                      | –65°C to +150°C                 |
| TL               | Lead Temperature (Soldering, 10 seconds) | 260°C                           |

## Recommended Operating Conditions<sup>(1)</sup>

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol                          | Parameter                 | Rating                |
|---------------------------------|---------------------------|-----------------------|
| V <sub>CC</sub>                 | Supply Voltage            | 2.0V to +5.5V         |
| V <sub>IN</sub>                 | Input Voltage             | 0V to +5.5V           |
| V <sub>OUT</sub>                | Output Voltage            | 0V to V <sub>CC</sub> |
| T <sub>OPR</sub>                | Operating Temperature     | –40°C to +85°C        |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise and Fall Time, |                       |
|                                 | $V_{CC} = 3.3V \pm 0.3V$  | 0ns/V ~ 100ns/V       |
|                                 | $V_{CC} = 5.0V \pm 0.5V$  | 0ns/V ~ 20ns/V        |

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

74VHC02 — Quad 2-Input NOR Gate

## **DC Electrical Characteristics**

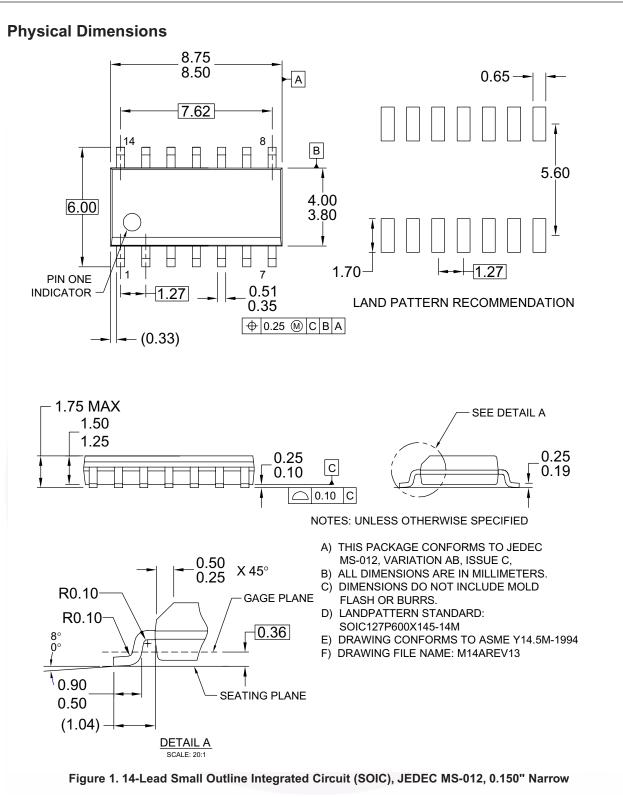
|                 |                             |                     |                        |                         | т                   | A = 25° | С                     |                       | 40°C to<br>5°C        |       |
|-----------------|-----------------------------|---------------------|------------------------|-------------------------|---------------------|---------|-----------------------|-----------------------|-----------------------|-------|
| Symbol          | Parameter                   | V <sub>CC</sub> (V) | Con                    | Conditions              |                     | Тур.    | Max.                  | Min.                  | Max.                  | Units |
| V <sub>IH</sub> | HIGH Level Input            | 2.0                 |                        |                         | 1.50                |         |                       | 1.50                  |                       | V     |
|                 | Voltage                     | 3.0–5.5             |                        |                         | $0.7 \times V_{CC}$ |         |                       | 0.7 x V <sub>CC</sub> |                       | 1     |
| V <sub>IL</sub> | LOW Level Input             | 2.0                 |                        | 1                       |                     |         | 0.50                  |                       | 0.50                  | V     |
|                 | Voltage                     | 3.0–5.5             |                        |                         |                     |         | 0.3 x V <sub>CC</sub> |                       | 0.3 x V <sub>CC</sub> | 1     |
| V <sub>OH</sub> | HIGH Level                  | 2.0                 | $V_{IN} = V_{IH}$      | I <sub>OH</sub> = -50µA | 1.9                 | 2.0     |                       | 1.9                   |                       | V     |
|                 | Output Voltage              | 3.0                 | or V <sub>IL</sub>     |                         | 2.9                 | 3.0     |                       | 2.9                   |                       |       |
|                 | 4.5                         |                     |                        | 4.4                     | 4.5                 |         | 4.4                   |                       | 1                     |       |
|                 |                             | 3.0                 |                        | $I_{OH} = -4mA$         | 2.58                |         |                       | 2.48                  |                       | 1     |
|                 |                             | 4.5                 | 1                      | I <sub>OH</sub> = -8mA  | 3.94                |         |                       | 3.80                  |                       |       |
| V <sub>OL</sub> | LOW Level                   | 2.0                 | $V_{IN} = V_{IH}$      | I <sub>OL</sub> = 50μA  |                     | 0.0     | 0.1                   |                       | 0.1                   | V     |
|                 | Output Voltage              | 3.0                 | or V <sub>IL</sub>     |                         |                     | 0.0     | 0.1                   |                       | 0.1                   | 1     |
|                 |                             | 4.5                 | 1                      |                         |                     | 0.0     | 0.1                   |                       | 0.1                   |       |
|                 |                             | 3.0                 | 1                      | I <sub>OL</sub> = 4mA   |                     |         | 0.36                  |                       | 0.44                  | 1     |
|                 |                             | 4.5                 |                        | I <sub>OL</sub> = 8mA   |                     |         | 0.36                  |                       | 0.44                  | 1     |
| I <sub>IN</sub> | Input Leakage<br>Current    | 0–5.5               | V <sub>IN</sub> = 5.5V | or GND                  |                     |         | ±0.1                  |                       | ±1.0                  | μA    |
| I <sub>CC</sub> | Quiescent<br>Supply Current | 5.5                 | $V_{IN} = V_{CC}$      | or GND                  |                     |         | 2.0                   |                       | 20.0                  | μA    |

## **Noise Characteristics**

|                                 |                                                 |                     |               | T <sub>A</sub> = | 25°C   |       |
|---------------------------------|-------------------------------------------------|---------------------|---------------|------------------|--------|-------|
| Symbol                          | Parameter                                       | V <sub>CC</sub> (V) | Conditions    | Тур.             | Limits | Units |
| V <sub>OLP</sub> <sup>(2)</sup> | Quiet Output Maximum<br>Dynamic V <sub>OL</sub> | 5.0                 | $C_L = 50 pF$ | 0.3              | 0.8    | V     |
| V <sub>OLV</sub> <sup>(2)</sup> | Quiet Output Minimum<br>Dynamic V <sub>OL</sub> | 5.0                 | $C_L = 50 pF$ | -0.3             | -0.8   | V     |
| V <sub>IHD</sub> <sup>(2)</sup> | Minimum HIGH Level<br>Dynamic Input Voltage     | 5.0                 | $C_L = 50 pF$ |                  | 3.5    | V     |
| V <sub>ILD</sub> <sup>(2)</sup> | Maximum LOW Level<br>Dynamic Input Voltage      | 5.0                 | $C_L = 50 pF$ |                  | 1.5    | V     |

Note:

2. Parameter guaranteed by design.


## AC Electrical Characteristics

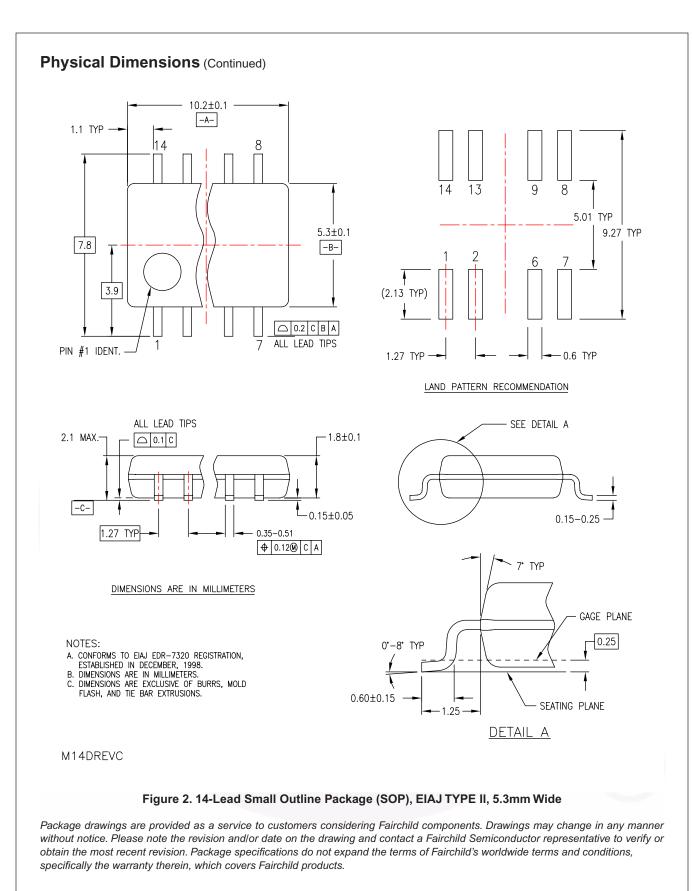
|                                     |                                  |                     |                        | T <sub>A</sub> = 25°C |      | T <sub>A</sub> = -40°C<br>to +85°C |      |      |       |
|-------------------------------------|----------------------------------|---------------------|------------------------|-----------------------|------|------------------------------------|------|------|-------|
| Symbol                              | Parameter                        | V <sub>CC</sub> (V) | Conditions             | Min.                  | Тур. | Max.                               | Min. | Max. | Units |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Propagation Delay                | 3.3 ± 0.3           | $C_L = 15 pF$          |                       | 5.6  | 7.9                                | 1.0  | 9.5  | ns    |
|                                     |                                  |                     | $C_L = 50 pF$          |                       | 8.1  | 11.4                               | 1.0  | 13.0 |       |
|                                     |                                  | 5.0 ± 0.5           | $C_L = 15 pF$          |                       | 3.6  | 5.5                                | 1.0  | 6.5  | ns    |
|                                     |                                  |                     | $C_L = 50 pF$          |                       | 5.1  | 7.5                                | 1.0  | 8.5  |       |
| C <sub>IN</sub>                     | Input Capacitance                |                     | V <sub>CC</sub> = Open |                       | 4    | 10                                 |      | 10   | pF    |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance |                     | (3)                    |                       | 15   |                                    |      |      | pF    |

Note:

3.  $C_{PD}$  is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:  $I_{CC}$  (opr.) =  $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 4$  (per gate).

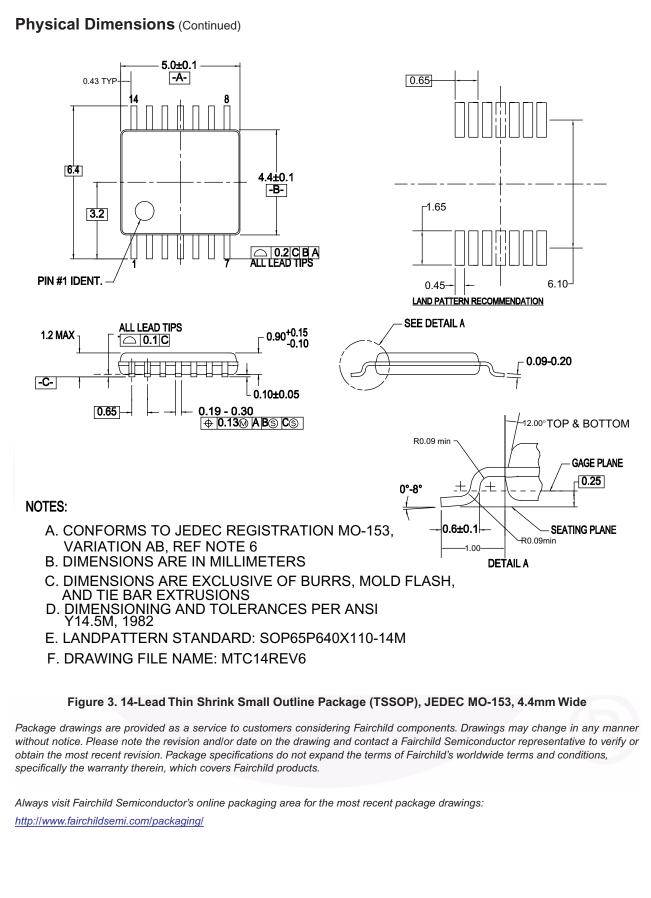





Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

6

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:


http://www.fairchildsemi.com/packaging/

74VHC02 — Quad 2-Input NOR Gate



Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/



74VHC02 — Quad 2-Input NOR Gate



SEMICONDUCTOR

#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

| ACEx <sup>®</sup><br>Build it Now™<br>CorePLUS™<br><i>CROSSVOLT</i> ™<br>CTL™<br>Current Transfer Logic™<br>EcoSPARK <sup>®</sup><br>EZSWITCH™ *<br>Fairchild <sup>®</sup><br>Fairchild <sup>®</sup><br>Fairchild <sup>®</sup><br>Fairchild <sup>®</sup><br>Fairchild Semiconductor <sup>®</sup><br>FACT Quiet Series™<br>FACT <sup>®</sup><br>FAST <sup>®</sup><br>FastvCore™<br>FlashWriter <sup>®</sup> * | FPS™<br>FRFET®<br>Global Power Resource™<br>Green FPS™ e-Series™<br>GTO™<br><i>i-Lo</i> ™<br>IntelliMAX™<br>ISOPLANAR™<br>MGCROCOUPLER™<br>MicroPak™<br>MillerDrive™<br>Motion-SPM™<br>OPTOLOGIC®<br>OPTOPLANAR® | PDP-SPM <sup>™</sup><br>Power220 <sup>®</sup><br>Power247 <sup>®</sup><br>POWEREDGE <sup>®</sup><br>Power-SPM <sup>™</sup><br>PowerTrench <sup>®</sup><br>Programmable Active Droop <sup>™</sup><br>QFET <sup>®</sup><br>QS <sup>™</sup><br>QT Optoelectronics <sup>™</sup><br>Quiet Series <sup>™</sup><br>RapidConfigure <sup>™</sup><br>SMART START <sup>™</sup><br>SMART START <sup>™</sup><br>SPM <sup>®</sup><br>STEALTH <sup>™</sup><br>SuperFET <sup>™</sup><br>SuperFET <sup>™</sup><br>SuperSOT <sup>™</sup> -6<br>SuperSOT <sup>™</sup> -8 | SyncFET <sup>™</sup><br>Figereral<br>The Power Franchise <sup>®</sup><br>Thy Boost <sup>™</sup><br>TinyBoost <sup>™</sup><br>TinyBuck <sup>™</sup><br>TinyLogic <sup>®</sup><br>TINYOPTO <sup>™</sup><br>TinyPower <sup>™</sup><br>TinyPWM <sup>™</sup><br>TinyWire <sup>™</sup><br>µSerDes <sup>™</sup><br>UHC <sup>®</sup><br>Ultra FRFET <sup>™</sup><br>UniFET <sup>™</sup><br>VCX <sup>™</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

\* EZSWITCH<sup>TM</sup> and FlashWriter<sup>®</sup> are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| Datasheet Identification | Product Status         | Definition                                                                                                                                                                                                     |
|--------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                             |
| Preliminary              | First Production       | This datasheet contains preliminary data; supplementary data will be<br>published at a later date. Fairchild Semiconductor reserves the right to<br>make changes at any time without notice to improve design. |
| No Identification Needed | Full Production        | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improv the design.                                                      |
| Obsolete                 | Not In Production      | This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.                                            |

### **PRODUCT STATUS DEFINITIONS**