

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

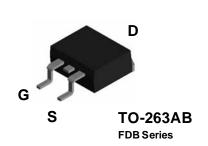
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

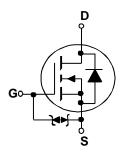
SEMICONDUCTOR

FDB86102LZ N-Channel PowerTrench[®] MOSFET 100 V, 30 A, 24 m Ω

Features

- Max $r_{DS(on)} = 24 \text{ m}\Omega \text{ at } V_{GS} = 10 \text{ V}, I_D = 8.3 \text{ A}$
- Max $r_{DS(on)}$ = 35 m Ω at V_{GS} = 4.5 V, I_D = 6.8 A
- HBM ESD protection level > 6 kV typical (Note 4)
- Very low Qg and Qgd compared to competing trench technologies
- Fast switching speed
- 100% UIL Tested
- RoHS Compliant


May 2011


General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance and switching loss. G-S zener has been added to enhance ESD voltage level.

Applications

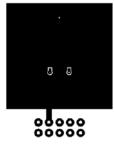
- DC-DC conversion
- Inverter
- Synchronous Rectifier

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			100	V
V _{GS}	Gate to Source Voltage		±20	V	
	Drain Current -Continuous(Package limited) Tc = 25 °C		°C	30	
	-Continuous (Silicon limited) Tc = 25 °C		°C	40	
D	-Continuous	TA = 25	°C (Note 1a)	8.3	Α
	-Pulsed			50	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	121	mJ
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	3.1	14/
	Power Dissipation	T _A = 25 °C	(Note 1b)	2	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	1.9	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	40	°C/vv


Package Marking and Ordering Information

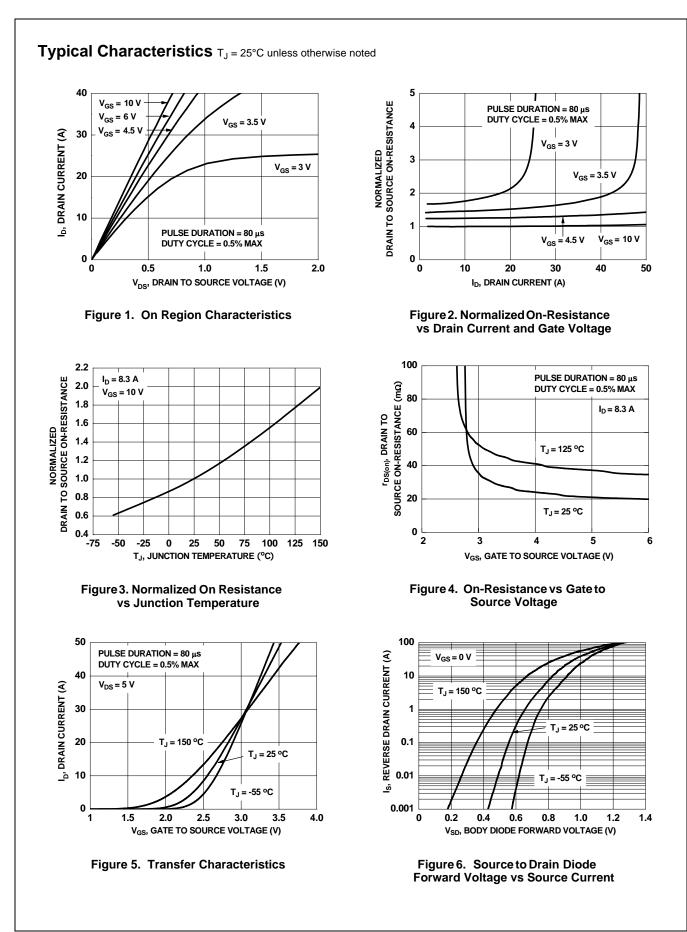
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB86102LZ	FDB86102LZ	TO-263AB	330mm	24 mm	800 units

Electri Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		69		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
On Char	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	1.0	1.5	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{.1}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		-6		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 8.3 A		18	24	
		V _{GS} = 4.5 V, I _D = 6.8 A		23	35	mΩ
()		V _{GS} = 10 V, I _D = 8.3 A,T _J = 125 °C		31	42	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \ \text{I}_{D} = 8.3 \text{ A}$		29		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			959	1275	pF
C _{oss}	Output Capacitance	─ V _{DS} = 50 V, V _{GS} = 0 V, f = 1MHz		181	240	pF
C _{rss}	Reverse Transfer Capacitance	1 = 1101112		9	13	pF
R _g	Gate Resistance			0.4		Ω
Switchin	g Characteristics					
t _{d(on)}	Turn-On Delay Time			6.6	13	ns
ului i		V _{DD} = 50 V, I _D = 8.3 A,		2.1	10	ns
	Rise Time	$v_{DD} = 30 v, i_{D} = 0.3 \Lambda,$				
t _r	Rise Time Turn-Off Delay Time	$V_{\rm DD} = 30$ V, $V_{\rm D} = 0.3$ A, $V_{\rm GS} = 10$ V, $R_{\rm GEN} = 6$ Ω		18.2	33	ns
t _r		$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		18.2 2.3	33 10	ns ns
t _r t _{d(off)} t _f	Turn-Off Delay Time	$V_{GS} = 0 V to 10 V$		-		-
t _r t _{d(off)} t _f Q _{g(TOT)}	Turn-Off Delay Time Fall Time	$V_{GS} = 10 \text{ V}, \overline{\text{R}}_{\text{GEN}} = 6 \Omega$		2.3	10	ns
t_r $t_{d(off)}$ t_f $Q_{g(TOT)}$ $Q_{g(TOT)}$	Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = 10 \text{ V}, $		2.3 15.2	10 21	ns nC
t _r t _{d(off)} t _f Q _{g(TOT)} Q _{g(TOT)} Q _{gs}	Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{GS} = 10 \text{ V}, \ \bar{R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 50 \text{ V},$		2.3 15.2 7.6	10 21	ns nC nC
$\begin{array}{c} t_{d}(off) \\ \hline t_{d}(off) \\ \hline t_{f} \\ \hline Q_{g(TOT)} \\ Q_{g(TOT)} \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \end{array}$	Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge	$V_{GS} = 10 \text{ V}, \ \bar{R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 50 \text{ V},$		2.3 15.2 7.6 2.4	10 21	ns nC nC nC
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_{f} \\ Q_{g(TOT)} \\ Q_{g(TOT)} \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Durce Diode Characteristics	$V_{GS} = 10 \text{ V}, $		2.3 15.2 7.6 2.4	10 21	ns nC nC nC
$\begin{array}{c} t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g(TOT)} \\ Q_{g(TOT)} \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Turn-Off Delay TimeFall TimeTotal Gate ChargeTotal Gate ChargeGate to Source ChargeGate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, $		2.3 15.2 7.6 2.4 2.5	10 21 11	ns nC nC nC
$\begin{array}{c} t_{d(off)} \\ t_{d(off)} \\ t_{f} \\ Q_{g(TOT)} \\ Q_{g(TOT)} \\ Q_{gs} \\ Q_{gd} \end{array}$	Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Durce Diode Characteristics	$V_{GS} = 10 \text{ V}, $		2.3 15.2 7.6 2.4 2.5	10 21 11 1.3	ns nC nC nC

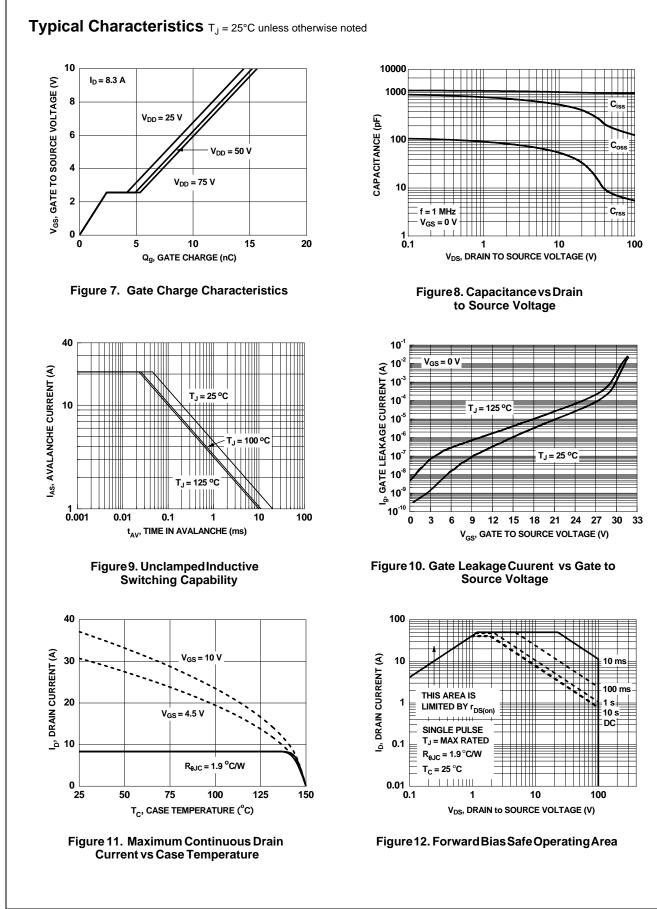
NOTES:

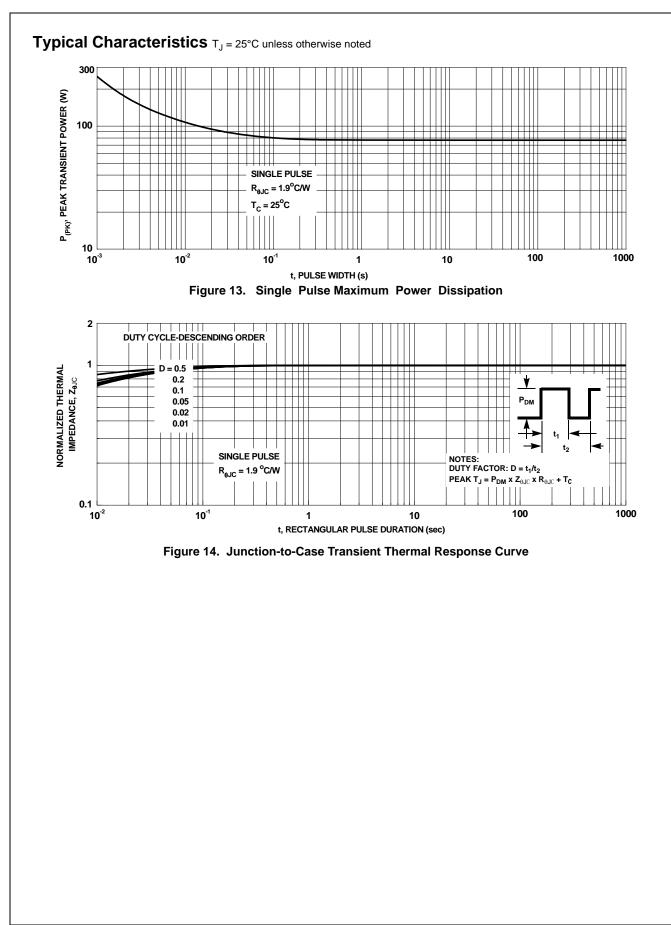
1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 40 °C/W when mounted on a 1 in² pad of 2 oz copper



b) 62.5 °C/W when mounted on a minimum pad of 2 oz copper




0

Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0 %.
 Starting T_J = 25 °C, L = 3 mH, I_{AS} = 9 A, V_{DD} = 100 V, V_{GS} = 10 V.
 The diode connected between gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. Power-SPM™

AccuPower™ Auto-SPM™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™ F® Fairchild® Fairchild Semiconductor®

FACT Quiet Series™ FastvCore™ FETBench™

F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ G*max*™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptiHiT™ **OPTOLOGIC[®] OPTOPLANAR**®

FPS™

GTO™

PowerTrench[®] PowerXS™ Programmable Active Droop™ QFÈT QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM^{®*} GENERAL

The Right Technology for Your Success™ bwer p franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* µSerDes™ UHC Ultra FRFET™ UniFET™

The Power Franchise[®]

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

PDP SPM™

DISCLAIMER

FlashWriter[®] *

FACT®

FAST®

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

VCX™

XS™

VisualMax™

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.