

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

February 1984 Revised May 2005

MM74HCT273 Octal D-Type Flip-Flop with Clear

General Description

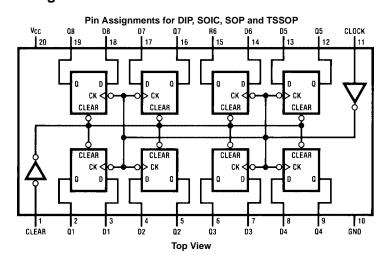
The MM74HCT273 utilizes advanced silicon-gate CMOS technology. It has an input threshold and output drive similar to LS-TTL with the low standby power of CMOS.

These positive edge-triggered flip-flops have a common clock and clear-independent Q outputs. Data on a D input, having the specified set-up and hold time, is transferred to the corresponding Q output on the positive-going transition of the clock pulse. The asynchronous clear forces all outputs LOW when it is LOW.

All inputs to this device are protected from damage due to electrostatic discharge by diodes to V_{CC} and ground.

MM74HCT devices are intended to interface TTL and NMOS components to CMOS components. These parts can be used as plug-in replacements to reduce system power consumption in existing designs.

Features

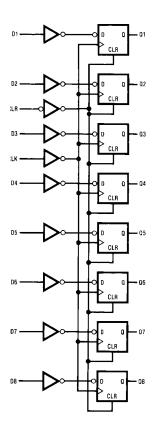

- Typical propagation delay: 20 ns
- Low quiescent current: 80 µA maximum (74HCT series)
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HCT273WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HCT273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT273N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram


Truth Table

(Each Flip-Flop)

	Outputs		
Clear	Clock	D	Q
L	Х	Х	L
Н	↑	Н	Н
Н	↑	L	L
Н	L	Х	Q0

- H = HIGH Level (steady-state)
 L = LOW Level (steady-state)
 X = Don't Care
 7 = Transition from LOW-to-HIGH level
 Q0 = The level of Q before the indicated steady-state input conditions were established.

Logic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Power Dissipation (P_D) (Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(t_r, t_f)		500	ns
Note 1: Absolute Maximum Ratings are those	values b	eyond whi	ch dam-

age to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power dissipation temperature derating—plastic "N" package: -12

mW/°C from 65°C to 85°C.

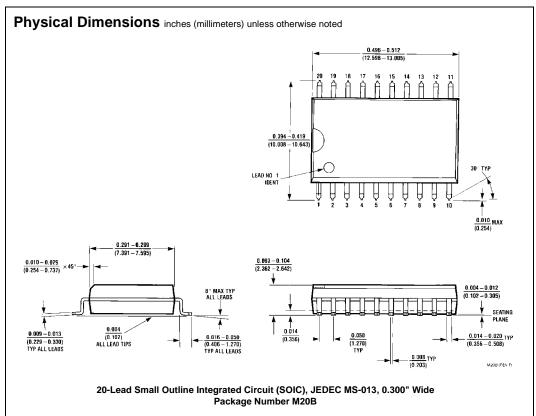
DC Electrical Characteristics

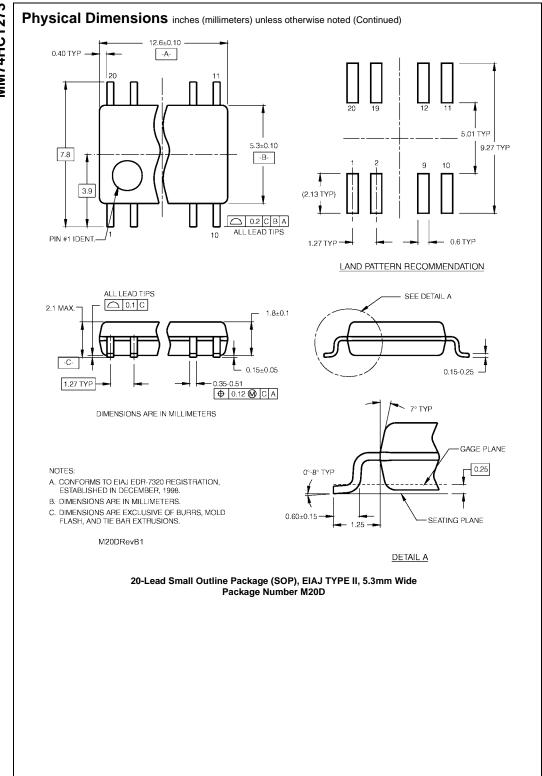
 $V_{\mbox{\footnotesize CC}} = 5V \pm 10\%$ unless otherwise specified

Symbol	Parameter	Conditions	T _A =	25°C	$T_A = -40^{\circ}C$ to $85^{\circ}C$	T _A = -55°C to 125°C	Units
			Тур		Guaranteed L	imits	Julis
V_{IH}	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage						
V_{IL}	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage						
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Output Voltage	$ I_{OUT} = 20 \mu A$	V_{CC}	V _{CC} -0.1	V _{CC} -0.1	V _{CC} -0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V
V_{OL}	Minimum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Voltage	$ I_{OUT} = 20 \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.1	±1.0	±1.0	μА
	Current	V _{IH} or V _{IL}					
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND		8	80	160	μА
	Supply Current	$I_{OUT} = 0 \mu A$					
		V _{IN} = 2.4V or 0.5V (Note 4)		0.6	0.8	0.9	mA

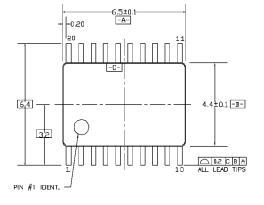
Note 4: Measured per pin, all other inputs held at $V_{\rm CC}$ or GND.

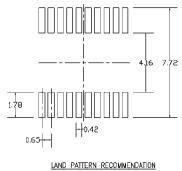
AC Electrical Characteristics V_{CC} = 5V, T_A = 25°C, C_L = 15 pF, t_r = t_f = 6 ns

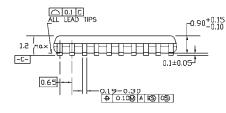

Symbol	Parameter	Conditions	Тур	Guaranteed Limits	Units
f _{MAX}	Maximum Operating Frequency		68	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clock to Q		18	30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clear to Q		21	30	ns
t _{REM}	Minimum Removal Time, Clear to Clock		-1	5	ns
t _S	Minimum Set-Up Time D to Clock		6	20	ns
t _H	Minimum Hold Time Clock to D		-3	5	ns
t _W	Minimum Pulse Width Clock or Clear		10	16	ns


AC Electrical Characteristics

 $V_{CC} = 5.0 \text{V} \pm 10\%$, $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns unless otherwise specified}$


Symbol	Parameter	Conditions	T _A =	25°C	T _A = -40°C to 85°C	T _A = -55°C to 125°C	Units
			Тур		Guaranteed Limits		
f_{MAX}	Maximum Operating		68	27	21	18	MHz
	Frequency						
t _{PHL} , t _{PLH}	Maximum Propagation		22	37	46	56	ns
	Delay from Clock to Q						
t _{PHL} , t _{PLH}	Maximum Propagation		25	35	44	52	ns
	Delay from Clear to Q						
t _{REM}	Minimum Removal		-1	5	6	7	ns
	Time Clear to Clock						
t _S	Minimum Set-Up Time		6	20	25	30	ns
	D to Clock						
t _H	Minimum Hold Time		-3	5	5	5	ns
	Clock to D						
t _W	Minimum Pulse Width		10	16	25	30	ns
	Clock or Clear						
t _r , t _f	Maximum Input Rise			500	500	500	ns
	and Fall Time, Clock						
t _{THL} , t _{TLH}	Maximum Output Rise		11	15	19	22	ns
	and Fall Time						
C _{PD}	Power Dissipation	(Per Flip-Flop)	50				pF
	Capacitance (Note 5)						
C _{IN}	Maximum Input		6	10	10	10	pF
	Capacitance						


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC}^{2} \ f + \ I_{CC}. \label{eq:continuous}$

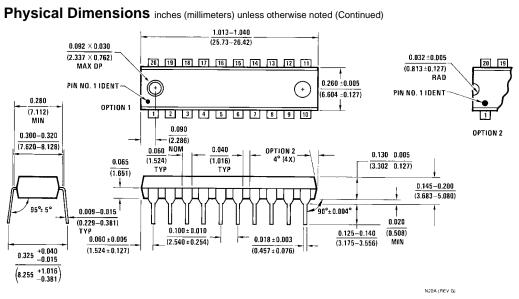


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.


0.09-0.20^J R0.09min GAGE PLANE 0.6±0.1 1.00 R0.09min

SEE DETAIL A

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com