

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

September 1983 Revised May 2005

MM74HC240 Inverting Octal 3-STATE Buffer

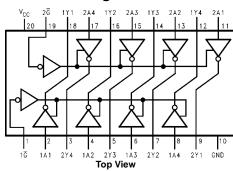
General Description

The MM74HC240 3-STATE buffer utilizes advanced silicon-gate CMOS technology. It possesses high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the advantage of CMOS circuitry, i.e., high noise immunity and low power consumption. It has a fanout of 15 LS-TTL equivalent inputs.

The MM74HC240 is an inverting buffer and has two active LOW enables ($1\overline{G}$ and $2\overline{G}$). Each enable independently controls 4 buffers.

All inputs are protected from damage due to static discharge by diodes to $\ensuremath{V_{CC}}$ and ground.

Features

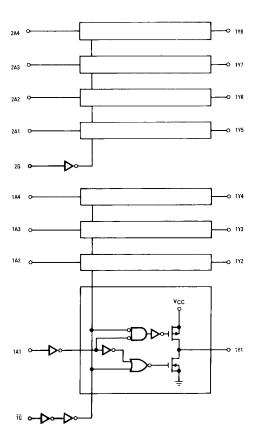

- Typical propagation delay: 12 ns
- 3-STATE outputs for connection to system buses
- Wide power supply range: 2-6V
- Low quiescent supply current: 80 µA (74 Series)
- Output current: 6 mA

Ordering Code:

Order Number	Package Number	Package Description
MM74HC240WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HC240SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC240MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC240N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP) JEDEC MS-001_0_300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram


Truth Table

1 G	1A	1Y	2G	2A	2Y
L	L	Н	L	L	Н
L	Н	L	L	Н	L
Н	L	Z	Н	L	Z
Н	Н	Z	Н	Н	Z

- H = HIGH Level
- L = LOW Level Z = HIGH Impedance

© 2005 Fairchild Semiconductor Corporation

Logic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} $+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
V _{CC} = 4.5V		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

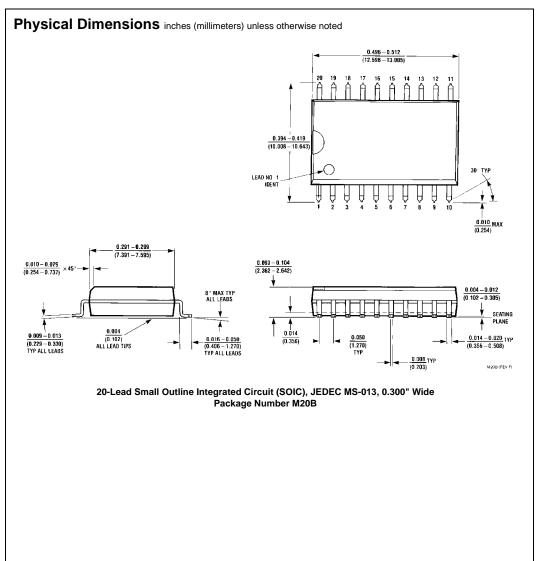
DC Electrical Characteristics (Note 4)

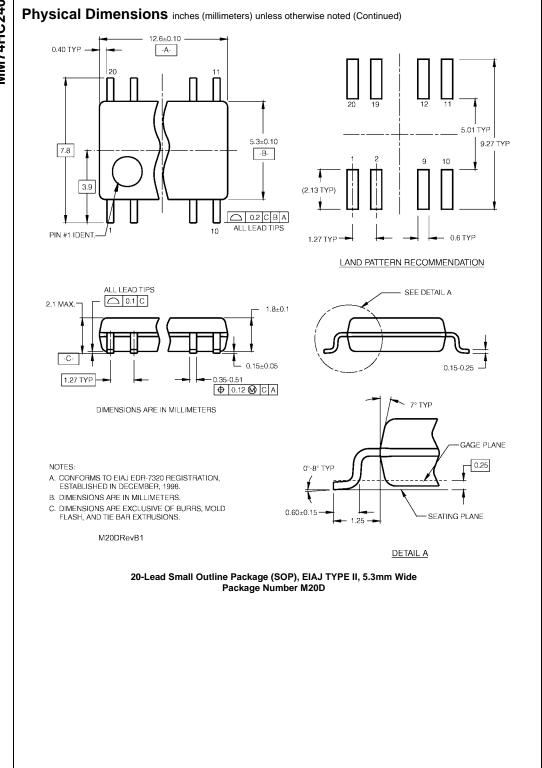
Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		T _A = -40 to 85°C	T _A = -55 to 125°C	Units
Syllibol			VCC	Тур		Guaranteed Limits		Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \leq 20 \; \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 7.8 \ mA$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \leq 20 \; \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \leq 6.0 \; mA$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \leq 7.8 \ mA$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μА
I _{OZ}	Maximum 3-STATE	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Leakage	$V_{OUT} = V_{CC}$ or GND	6.0V		±0.5	±5	±10	μА
	Current	$\overline{G} = V_{IH}, G = V_{IL}$						
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		8.0	80	160	μА
	Supply Current	$I_{OUT} = 0 \mu A$	0.0 v		0.0	00	100	μΛ

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

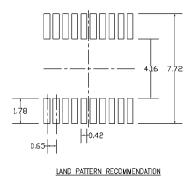
 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r = t_f = 6$ ns

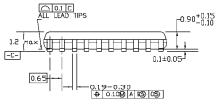

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L = 45 pF	12	18	ns
t _{PZH} , t _{PZL}	Maximum Enable Delay	$R_L = 1 k\Omega$	14	28	ns
	to Active Output	C _L = 45 pF	14		115
t _{PHZ} , t _{PLZ}	Maximum Disable Delay	$R_L = 1 k\Omega$	13	25	20
	from Active Output	$C_L = 5 pF$	13	25	ns


AC Electrical Characteristics

 V_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)


Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		T _A = -40 to 85°C	T _A = -55 to 125°C	Units	
Syllibol				Тур		Guaranteed L	imits	Units	
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	2.0V	55	100	126	149	ns	
	Delay	C _L = 150 pF	2.0V	80	150	190	224	ns	
		C _L = 50 pF	4.5V	12	20	25	30	ns	
		C _L = 150 pF	4.5V	22	30	38	45	ns	
		C _L = 50 pF	6.0V	11	17	21	25	ns	
		C _L = 150 pF	6.0V	28	26	32	38	ns	
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$							
	TIme	C _L = 50 pF	2.0V	75	150	189	224	ns	
		C _L = 150 pF	2.0V	100	200	252	298	ns	
		C _L = 50 pF	4.5V	15	30	38	45	ns	
		C _L = 150 pF	4.5V	20	40	50	60	ns	
		C _L = 50 pF	6.0V	13	26	32	38	ns	
		C _L = 150 pF	6.0V	17	34	43	51	ns	
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 k\Omega$	2.0V	75	150	189	224	ns	
	Time	C _L = 50 pF	4.5V	15	30	38	45	ns	
			6.0V	13	26	32	38	ns	
t _{TLH} , t _{THL}	Maximum Output		2.0V		60	75	90	ns	
	Rise and Fall Time		4.5V		12	15	18	ns	
			6.0V		10	13	15	ns	
C _{PD}	Power Dissipation	(per buffer)							
	Capacitance (Note 5)	$\overline{G} = V_{IH}$		12				pF	
		$\overline{G} = V_{IL}$		50				pF	
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF	
C _{OUT}	Maximum Output Capacitance			10	20	20	20	pF	


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.



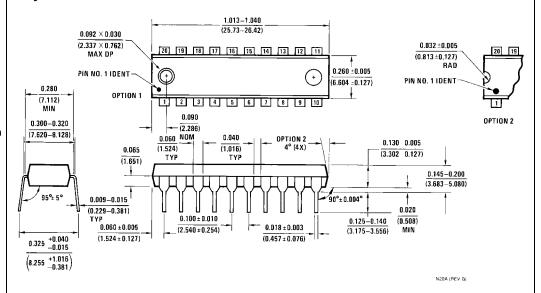
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

0.09-0.20

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.


|-12.00° R0.09mir GAGE PLANE 0.6±0.1 R0.09min -1.00 DETAIL A

SEE DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com