

Is Now Part of

ON Semiconductor®

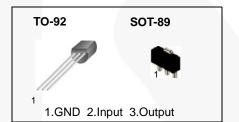
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

December 2012

MC79L05A / LM79L05A 3-Terminal 0.1 A Negative Voltage Regulator

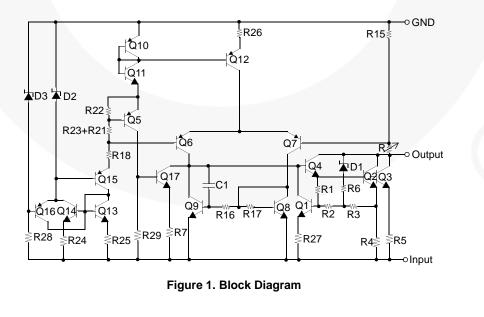
Features


- Output Current up to 100 mA
- No External Components
- Internal Thermal Over load Protection
- Internal Short-Circuit Current Limiting
- Output Voltage Offered in ±5% Tolerance
- Output Voltage: -5 V

FAIRCHILD

SEMICONDUCTOR

Description


These regulators employ internal current limiting and thermal shutdown.

Ordering Information

Part Number	Operating Tem- perature Range	Top Mark	Package	Packing Method
MC79L05ACHX		9A	SOT-89	Tape and Reel
MC79L05ACP	0 ~ +125°C	MC79L05ACP	TO-92	Bulk
LM79L05ACZ		LM79L05ACZ	TO-92	Bulk

Block Diagram

Absolute Maximum Ratings

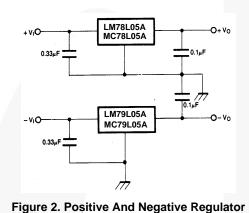
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

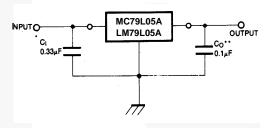
Symbol	Parameter	Value	Unit
VI	Input Voltage	-30	V
T _{OPR}	Operating Temperature Range	0 ~ +125	°C
T _{STG}	Storage Temperature Range	-65 ~ +150	°C

Electrical Characteristics

 $V_I = -10 \text{ V}, I_O = 40 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F}, 0^{\circ}\text{C} \le T_J \le +125^{\circ}\text{C}, \text{ unless otherwise specified.}$

Symbol	Parameter		Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage		T _J = +25°C		-4.8	-5.0	-5.2	V
437	Line Regulation ⁽¹⁾		T	$-7.0 \text{ V} \ge \text{V}_{\text{I}} \ge -20 \text{ V}$		15	150	mV
7v0	ΔV_{O} Line Regulation ⁽¹⁾	T _J =+25°C	-8 V ≥ V _I ≥ -20 V			100	mV	
ΔV_{O} Load Regulation ⁽¹)	T _{.1} =+25°C	$1.0 \text{ mA} \le I_O \le 100 \text{ mA}$		20	60	mV	
Δv0	ΔV_{O} Load Regulation ⁽¹		T _J =+25 C	$1.0 \text{ mA} \le I_{O} \le 40 \text{ mA}$		10	30	mV
V	Output Voltage		$-7.0 \text{ V} \ge \text{V}_{\text{I}} \ge -20 \text{ V}, 1.0 \text{ mA} \le \text{I}_{\text{O}} \le 40 \text{ mA}$		-4.75		-5.25	V
Vo			V_I = -10 V, 1.0 mA $\leq I_O \leq$ 70 mA		-4.75		-5.25	V
Lo Quiescent Current		$T_J = +25^{\circ}C$			2.0	5.5	mA	
Ι _Q	Quiescent Current		T _J = +125°C				6.0	ШA
ΔI_Q	Quiescent Current Change	With Line	-8 V \ge V _I \ge -20 V				1.5	mA
ΔI_Q		With Load	$1.0 \text{ mA} \le I_O \le 40$	mA			0.1	mA
V _N	Output Noise Voltage		$T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz}$			30		μV
RR	Ripple Rejection		$f = 120 \text{ Hz}, -8 \text{ V} \ge \text{V}_{I} \ge -18 \text{ V}, \text{ T}_{J} = +25^{\circ}\text{C}$		41	60		dB
VD	Dropout Voltage		$T_J = +25^{\circ}C$			1.7		V

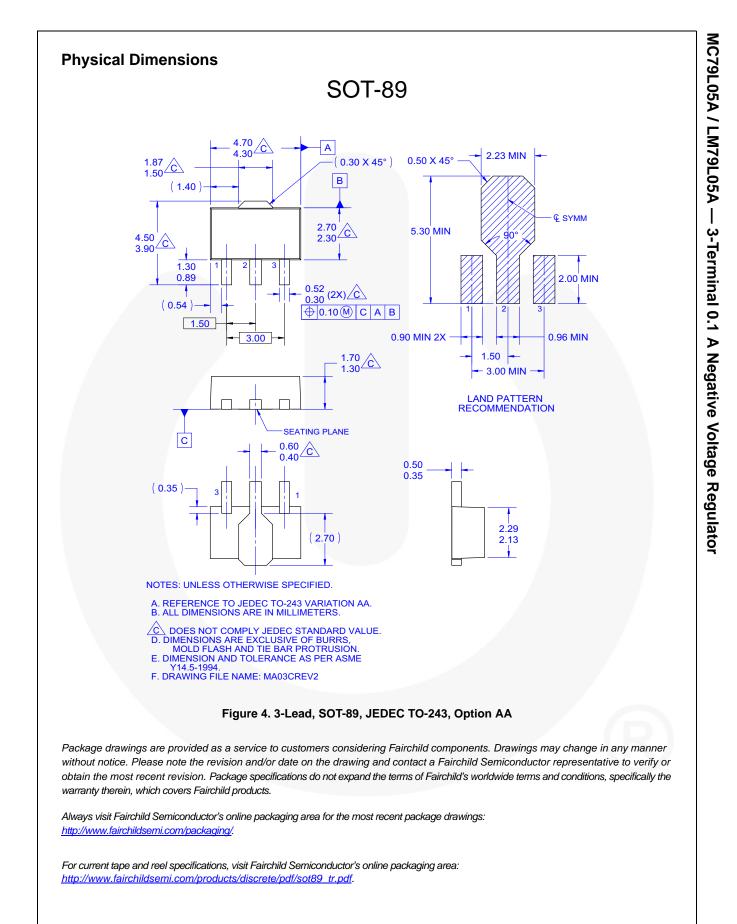

Note:

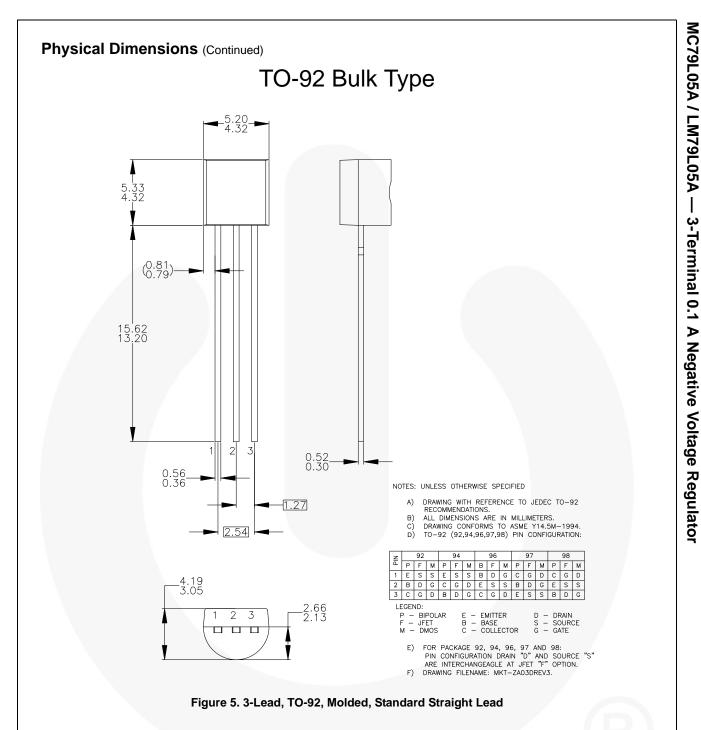

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Application

Design Considerations

The MC79L05A / LC79L05A fixed-voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition. Internal short-circuit protection limits the maximum current the circuit will pass. In many low-current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to ensure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.




Figure 3. Typical Application

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage, even during the low point on the input ripple voltage.

* C_I is required if regulator is located an appreciable distance from power supply filter.

** C_O improves stability and transient response.

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP™* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTI ™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficientMax™ ESBC™ R F Fairchild® Fairchild Semiconductor® FACT Quiet Series™

F-PFS™ FRFET® Global Power Resource[™] GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ **ISOPLANAR™** Making Small Speakers Sound Louder and Better MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC**[®] **OPTOPLANAR®**

QFET[®] OS™ Quiet Series™ RapidConfigure™ ∩™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[€] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

PowerTrench[®]

Programmable Active Droop™

PowerXS™

TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®*

power

franchise

TinyBoost™

TinyBuck™

The Power Franchise®

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

R

DISCLAIMER

FACT

FAST®

FastvCore™

FETBench™ FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild to combat this global problem and encourage our customers to ot their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 163