

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

February 2008

74LVX14 Low Voltage Hex Inverter with Schmitt Trigger Input

Features

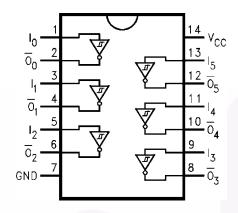
- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

General Description

The LVX14 contains six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

The LVX14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

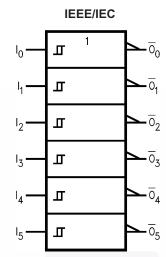
The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.


Ordering Information

Order Number	Package Number	Package Description
74LVX14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVX14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.


Connection Diagram

Pin Description

Pin Names	Description
I _n	Inputs
Ōn	Outputs

Logic Symbol

Truth Table

Input	Output
Α	ō
L	н
Н	L

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current, $V_I = -0.5V$	–20mA
VI	DC Input Voltage	–0.5V to 7V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{\rm O} = V_{\rm CC} + 0.5 V$	+20mA
Vo	DC Output Voltage	–0.5V to V _{CC} + 0.5V
Ι _Ο	DC Output Source or Sink Current	±25mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
Р	Power Dissipation	180mW

Recommended Operating Conditions⁽¹⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0V to 3.6V
VI	Input Voltage	0V to 5.5V
Vo	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	–40°C to +85°C

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

			Conditions	T _A = +25°C			T _A = -40°C to +85°C		
Symbol	Parameter	V _{CC}		Min.	Тур.	Max.	Min.	Max.	Units
V _t +	Positive Threshold	3.0				2.2		2.2	V
V _t -	Negative Threshold	3.0		0.9			0.9		V
V _H	Hysteresis	3.0		0.3		1.2	0.3	1.2	V
V _{OH}	HIGH Level Output Voltage	2.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -50 \mu A$	1.9	2.0		1.9		V
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -50 \mu A$	2.9	3.0		2.9		
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -4mA$	2.58			2.48		
V _{OL}	LOW Level Output Voltage	2.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 50 \mu A$		0.0	0.1		0.1	V
		3.0	$\begin{split} V_{IN} &= V_{IL} \text{ or } V_{IH}, \\ I_{OL} &= 50 \mu A \end{split}$		0.0	0.1		0.1	
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 4mA$			0.36		0.44	
I _{IN}	Input Leakage Current	3.6	$V_{IN} = 5.5V \text{ or GND}$			±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	3.6	$V_{IN} = V_{CC}$ or GND			2.0		20	μA

Noise Characteristics⁽²⁾

				T _A =	25°C	
Symbol	Parameter	V _{CC} (V)	C _L (pF)	Тур.	Limit	Units
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	50	0.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	50	-0.3	-0.5	V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3	50		2.0	V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3	50		0.8	V

Note:

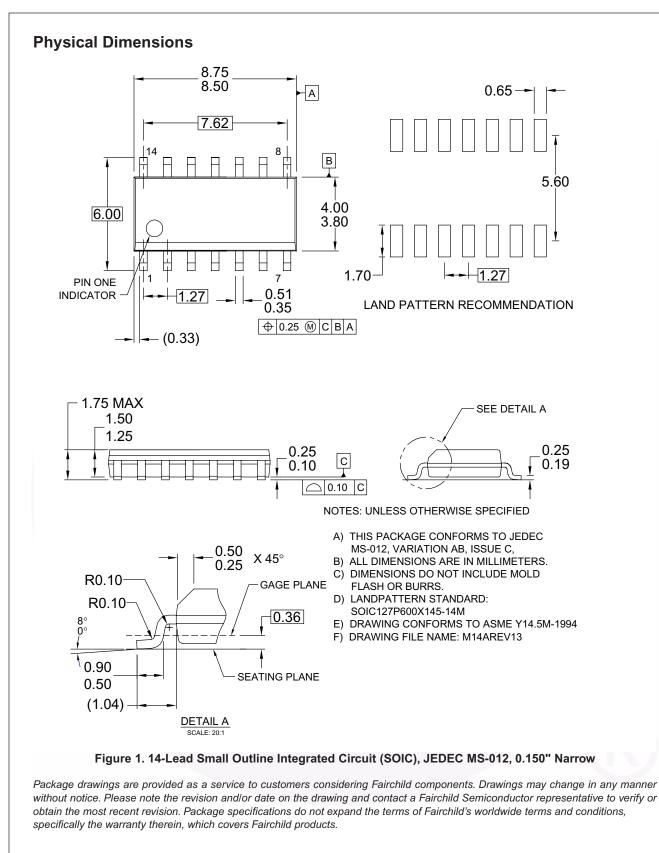
2. Input $t_r = t_f = 3ns$

AC Electrical Characteristics

				Т,	م = +2 5°	°C	T _A =-4 +8	0°C to 5°C	
Symbol	Parameter	V _{CC} (V)	C _L (pF)	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay Time	2.7	15		8.7	16.3	1.0	19.5	ns
			50		11.2	19.8	1.0	23.0	
		3.3 ± 0.3	15		6.8	10.6	1.0	12.5	
			50		9.3	14.1	1.0	16.0	
t _{OSLH} , t _{OSHL}	Output to Output Skew ⁽³⁾	2.7	50			1.5		1.5	ns
		3.3				1.5		1.5	

Note:

3. Parameter guaranteed by design $t_{OSLH} = |t_{PLHm} - t_{PLHn}|$, $t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

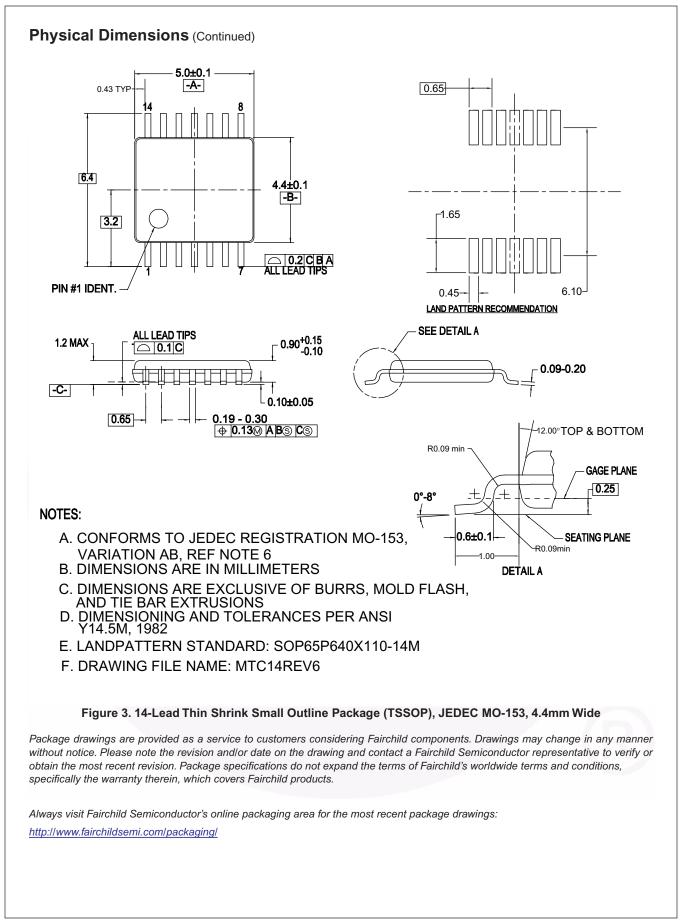

Capacitance

		т	A = +25°	с	T _A = -4 +8	l0°C to 5°C	
Symbol	Parameter	Min.	Тур.	Max.	Min.	Max.	Units
C _{IN}	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation Capacitance ⁽⁴⁾		21				pF

Note:

4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} \times I_{CC}}{6 (per Gate)}$


Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

74LVX14 — Low Voltage Hex Inverter with Schmitt Trigger Input

7

74LVX14 — Low Voltage Hex Inverter with Schmitt Trigger Input

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS