

Is Now Part of

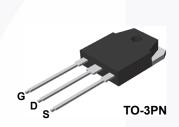
ON Semiconductor®

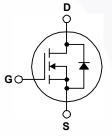
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FDA16N50_F109 N-Channel UniFETTM MOSFET 500V, 16.5 A, 380 mΩ

Features


- $R_{DS(on)}$ = 380 m Ω (Max.) @ V_{GS} = 10, I_D = 8.3 A
- Low Gate Charge (Typ. 32 nC)
- Low C_{rss} (Typ. 20 pF)
- 100% Avalanche Tested


Applications

- PDP TV
- Uninterruptible Power Supply

Description

UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FDA16N50_F109	Unit	
V _{DSS}	Drain-Source Voltag	e		500	V	
ID	Drain Current	- Continuous ($T_C = 25^{\circ}C$) - Continuous ($T_C = 100^{\circ}C$)		16.5 9.9	A A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	66	А	
V _{GSS}	Gate-Source voltage			±30	V	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	780	mJ	
I _{AR}	Avalanche Current		(Note 1)	16.5	A	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	20.5	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.5	V/ns	
P _D	Power Dissipation	(T _C = 25°C) - Derate above 25°C		205 2.1	W W/°C	
T _{J,} T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

Symbol	Parameter	FDA16N50_F109	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	0.6	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	40		

Device i	annig	Device	1 aur	aye	ILEEI SIZE	ιαρ	e Wiutii Quali		lity	
FDA16N50		FDA16N50_F109	TO-3PN		Tube		N/A		30 units	
Electric	al Cha	racteristics ⊤ _c	= 25°C unl	ess otherw	vise noted.					
Symbol		Parameter			Conditions		Min.	Тур.	Max	Unit
Off Charac	teristics									
BV _{DSS}	Drain-Source Breakdown Voltage			V _{GS} = 0V,	I _D = 250μA		500			V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient			$I_D = 250\mu A$, Referenced to $25^{\circ}C$				0.5		V/°C
I _{DSS}	Zero Gate Voltage Drain Current			$V_{DS} = 500V, V_{GS} = 0V$ $V_{DS} = 400V, T_{C} = 125^{\circ}C$					1 10	μΑ μΑ
I _{GSSF}	Gate-Bod	ly Leakage Current, F	orward	V _{GS} = 30V	, V _{DS} = 0V			-	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse		Reverse	$V_{GS} = -30V, V_{DS} = 0V$					-100	nA
On Charact	teristics									
V _{GS(th)}	Gate Threshold Voltage			V _{DS} = V _{GS}	, I _D = 250μA		3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance			V _{GS} = 10V, I _D = 8.3A				0.31	0.38	Ω
9 _{FS}	Forward Transconductance			V _{DS} = 40V, I _D = 8.3A			23		S	
Dynamic C	haracteris	stics								
C _{iss}	Input Cap	t Capacitance		V _{DS} = 25V, V _{GS} = 0V, f = 1.0MHz			1495	1945	pF	
C _{oss}	Output Capacitance Reverse Transfer Capacitance						235	310	pF	
C _{rss}							20	30	pF	
Switching	Character	istics								
t _{d(on)}	Turn-On Delay Time			V _{DD} = 250V, I _D = 16A			40	90	ns	
t _r	Turn-On I	Rise Time		$R_{G} = 25\Omega$			150	310	ns	
t _{d(off)}	Turn-Off I	Delay Time						65	140	ns
t _f	Turn-Off I	Fall Time		(Note 4		(Note 4)		80	170	ns
Qg	Total Gate	e Charge		V _{DS} = 400V, I _D = 16A V _{GS} = 10V (Note 4)			32	45	nC	
Q _{gs}	Gate-Sou	Irce Charge					8.5		nC	
Q _{gd}	Gate-Dra	in Charge					14		nC	
Drain-Sour	ce Diode (Characteristics and	Maximum	Ratings						
I _S	Maximum Continuous Drain-Source Diode Forward Current							9.2	А	
I _{SM}	Maximum Pulsed Drain-Source Diode Fo			orward Current					37	А
V _{SD}	Drain-Sou	urce Diode Forward V	oltage	V _{GS} = 0V,	I _S = 16.5A				1.4	V
t _{rr}	Reverse	Recovery Time		V _{GS} = 0V,				490	-	ns
Q _{rr}	Reverse	Recovery Charge		dI _F /dt =100A/μs			5.0		μC	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity	
FDA16N50	FDA16N50_F109	TO-3PN	Tube	N/A	30 units	

NOTES:

1. Repetitive Rating: Pulse width limited by maximum junction temperature

2. L = 5.1mH, I_{AS} = 16.5A, V_DD = 50V, R_G = 25 Ω , Starting T_J = 25°C

3. I_{SD} \leq 16.5A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C

4. Essentially Independent of Operating Temperature Typical Characteristics

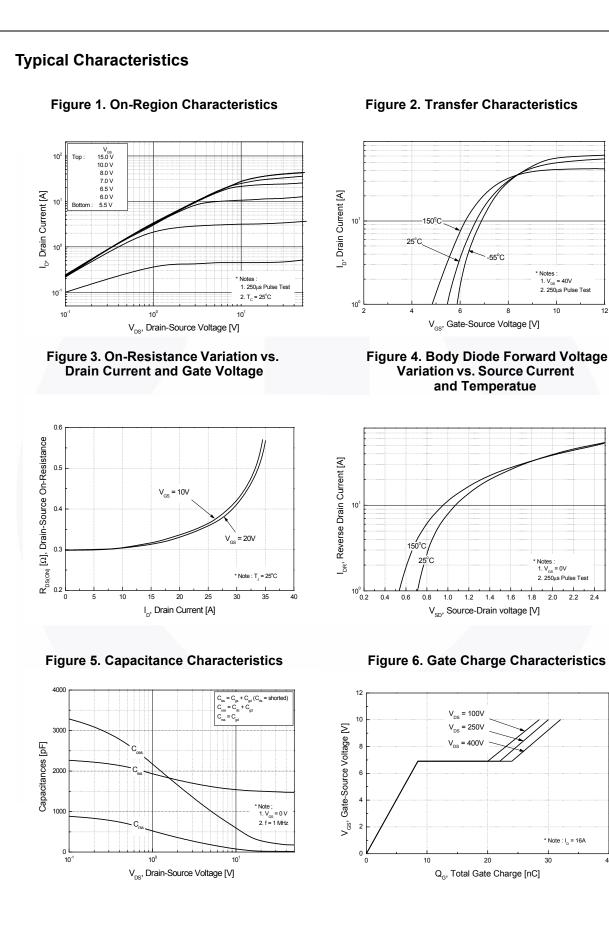
2

Notes : 1. V_{DS} = 40V

10

Notes : 1. V_{GS} = 0V

2.0 2.2 2.4

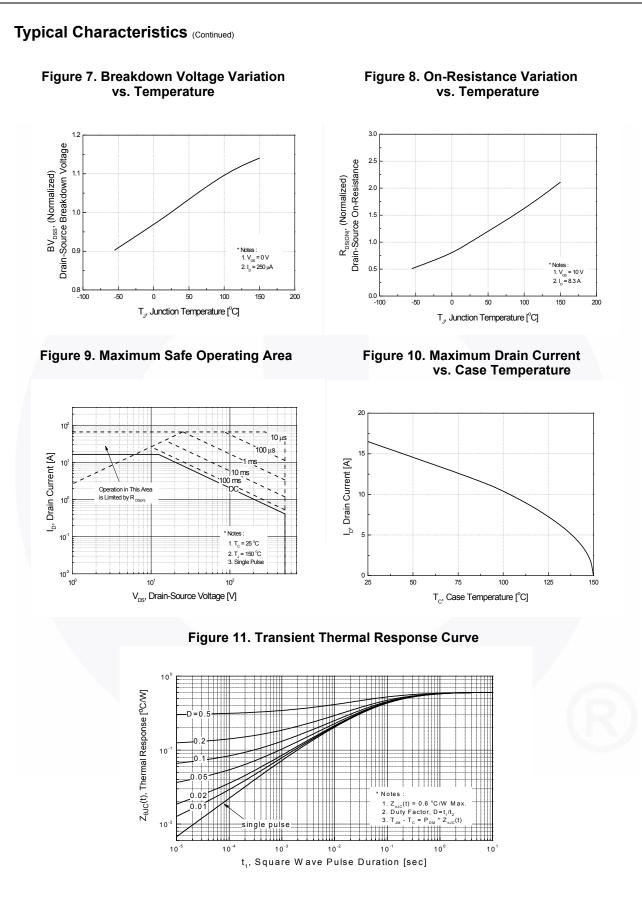

2. 250µs Pulse Tes

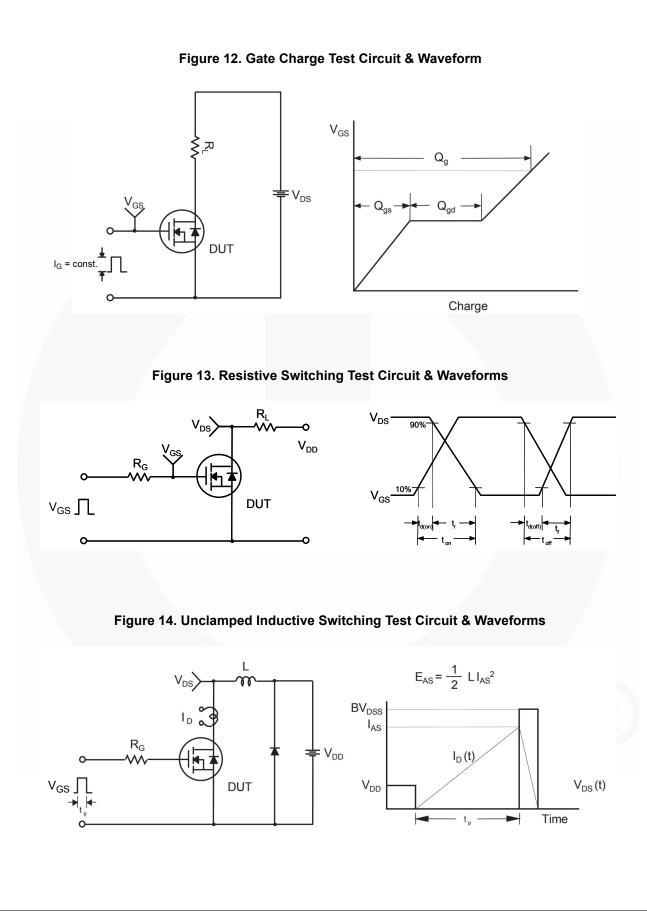
* Note : I_p = 16A

30

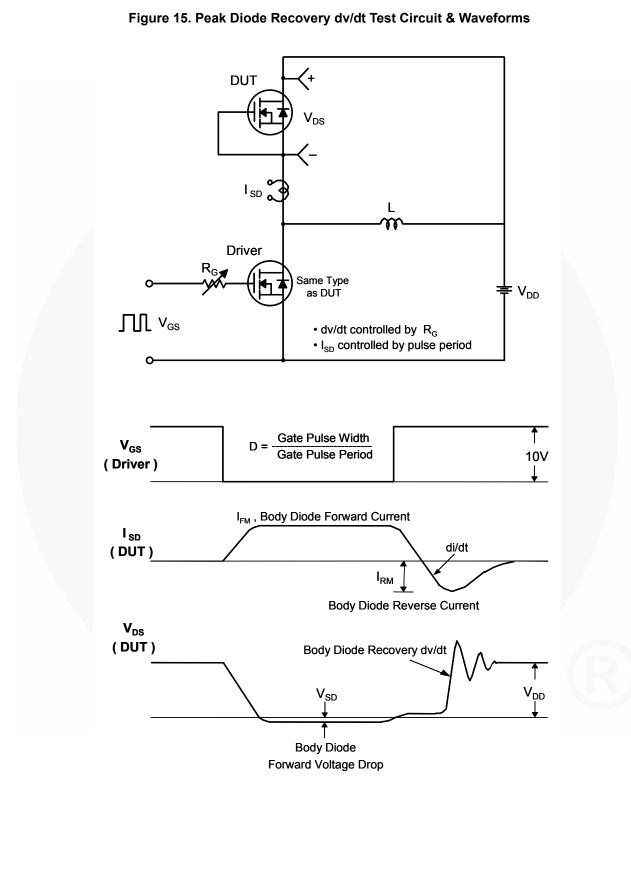
2. 250µs Pulse Test

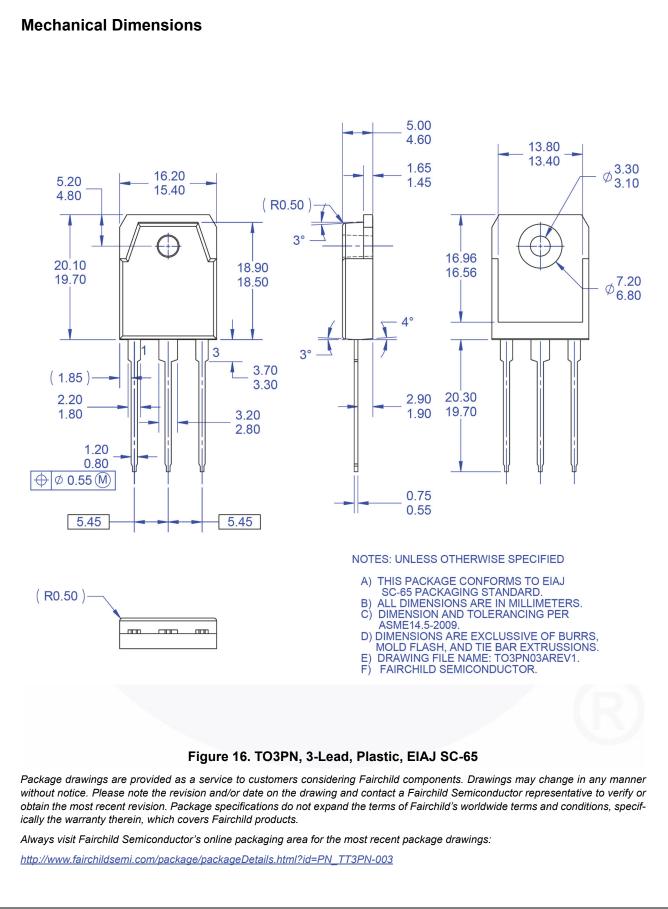
12




©2007 Fairchild Semiconductor Corporation FDA16N50 F109 Rev. C2

3


www.fairchildsemi.com


40

5

