

Is Now Part of

ON Semiconductor®

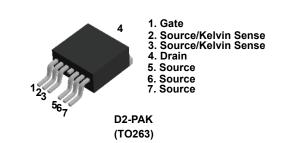
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

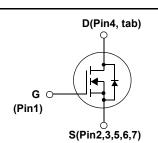
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

FDB0190N807L N-Channel PowerTrench[®] MOSFET 80 V, 270 A, 1.7 m Ω

Features

- Max r_{DS(on)} = 1.7 mΩ at V_{GS} = 10 V, I_D = 34 A
- Max $r_{DS(on)}$ = 2 m Ω at V_{GS} = 8 V, I_D = 31 A
- Fast Switching Speed
- Low Gate Charge
- \blacksquare High Performance Trench Technology for Extremely Low $R_{DS(on)}$
- High Power and Current Handling Capability
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench[®] process that has been especially tailored to minimize the on-state resistance while maintaining superior ruggedness and switching performance for industrial applications.

Applications

- Industrial Motor Drive
- Industrial Power Supply
- Industrial Automation
- Battery Operated tools
- Battery Protection
- Solar Inverters
- UPS and Energy Inverters
- Energy Storage
- Load Switch

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted.

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			80	V	
V _{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous	T _C = 25°C	(Note 5)	270	A	
	-Continuous	T _C = 100°C	(Note 5)	190		
	-Pulsed		(Note 4)	1440		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	777	mJ	
P _D	Power Dissipation	T _C = 25°C		250	w	
	Power Dissipation $T_A = 25^{\circ}C$ (Note 1a)			3.8	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +175	°C	

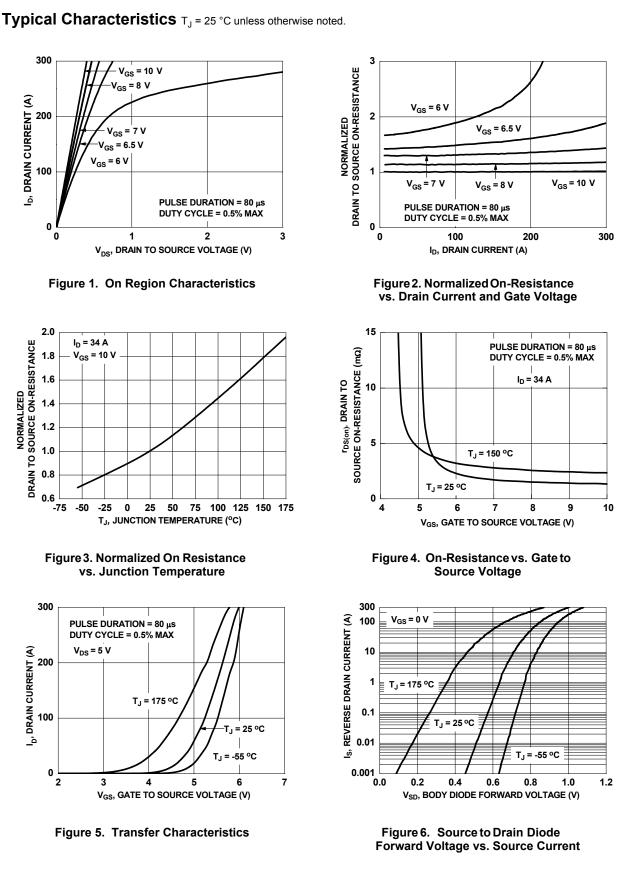
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	0.6	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	40	C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB0190N807L	FDB0190N807L	D2-PAK-7L	330 mm	24 mm	800 units

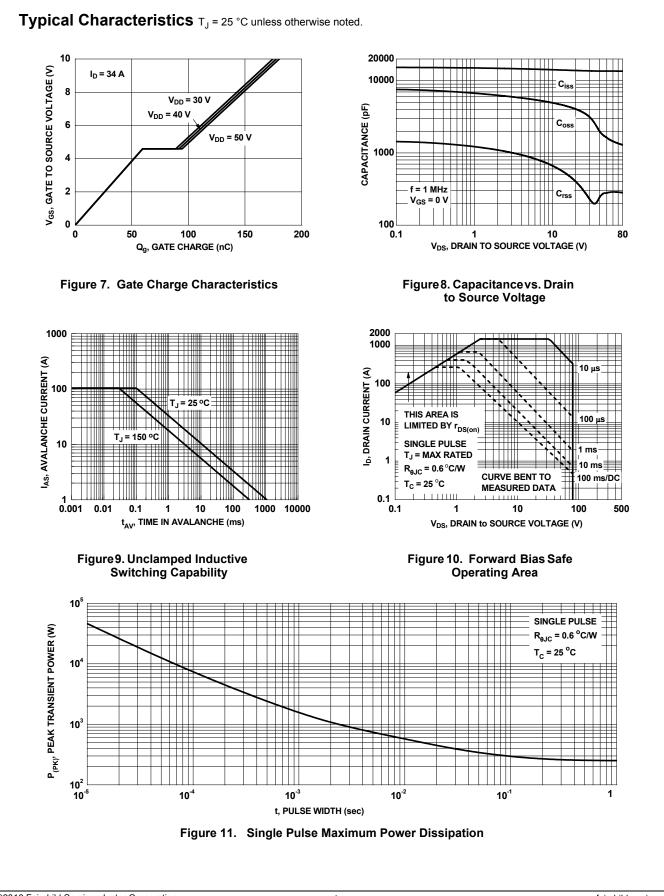
©2016 Fairchild Semiconductor Corporation FDB0190N807L Rev.C

March 2016

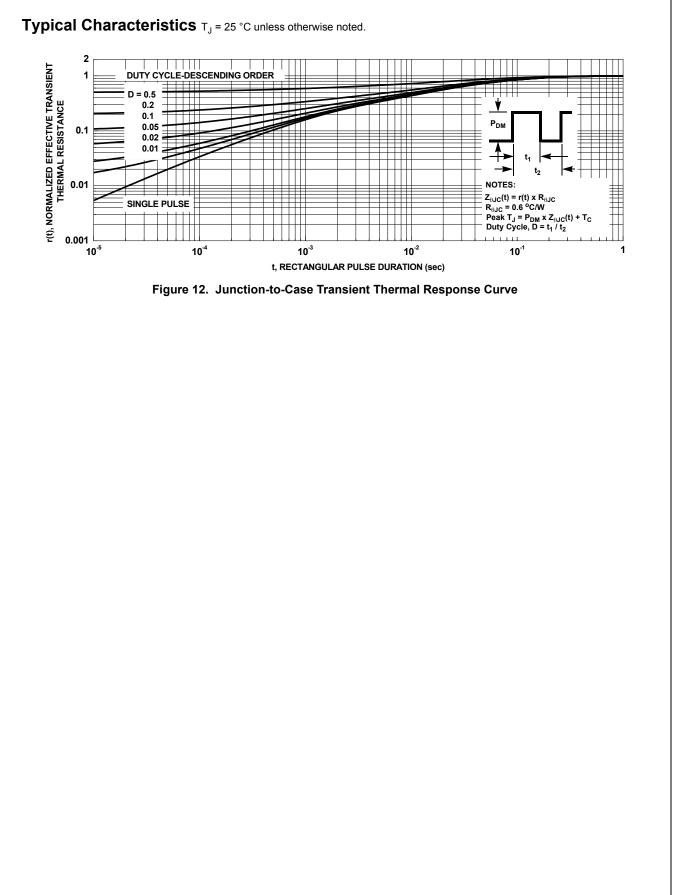

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	80			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		34		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 64 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
	acteristics			1	I	1
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	2	2.9	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-13		mV/°C
	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 34 A		1.3	1.7	
r _{DS(on)}		V _{GS} = 8 V, I _D = 31 A		1.5	2	mΩ
		V_{GS} = 10 V, I _D = 34 A, T _J = 150°C		2.3	4.3	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 34 A		133		S
	Output Capacitance Reverse Transfer Capacitance	─ V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz		1990 235	2790 330	pF pF
C _{rss}		f = 1 MHz				•
R _g	Gate Resistance			2.9		Ω
o	g Characteristics					
Switching	The Or Deley Terry			60	96	ns
	Turn-On Delay Time	V _{DD} = 40 V, I _D = 34 A,		78	125	ns
t _{d(on)}	Rise Time	V _{DD} = 40 V, I _D = 34 A,				ns
t _{d(on)}		$V_{\text{DD}} = 40 \text{ V}, \text{ I}_{\text{D}} = 34 \text{ A}, \\ V_{\text{GS}} = 10 \text{ V}, \text{ R}_{\text{GEN}} = 6 \Omega$		98	157	
t _{d(on)} t _r t _{d(off)} t _f	Rise Time			98 50	157 80	ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	V _{GS} = 10 V, R _{GEN} = 6 Ω		50 178		nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge			50 178 60	80	nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	V_{GS} = 10 V, R_{GEN} = 6 Ω - V _{DD} = 40 V, I _D = 34 A,		50 178	80	nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge	V_{GS} = 10 V, R_{GEN} = 6 Ω - V _{DD} = 40 V, I _D = 34 A,		50 178 60	80	nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ - V _{DD} = 40 V, I _D = 34 A, - V _{GS} = 10 V		50 178 60	80	nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-So	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ - V _{DD} = 40 V, I _D = 34 A, - V _{GS} = 10 V de Forward Current		50 178 60	80 249	nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gg} Q _{gd} Drain-So I _S I _S	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain to Source Diode	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ - V _{DD} = 40 V, I _D = 34 A, - V _{GS} = 10 V de Forward Current		50 178 60	80 249 270	nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gg} Q _{gd} Drain-Sol	Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain to Source Diode Feature	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DD} = 40 \text{ V}, \text{ I}_{D} = 34 \text{ A},$ $V_{GS} = 10 \text{ V}$ de Forward Current orward Current		50 178 60 32	80 249 270 1440	nC nC nC A A

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0 %.

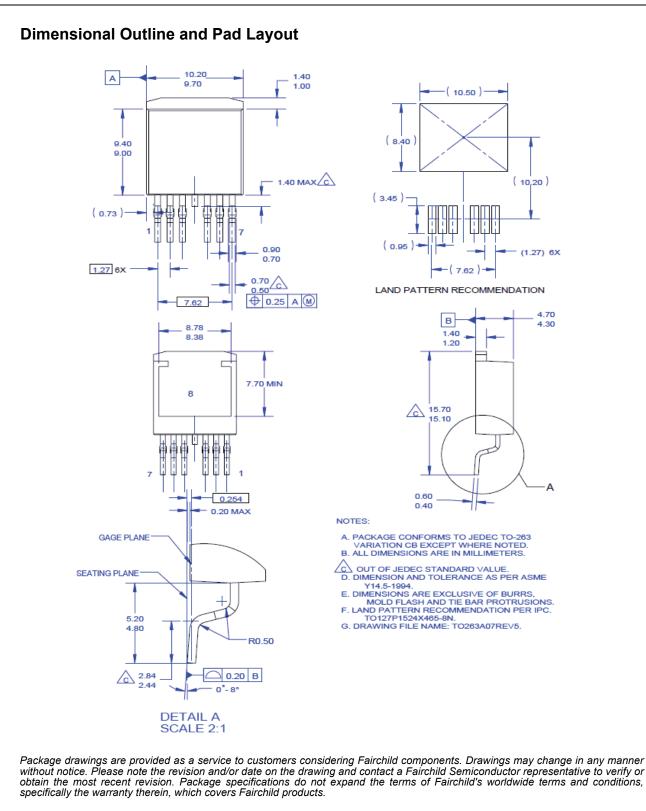
3. E_{AS} of 777 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 72 A, V_{DD} = 72 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 104 A.


4. Pulsed Id please refer to Figure "Forward Bias Safe Operating Area" for more details.

5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.



FDB0190N807L N-Channel PowerTrench[®] MOSFET


©2016 Fairchild Semiconductor Corporation FDB0190N807L Rev.C

FDB0190N807L N-Channel PowerTrench[®] MOSFET

FDB0190N807L N-Channel PowerTrench[®] MOSFET

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * Bitld it Now TM CorePLUS TM CorePOWER TM COREPOWER TM CORESVOL T TM CTL T ^M CUTTent Transfer Logic TM DEUXPEED [®] Dual Cool TM ECOSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] FastvCore TM FACT [®] FastvCore TM FETBench TM FPS TM	F-PFS TM FRFET [®] Global Power Resource SM Green FPS TM Green FPS TM e-Series TM Gmax TM GTO TM IntelliMAX TM ISOPLANAR TM Marking Small Speakers Sound Louder and Better TM MegaBuck TM MICROCOUPLER TM MicroPak TM MicroPak TM MicroPak TM MicroPak TM MicroPak TM MillerDrive TM MotionMax TM MotionGrid [®] MTI [®] MTX [®] MVN [®] MVN [®] MVN [®] OptoHiT TM OPTOLOGIC [®]	OPTOPLANAR [®] Power Supply WebDesigner [™] PowerXS [™] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™]	
---	--	--	--

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

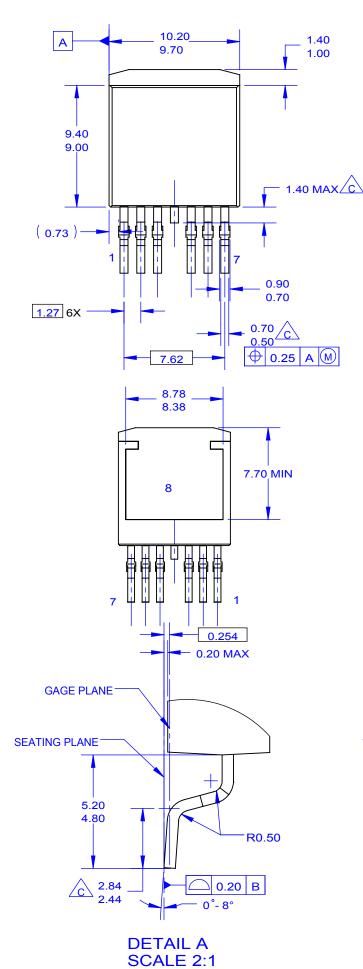
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

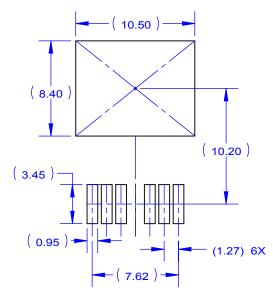
AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

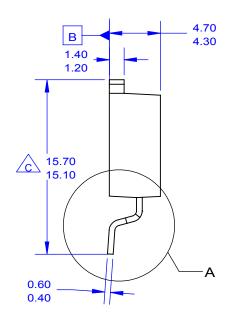
ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

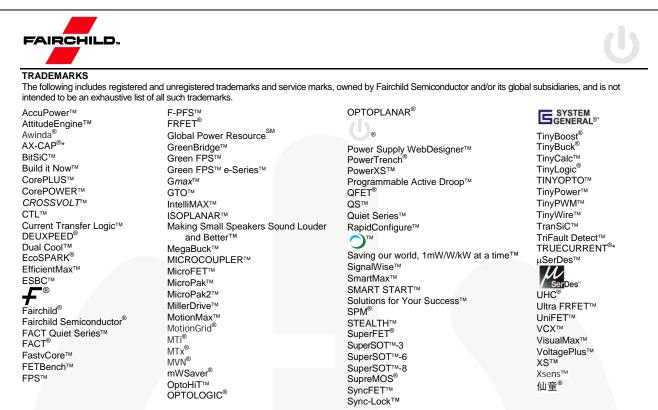

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.


PRODUCT STATUS DEFINITIONS

Definition of Terms


Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177



LAND PATTERN RECOMMENDATION

NOTES:

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED.
 B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE. D. DIMENSION AND TOLERANCE AS PER ASME
 - Y14.5-1994. E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
 - F. LAND PATTERN RECOMMENDATION PER IPC. TO127P1524X465-8N.
 - G. DRAWING FILE NAME: TO263A07REV5.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177