

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

FAIRCHILD

SEMICONDUCTOR

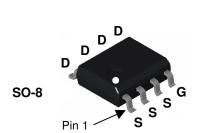
FDS6612A

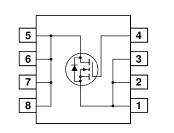
Single N-Channel, Logic-Level, PowerTrench® MOSFET

General Description

This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.




Features

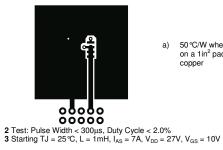
• 8.4 A, 30 V. $R_{DS(ON)} = 22 \ m\Omega @ V_{GS} = 10 \ V$ $R_{DS(ON)} = 30 \ m\Omega @ V_{GS} = 4.5 \ V$

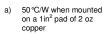
April 2007

- Fast switching speed
- Low gate charge
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Source Voltage			30	V	
V _{GSS}	Gate-Source Voltage			±20	V	
ID	Drain Curre	ent – Continuous	(Note 1a)	8.4	A	
		– Pulsed		40		
PD	Power Diss	ipation for Single Operat	tion (Note 1a)	2.5	W	
			(Note 1b)	1.0		
E _{AS}	Single Pulse Avalanche Energy (Note 3)		(Note 3)	24	mJ	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		mperature Range	-55 to +150	°C	
Therma	I Charac	teristics				
R _{eja}	Thermal Re	esistance, Junction-to-Ar	nbient (Note 1a)	50	°C/W	
R _{eja}	Thermal Resistance, Junction-to-Ambient (Note 1b) 125					
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)			25		
Packag	e Markin	g and Ordering	Information			
Device I	Marking	Device	Reel Size	Tape width	Quantity	
FDS6612A		FDS6612A	13"	12mm	2500 units	

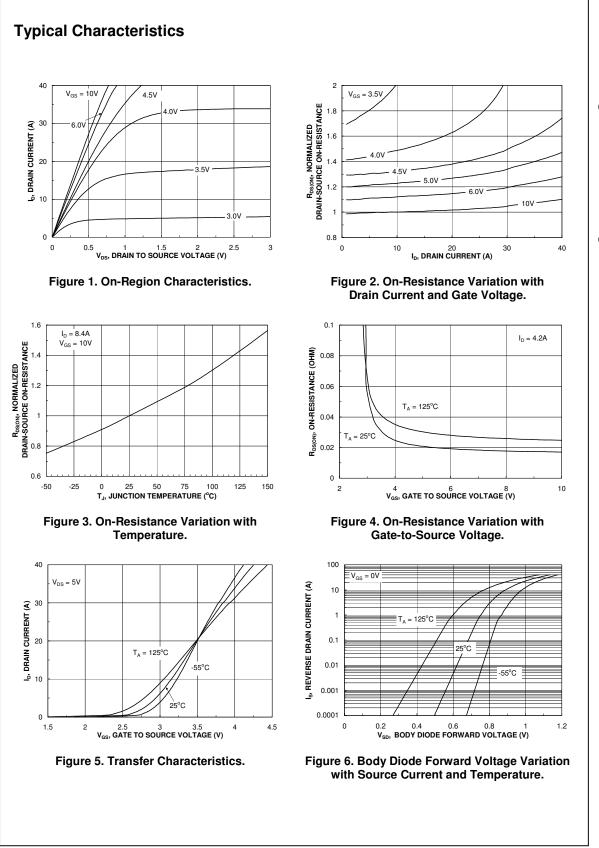

FDS6612A Rev D1 (W)

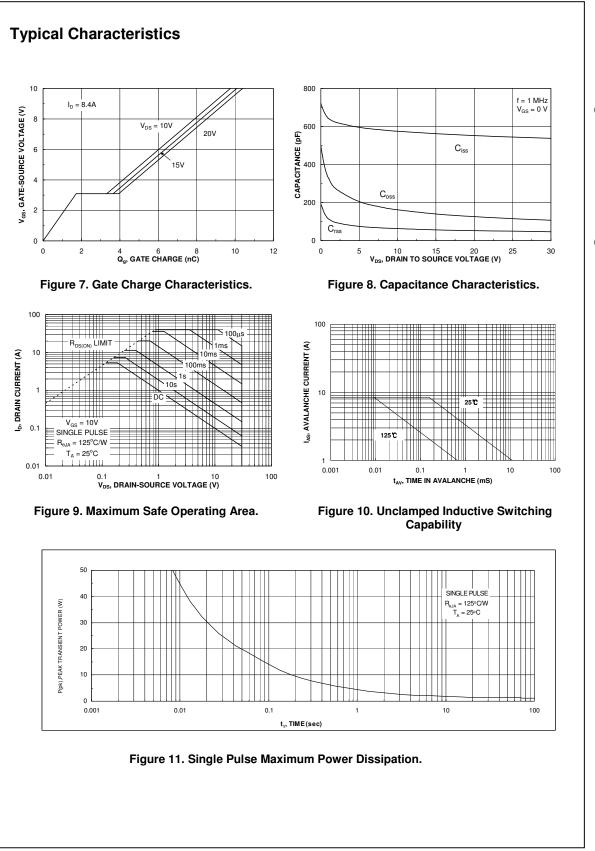

©2007 Fairchild Semiconductor Corporation

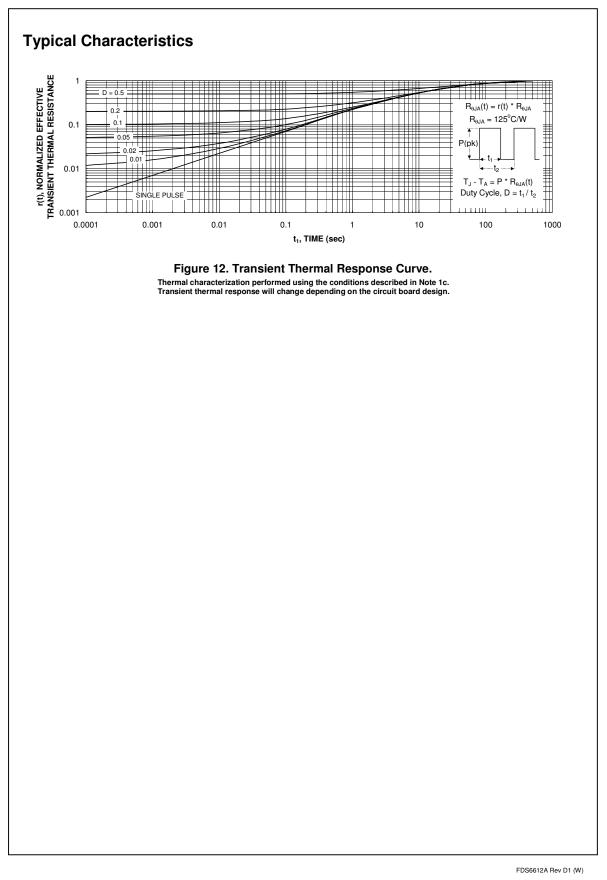
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
ΔBV_{DSS} $\Delta T_{.1}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		26		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$			1	μA
		$V_{DS} = 24 V, V_{GS} = 0 V, T_J = 55^{\circ}C$			10	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.9	3	V
$\Delta V_{GS(th)} \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-4.4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = 10 \ V, & I_D = 8.4 \ A \\ V_{GS} = 4.5 \ V, & I_D = 7.2 \ A \\ V_{GS} = 10 \ V, \ I_D = 8.4 \ A, \ T_J = 125^\circ C \end{array} $		19 24 25	22 30 37	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \ V, \qquad V_{DS} = 5 \ V$	20			Α
g fs	Forward Transconductance	$V_{DS} = 15 V$, $I_D = 8.4 A$		30		S
Dynamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		560		pF
Coss	Output Capacitance	f = 1.0 MHz		140		pF
C _{rss}	Reverse Transfer Capacitance			55		pF
R _G	Gate Resistance	$V_{\text{GS}}=15 \text{ mV}, f=1.0 \text{ MHz}$		2.5		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 V, I_D = 1 A,$		7	14	ns
tr	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		5	10	ns
t _{d(off)}	Turn-Off Delay Time			22	35	ns
t _f	Turn–Off Fall Time			3	6	ns
Qg	Total Gate Charge	$V_{DS} = 15 \ V, \qquad I_D = 8.4 \ A,$		5.4	7.6	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		1.7		nC
Q _{gd}	Gate-Drain Charge			1.9		nC
Drain–So	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Source	e Diode Forward Current			2.1	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \ V,$ $I_{S} = 2.1 \ A \ (Note 2)$		0.77	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 8.4 A, d _{iF} /d _t = 100 A/μs		19		nS
Q _{rr}	Diode Reverse Recovery Charge	$r_{\rm F} = 0.470, \sigma_{\rm F} \sigma_{\rm f} = 100 R/\mu_0$	1	9		nC

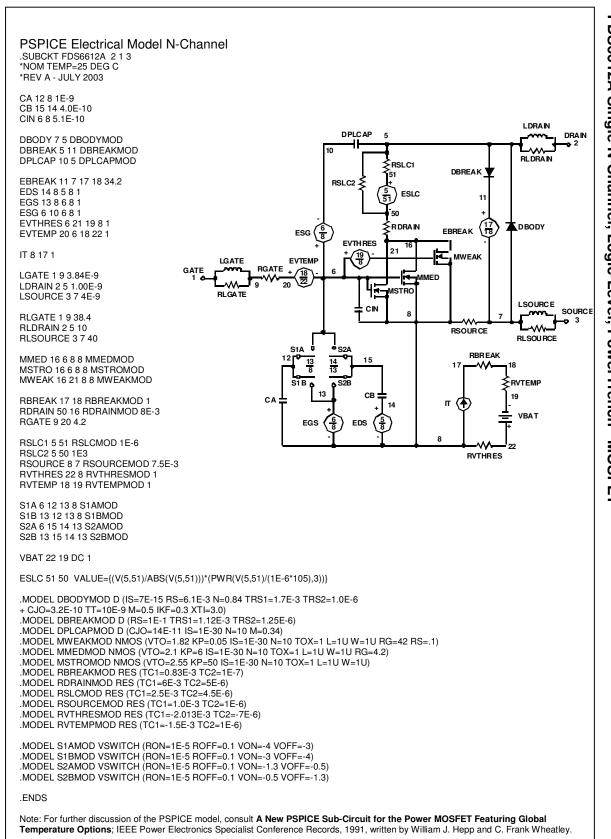
Notes:

1. R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $\rm R_{\theta JC}$ is guaranteed by design while $\rm R_{\theta CA}$ is determined by the user's board design.

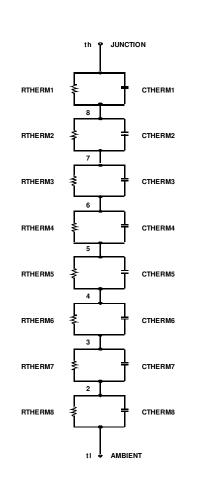



b) 125°C/W when mounted on a minimum pad.


Scale 1 : 1 on letter size paper


FDS6612A Single N-Channel, Logic-Level, PowerTrench[®] MOSFET

FDS6612A Single N-Channel, Logic-Level, PowerTrench[®] MOSFET



SPICE Thermal Model

.SUBCKT FDS6612A_THERM TH TL *THERMAL MODEL SUBCIRCUIT *REV A - JULY 2003 *MIN PAD RJA

TH	8	0.005
8	7	0.05
7	6	0.10
6	5	0.35
5	4	0.45
4	3	0.50
3	2	0.55
2	TL	3.00
TH	8	5.000
8	7	6.250
7	6	7.500
6	5	8.750
5	4	10.625
4	3	11.875
3	2	31.250
2	TL	43.750
	8 7 6 5 4 3 2 TH 8 7 6 5 4 3	8 7 7 6 5 4 4 3 2 TL TH 8 7 6 6 5 5 4 3 2 TH 8 7 6 6 5 5 4 4 3 3 2

.ENDS

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Across the board. Around the world[™] ActiveArray™ Bottomless™ Build it Now™ CoolFET™ CROSSVOLT™ CTL™ Current Transfer Logic™ DOME™ E²CMOS™ EcoSPARK[®] EnSigna™ FACT Quiet Series™ FACT® $\mathsf{FAST}^{\mathbb{R}}$ FASTr™ FPS™ FRFET® GlobalOptoisolator™ GTO™ HiSeC™

i-Lo™ ImpliedDisconnect[™] IntelliMAX[™] ISOPLANAR™ MICROCOUPLER™ MicroPak™ MICROWIRE™ Motion-SPM™ MSX™ MSXPro™ OCX™ OCXPro™ **OPTOLOGIC**[®] **OPTOPLANAR**[®] PACMAN™ PDP-SPM™ POP™ Power220[®] Power247[®] PowerEdae™ PowerSaver™

Power-SPM™ $\mathsf{PowerTrench}^{\mathbb{R}}$ Programmable Active Droop[™] QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT[™]-6 SuperSOT™-8 SyncFET™ тсм™ The Power Franchise[®] ധ™

TinvBoost™ TinyBuck™ TinyLogic® **TINYOPTO™** TinyPower™ TinyWire™ TruTranslation™ µSerDes™ UHC® UniFET™ VCX™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, DEFORMED SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when the subset of the s properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 126