

Is Now Part of

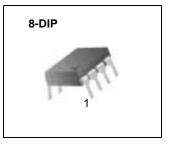
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

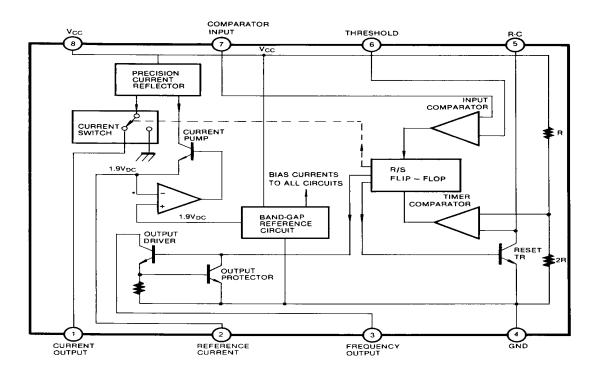
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

SEMICONDUCTOR IM

www.fairchildsemi.com


KA331 V-F Converter

Features


- Guaranteed linearity: 0.01% max.
- Low power dissipation: 15mW at 5V
- Wide range of full scale frequency: 1Hz to 100KHz
- Pulse output compatible with all logic forms
- Wide dynamic range: 100dB min at 10KHz full scale frequency

Description

This voltage to frequency converter provides the output pulse train at a frequency precisely proportional to the applied input voltage. The KA331 can operate at power supplies as low as 4.0V and be changed output frequency from 1Hz to 100KHz. It is ideally suited for use in simple low-cost circuit for analog-to digital conversion, long term integration, linear frequency modulation or demodulation, frequency-to-voltage conversion, and many other functions.

Internal Block Diagram

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	40	V
Input Voltage	VI	-0.2 ~ + VCC	V
Operating Temperature Range	TOPR	0 ~ +70	°C
Power Dissipation	PD	500	mW

Electrical Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
VFC Non-Linearity	VFCNL	$4.5 \le V_{CC} \le 20V$	-	±0.003	±0.01	% Full-Scale	
Conversion Accuracy Scale Factor	ACCUR	VI = -10V, Rs = 14KΩ	0.90	1.00	1.10	KHz/V	
Chang Of Gain With VCC	Vcc∆G/Vcc	$4.5V \le V_{CC} \le 10V$	-	0.01	0.1	%/V	
		$10V \le VCC \le 40V$	-	0.006	0.06		
Rated Full - Scale Frequency	f	VI = -10V	10.0	-	-	KHz	
INPUT COMPARATOR						•	
Offset Voltage	VIO	$0^{\circ}C \leq T_A \leq +70^{\circ}C$	-	±3	±10	mV	
Bias Current	IBIAS	-	-	-80	-300	nA	
Offset Current	lio	-	-	±8	±100	nA	
Common-Mode Range	Vcm	$0^{\circ}C \le T_A \le +70^{\circ}C$	-0.2	-	Vcc-2.0	V	
TIMER (PIN 5)							
Timer Threshold Voltage	Vth	-	0.63	0.667	0.701	×Vcc	
Input Bias Current	IBIAS	$\begin{array}{l} VCC=15V,\\ 0V\leqV_5\leq9.9V \end{array}$	-	±10	±100	nA	
		V5 = 10V	-	200	1000	nA	
Saturation Voltage	VSAT	I = 5mA	-	0.22	0.5	V	
CURRENT SOURCE (PIN 1)							
Output Current	lo	$R_S = 14K\Omega, V_1 = 0V$	116	136	156	μA	
Change with Voltage	$\Delta IO/\Delta V_1$	$0V \le V_1 \le 10V$	-	0.2	1.0	μA	
Current Source Off Leakage	ILKG	-	-	0.02	10.0	nA	
REFERENCE VOLTAGE (PIN 2)							
Reference Voltage	Vref	-	1.70	1.89	2.08	VDC	
Stability vs Temperature	STT	-	-	±60	-	ppm/°C	
Stability vs Time, 1000Hours	STT	-	-	±0.1	-	%	
LOGIC OUTPUT (Pin 3)						•	
Saturation Voltage	VSAT	I = 5mA	-	0.15	0.50	N	
		l = 3.2mA	-	0.10	0.40	- V	
Off Leakage	Ilkg	-	-	±0.05	1.0	μΑ	
SUPPLY CURRENT			•				
Supply Current		VCC = 5V	1.5	3.0	6.0	— mA	
Supply Current	ICC	V _{CC} = 40V	2.0	4.0	8.0		

Typical Applications

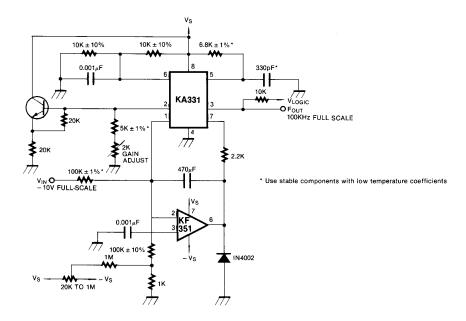


Figure 1. Precision Voltage-to-Frequency Converter, 100KHz Full-Scale

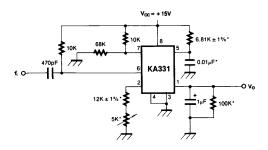


Figure 2. Simple Frequency-to-Voltage Converter, 10KHz Full-Scale

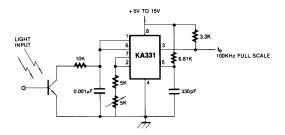
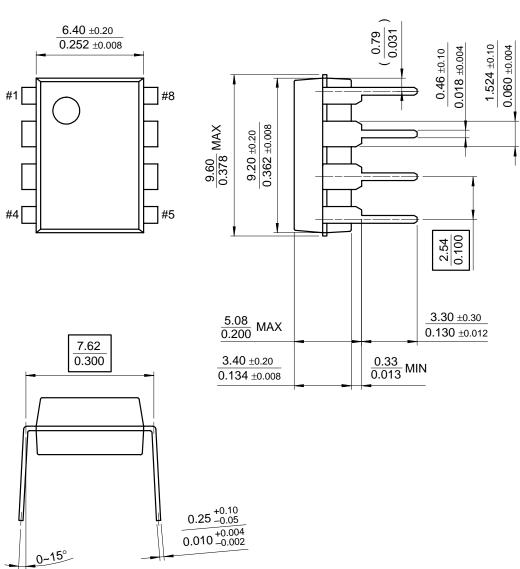



Figure 3. Light Intensity to Frequency Converter

Mechanical Dimensions

Package

Dimensions in millimeters

8-DIP

Ordering Information

Product Number	Package	Operating Temperature
KA331	8-DIP	0 ~ + 70°C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com