

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

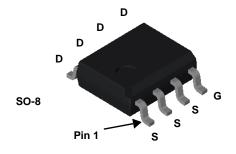
November 2007

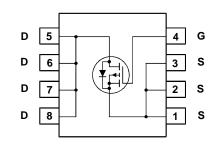
FDS4141

P-Channel PowerTrench[®] MOSFET -40V, -10.8A, 13.0m Ω

Features

- Max $r_{DS(on)} = 13.0 \text{m}\Omega$ at $V_{GS} = -10 \text{V}$, $I_D = -10.5 \text{A}$
- Max $r_{DS(on)} = 19.0 \text{m}\Omega$ at $V_{GS} = -4.5 \text{V}$, $I_D = -8.4 \text{A}$
- High performance trench technology for extremely low r_{DS(on)}
- RoHS Compliant




General Description

This P-Channel MOSFET has been produced using Fairchild Semiconductor's proprietary PowerTrench technology to deliver low $r_{\text{DS}(\text{on})}$ and optimized BV_{DSS} capability to offer superior performance benefit in the applications and optimized switching performance capability reducing power dissipation losses in converter/inverter applications.

Applications

- Control switch in synchronous & non-synchronous buck
- Load switch
- Inverter

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		-40	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current -Continuous		-10.8	۸
'D	-Pulsed		-36	Α
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	294	mJ
Б	Power Dissipation $T_A = 25$ °C	(Note 1a)	5	W
P_{D}	Power Dissipation $T_A = 25$ °C	(Note 1b)	2.5	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS4141	FDS4141	SO-8	13"	12mm	2500units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted **Parameter**

Symbol	Parameter	Test Conditions		Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-40			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = -250μA, referenced to 25°C		-33		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -32V,			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = -250\mu A$	-1.0	-1.6	-3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = -250μA, referenced to 25°C		5.3		mV/°C
		$V_{GS} = -10V, I_D = -10.5A$		11.0	13.0	
r _{DS(on)}	r _{DS(on)} Static Drain to Source On Resistance	$V_{GS} = -4.5V, I_D = -8.4A$		15.2	19.0	mΩ
	$V_{GS} = -10V, I_D = -10.5A, T_J = 125$ °C		16.8	19.9		
g _{FS}	Forward Transconductance	$V_{DD} = -5V, I_{D} = -10.5A$		37		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 20V V 0V		2005	2670	pF
C _{oss}	Output Capacitance	$V_{DS} = -20V, V_{GS} = 0V,$ f = 1MHz		355	475	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112		190	285	pF
R_g	Gate Resistance	f = 1MHz		5		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time				10	20	ns
t _r	Rise Time		$V_{DD} = -20V, I_{D} = -10.5A,$ $V_{GS} = -10V, R_{GEN} = 6\Omega$		5	10	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = -10V, R _{GEN} =			42	68	ns
t _f	Fall Time				12	22	ns
Q_g	Total Gate Charge	$V_{GS} = 0V \text{ to } -10V$			35	49	nC
Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } -5V$	$V_{DD} = -20V$,		19	27	nC
Q _{gs}	Gate to Source Charge		$I_D = -10.5A$		6		nC
Q _{gd}	Gate to Drain "Miller" Charge				7		nC

Drain-Source Diode Characteristics

V	Veb Source to Drain Dioge Forward Voltage	$V_{GS} = 0V, I_{S} = -10.5A$	(Note 2)	-0.8	-1.3	\/
V SD		$V_{GS} = 0V, I_{S} = -2.1A$	(Note 2)	-0.7	-1.2	V
t _{rr}	Reverse Recovery Time			26	42	ns
Q _{rr}	Reverse Recovery Charge			14	26	nC

^{1.} R_{0,1A} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,1C} is guaranteed by design while R_{0,CA} is determined by the user's board design.

a) 50°C/W when mounted on a 1in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad.

- 2. Pulse Test: Pulse Width < $300\mu\text{s},$ Duty cycle < 2.0%.
- 3. UIL condition: Starting T_J = 25°C, L = 3mH, I_{AS} = -14A, V_{DD} = -40V, V_{GS} = -10V.

Typical Characteristics $T_J = 25$ °C unless otherwise noted

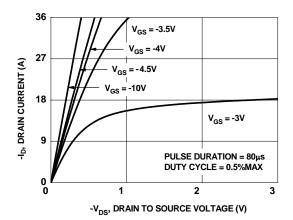


Figure 1. On-Region Characteristics

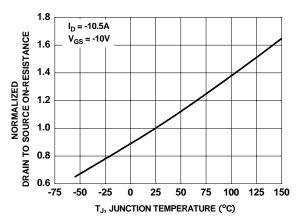


Figure 3. Normalized On-Resistance vs Junction Temperature

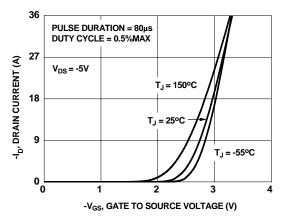


Figure 5. Transfer Characteristics

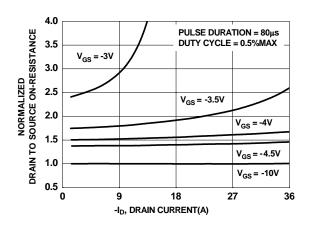


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

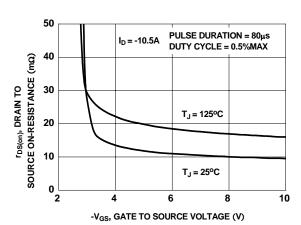


Figure 4. On-Resistance vs Gate to Source Voltage

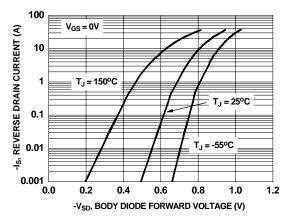


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics T_J = 25°C unless otherwise noted

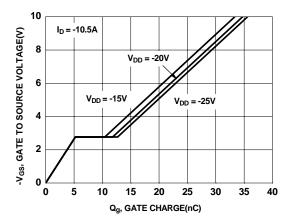


Figure 7. Gate Charge Characteristics

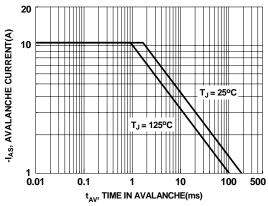


Figure 9. Unclamped Inductive Switching Capability

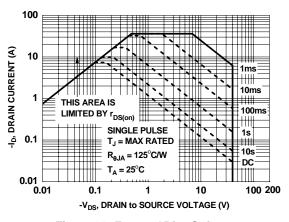


Figure 11. Forward Bias Safe Operating Area

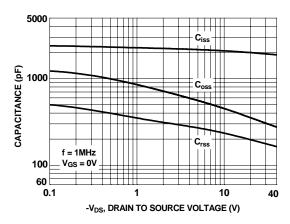


Figure 8. Capacitance vs Drain to Source Voltage

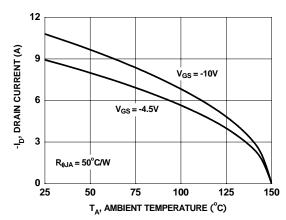


Figure 10. Maximum Continuous Drain Current vs Ambient Temperature

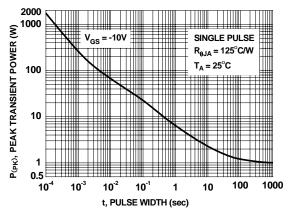


Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25°C unless otherwise noted

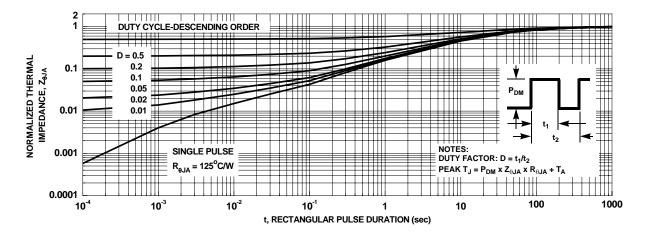


Figure 13. Transient Thermal Response Curve

Preliminary Datasheet

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{\mathbb{R}}$ Power247® SuperSOT™-8 Green FPS™ Build it Now™ Green FPS™ e-Series™ POWEREDGE® SyncFET™ CorePLUS™ GTO™ Power-SPM™ The Power Franchise® $\mathsf{PowerTrench}^{\mathbb{R}}$ $CROSSVOLT^{TM}$ i-Lo™ p wer $\mathsf{CTL}^{\mathsf{TM}}$ IntelliMAX™ Programmable Active Droop™ ISOPLANAR™ QFET® TinyBoost™ Current Transfer Logic™ EcoSPARK® MegaBuck™ QS^{TM} TinvBuck™ MICROCOUPLER™ QT Optoelectronics™ TinyLogic[®] Fairchild[®] TINYOPTO™ MicroFET™ Quiet Series™ Fairchild Semiconductor® MicroPak™ RapidConfigure™ TinyPower™ FACT Quiet Series™ MillerDrive™ SMART START™ TinyPWM™ FACT[®] SPM[®] TinyWire™ Motion-SPM™ $\mathsf{FAST}^{\mathbb{R}}$ OPTOLOGIC[®] STEALTH™ uSerDes™ FastvCore™ OPTOPLANAR® **UHC®** SuperFET™ UniFET™ FPS™ SuperSOT™-3 FRFET® PDP-SPM™ VCX™ SuperSOT™-6

Power220®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Global Power ResourceSM

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition
Advance Information Formative or In Design		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I31