

Is Now Part of

ON Semiconductor®

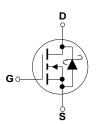
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

March 2015

30V N-Channel PowerTrench[®] SyncFET[™] General Description

The FDD6680AS is designed to replace a single MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDD6680AS includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology. The performance of the FDD6680AS as the low-side switch in a synchronous rectifier is indistinguishable from the performance of the FDD6680A in parallel with a Schottky diode.


Applications

- DC/DC converter
- Low side notebook

G S TO-252

Features

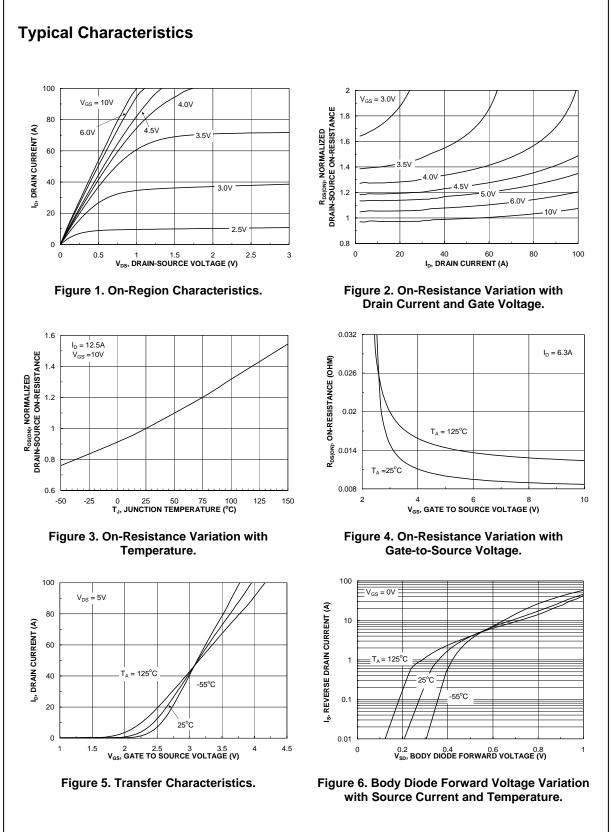
- 55 A, 30 V $R_{DS(ON)}$ max= 10.5 m Ω @ V_{GS} = 10 V $R_{DS(ON)}$ max= 13.0 m Ω @ V_{GS} = 4.5 V
- Includes SyncFET Schottky body diode
- Low gate charge (21nC typical)
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

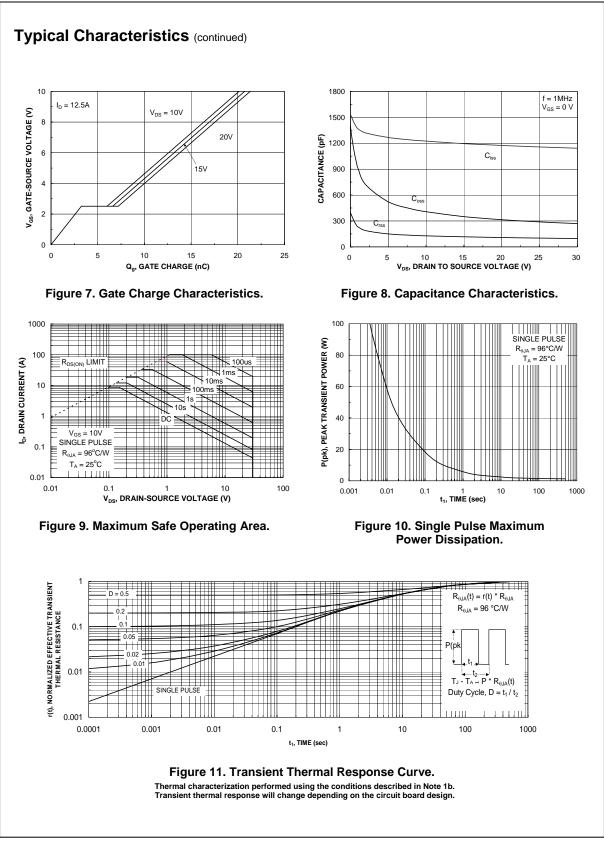
Symbol	Parameter		Ratings	Unit s	
V _{DSS}	Drain-Source Voltage		30		
V _{GSS}	Gate-Source Voltage		±20	V	
I _D	Drain Current – Continuous	(Note 3)	55	А	
	– Pulsed	(Note 1a)	100		
P _D	Power Dissipation	(Note 1)	60	W	
		(Note 1a)	3.1		
		(Note 1b)	1.3		
T _J , T _{STG}	Operating and Storage Junction Tempera	iture Range	-55 to +150	°C	
	Il Characteristics				
Raic	Thermal Resistance, Junction-to-Case	(Note 1)	2.1	°C/W	

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	2.1	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W

Package Marking and Ordering Information


Device Marking	Device	Reel Size	Tape width	Quantity
FDD6680AS	FDD6680AS	13"	16mm	2500 units

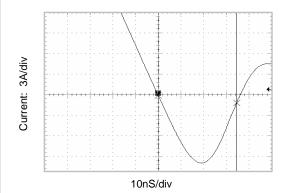
©2008 Fairchild Semiconductor Corporation


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (No	te 2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 15 V$,		54	205	mJ
I _{AR}	Drain-Source Avalanche Current	I _D =13.5A			13.5	А
	acteristics				10.0	~
	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_D = 1 mA$	30			V
ΔBV _{DSS} ΔT.I	Breakdown Voltage Temperature Coefficient	$I_D = 1$ mA, Referenced to 25°C		29		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			500	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)			1		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	1	1.4	3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 1 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C}$	•	-3		mV/°C
ΔT_{J}	Temperature Coefficient					
R _{DS(on)}	Static Drain–Source			8.6	10.5	mΩ
	On–Resistance			10.3 12.5	13.0 16.0	
1	On–State Drain Current	V_{GS} = 10 V, I _D = 12.5A, T _J = 125°C V _{GS} = 10 V, V _{DS} = 5 V	50	12.5	10.0	۸
I _{D(on)}		$v_{GS} = 10 \text{ V}, v_{DS} = 5 \text{ V}$ $V_{DS} = 15 \text{ V}, I_D = 12.5 \text{ A}$	50	44		A S
g _{FS}	Forward Transconductance	$v_{DS} = 15 v$, $I_D = 12.5 A$		44		3
Dynamic	Characteristics	1		1		1
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$, f = 1.0 MHz		1200		pF
C _{oss}	Output Capacitance			350		pF
C _{rss}	Reverse Transfer Capacitance			120		pF
R_{G}	Gate Resistance	$V_{\text{GS}} = 15 \text{ mV}, \qquad f = 1.0 \text{ MHz}$		1.6		Ω
Switchin	g Characteristics (Note 2)					
d(on)	Turn–On Delay Time			10	20	ns
r	Turn–On Rise Time	$V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		6	12	ns
d(off)	Turn–Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		28	45	ns
f	Turn–Off Fall Time			12	22	ns
d(on)	Turn–On Delay Time			14	25	ns
r	Turn–On Rise Time	$V_{DD} = 15 V$, $I_D = 1 A$,		13	23	ns
d(off)	Turn–Off Delay Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω		20	32	ns
f	Turn–Off Fall Time			11	20	ns
Q _{g(TOT)}	Total Gate Charge at Vgs=10V			21	29	nC
۶ ^g	Total Gate Charge at Vgs=5V	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 12.5 \text{ A}$		11	15	nC
ک _{gs}	Gate–Source Charge	עטי – יטי, ים – ו2.3 א געי – יטי, ים – ו2.3 א		3		nC
۵ gd	Gate-Drain Charge			4		nC
Drain-Sc	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Sour				4.4	Α
V _{SD}	Drain–Source Diode Forward Voltage			0.5 0.6	0.7	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 12.5A,$ $d_{iF}/d_t = 300 A/\mu s$ (Note 3)		17		nS
Q _{rr}	Diode Reverse Recovery Charge			11	1	nC

FDD6680AS

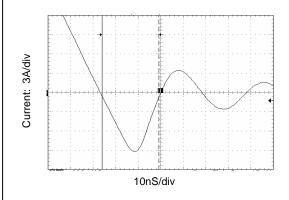
tes: $R_{\theta JA}$ is the sum of the junction-to-case an	id case-to-ambient tl	hermal resistance where the o	ase thermal reference i	s defined as the solder mounting surface	ce of
he drain pins. R_{0JC} is guaranteed by des	sign while R _{eCA} is de	termined by the user's board	design.	s defined as the solder mounting surface	
	a) R _{o 14} = 40°	C/W when mounted on a		b) $R_{\theta JA} = 96^{\circ}C/W$ when mounted	
-	1in ² pad of	C/W when mounted on a f 2 oz copper		on a minimum pad.	
ale 1 : 1 on letter size paper					
Pulse Test: Pulse Width < 300µs, Duty C					
Maximum current is calculated as:	$\sqrt{\frac{P_D}{R_{DS(ON)}}}$				
where P_{D} is maximum power dissipation		$T_{DS(on)}$ is at $T_{J(max)}$ and $V_{GS} = 10$	V. Package current lir	nitation is 21A	

FDD6680AS

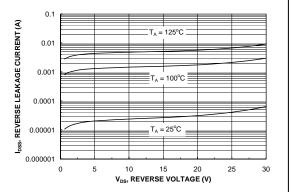

FDD6680AS

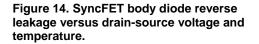
FDD6680AS Rev. 1.2

Typical Characteristics (continued)

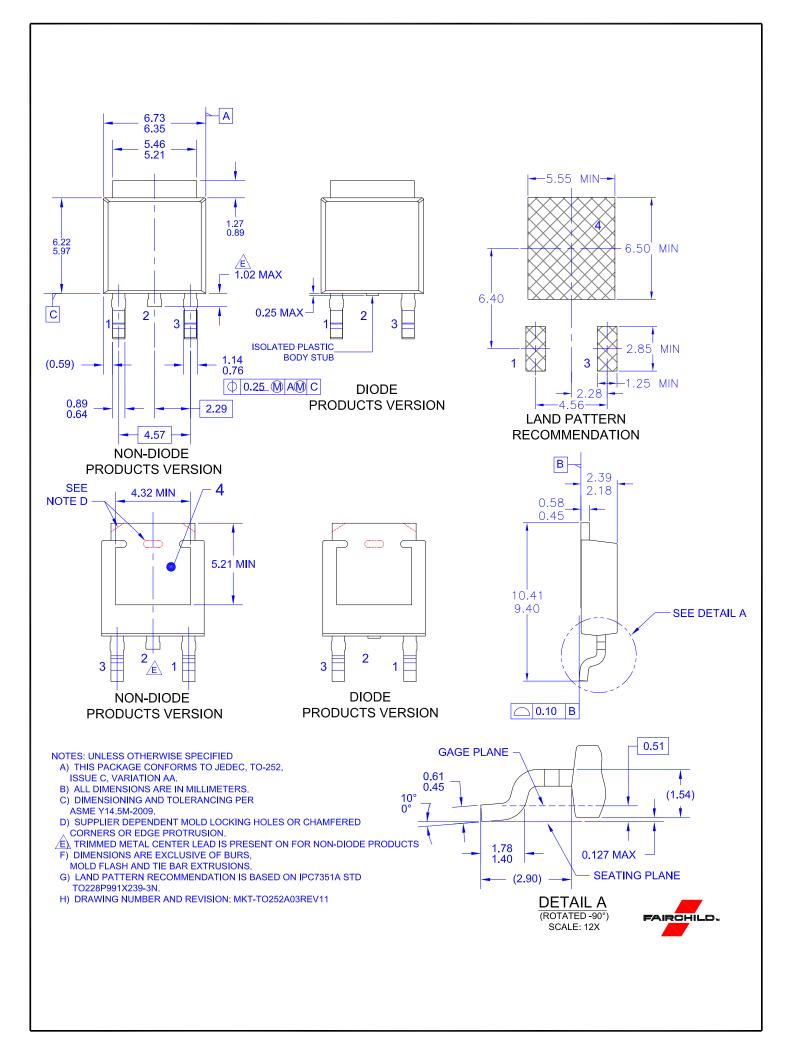

SyncFET Schottky Body Diode Characteristics

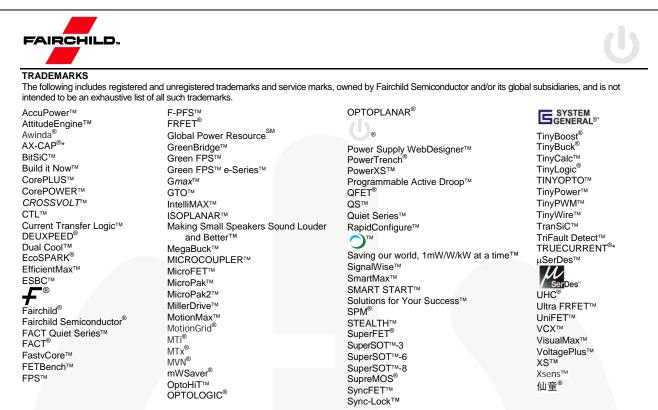
Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDD6680AS.


Figure 12. FDD6680AS SyncFET body diode reverse recovery characteris


For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDD6680).

Schottky barrie diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.




FDD6680AS Rev. 1.2

Typical Characteristics VDS > $\mathsf{BV}_{\mathsf{DSS}}$ V_{GS} t_P V_{DS} R_{GE} DUT ⊥**⁺** ⊏'∨_{DD} IAS ,V_{DD} vary t_P to obtain required peak I_{At} .<mark>01</mark>Ω 0 Figure 12. Unclamped Inductive Load Test Figure 13. Unclamped Inductive Circuit Waveforms Drain Current Same type as ÷ 50kO **+** V_{DD} $Q_{G(TOT)}$ 10V V_{ĢS} DUT V_{GS} I_{g(REF} Charge, (nC) Figure 14. Gate Charge Test Circuit Figure 15. Gate Charge Waveform ι_{ON} tOFF d(O) R∟ ₩ 1(OF V_{DS} > V_{DS} 90% 109 0% DUT V_{DD} 0V 90% V_{GS} 50% 50% $GS_{Pulse Width \leq 1 \mu s}$ 10% Duty Cycle ≤ 0.1 % 0V -Pulse Width Figure 16. Switching Time Test Figure 17. Switching Time Waveforms Circuit

FDD6680AS Rev. 1.2

FDD6680AS

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177