

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

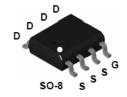
FDS8690

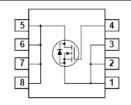
N-Channel PowerTrench® MOSFET

30V, **14A**, **7.6m** Ω

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$ and fast switching speed.


Applications


- Notebook CPU power supply
- Synchronous rectifier

Features

- Max $r_{DS(on)} = 7.6 m\Omega$, $V_{GS} = 10 V$, $I_D = 14 A$
- Max $r_{DS(on)} = 11.4m\Omega$, $V_{GS} = 4.5V$, $I_D = 11.5A$
- \blacksquare High performance trench technology for extremely low $r_{\text{DS(on)}}$ and fast switching
- Very low gate charge
- High power and current handling capability
- 100% R_G tested
- RoHS Compliant

Absolute Maximum Ratings T_A = 25°C unless otherwise Noted

Symbol	Parameter	Ratings	Units
V_{DS}	Drain to Source Voltage	30	V
V_{GS}	Gate to Source Voltage	±20	V
	Drain Current -Continuous (Note	e 1a) 14	Α
ID	-Pulsed	100	A
E _{AS}	Single Pulse Avalanche Energy (Not	te 3) 210	mJ
P_{D}	Power Dissipation for Single Operation (Note	e 1a) 2.5	
	(Note	e 1b) 1.2	W
	(Note	e 1c) 1.0	
T _J , T _{STG}	Operating and Storage Temperature	-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	°C/W
$R_{\theta,JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
FDS8690	FDS8690	13"	12mm	2500 units

Max Units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Parameter

Off Characteristics							
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V	
$\frac{\Delta B_{VDSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu A$, referenced to $25^{\circ}C$		34.3		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V, \ V_{GS} = 0V$			1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA	

Test Conditions

Min

On Characteristics (Note 2)

Symbol

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	1.6	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D =250μA, referenced to 25°C		- 4.5		mV/°C
r _{DS(ON)}	Drain to Source On Resistance	V _{GS} = 10V, I _D = 14A		6.3	7.6	
		$V_{GS} = 4.5V, I_D = 11.5A$		8.6	11.4	mΩ
	Drain to course of Hesistance	$V_{GS} = 10V, I_D = 14A,$ $T_J = 125^{\circ}C$		9.0	10.9	11152

Dynamic Characteristics

C _{iss}	Input Capacitance	V 45V V 0V	1260	1680	pF
C _{oss}	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$ $f = 1MHz$	535	715	pF
C _{rss}	Reverse Transfer Capacitance	- 1111112	80	120	pF
R_{G}	Gate Resistance	f = 1MHz	1.1		Ω


Switching Characteristics (Note 2)

t _{d(on)}	Turn-On Delay Time	V _{DS} = 15V, I _D = 1A.	8.0	16	ns
t _r	Rise Time	$V_{DS} = 15V, I_{D} = 1A,$ $V_{GS} = 10V, R_{GS} = 6\Omega$	1.8	10	ns
t _{d(off)}	Turn-Off Delay Time		26	42	ns
t _f	Fall Time		19	35	ns
Q _g	Total Gate Charge	$V_{DS} = 15V, V_{GS} = 10V$ $I_{D} = 14A$	18.8	27	nC
Q_g	Total Gate Charge	$V_{DS} = 15V, V_{GS} = 5V$	10	14	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 14A	3.5		nC
Q _{gd}	Gate to Drain Charge		2.9		nC

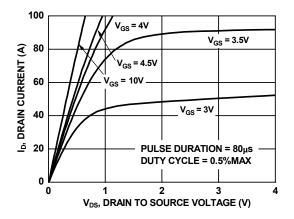
Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 2.1A$	0.7	1.2	V
t _{rr}	Reverse Recovery Time	$I_F = 14A$, di/dt = 100A/ μ s		45	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 14A$, di/dt = 100A/ μ s		33	nC

1. R_{RJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

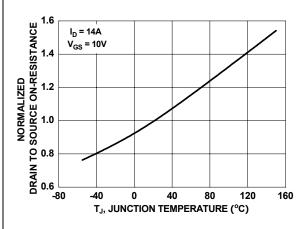
a) 50°C/W when mounted on a 1 in² pad of 2 oz copper

b)105°C/W when mounted on a .04 in² pad of 2 oz copper



2. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

3. Starting $T_J = 25^{\circ}C$, L = 3mH, $I_{AS} = 11.8A$, $V_{DD} = 24V$, $V_{GS} = 10V$.



NORMALIZED DRAIN TO SOURCE ON-RESISTANCE 3.2 PULSE DURATION = 80us DUTY CYCLE = 0.5%MAX 2.8 V_{GS} = 3.0V 2.4 2.0 V_{GS} = 4V 1.6 V_{GS} = 4.5V 1.2 V_{GS} = 10V 8.0 0 20 80 100 I_D, DRAIN CURRENT(A)

Figure 1. On Region Characteristics

Figure 2. Normal On-Resistance vs Drain Current and Gate Voltage

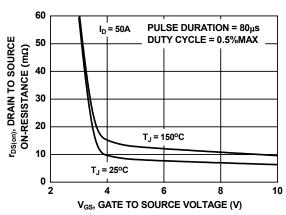
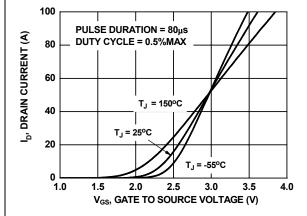



Figure 3. Normalized On Resistance vs Junction Temperature

Figure 4. On-Resistance vs Gate to Source Voltage

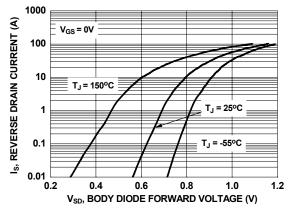
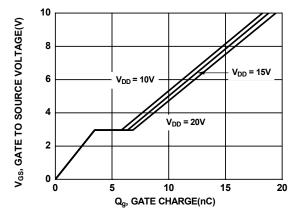



Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

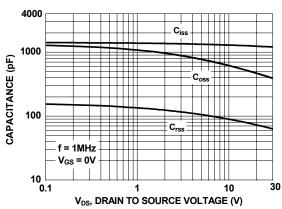
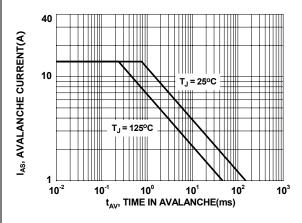



Figure 7. Gate Charge Characteristics

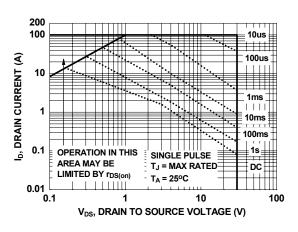
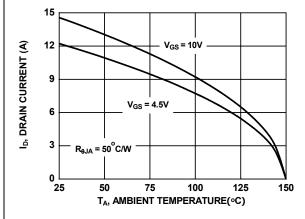



Figure 9. Unclamped Inductive Switching Capability

Figure 10. Forward Bias Safe Operating Area

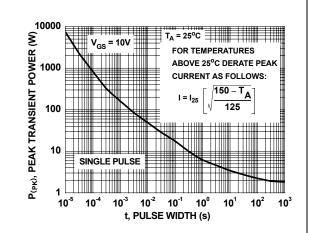


Figure 11. Maximum Continuous Drain Current vs
Ambient Temperature

Figure 12. Single Pulse Maximum Power Dissipation

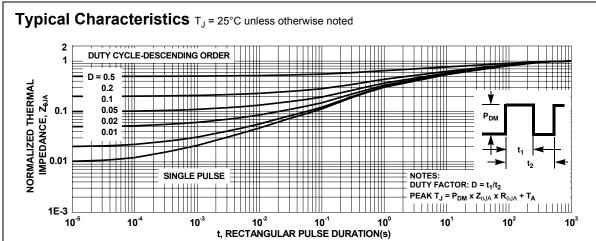


Figure 13. Transient Thermal Response Curve

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerSaver™ **FAST®** ISOPLANAR™ SuperSOT™-6 ActiveArray™ $\mathsf{PowerTrench}^{\circledR}$ SuperSOT™-8 $FASTr^{\intercal_{M}}$ LittleFET™ Bottomless™ FPS™ QFET[®] SyncFET™ MICROCOUPLER™ Build it Now™ $MicroFET^{TM}$ QSTM ТСМ™ FRFET™ TinyLogic[®] CoolFET™ MicroPak™ QT Optoelectronics™ GlobalOptoisolator™ $TINYOPTO^{TM}$ $CROSSVOLT^{TM}$ MICROWIRE™ Quiet Series™ GTO^TM RapidConfigure™ $TruTranslation ^{\intercal_{M}}$ $\mathsf{DOME}^\mathsf{TM}$ MSX™ HiSeC™ $\mathsf{UHC}^{\mathsf{TM}}$ $\mathsf{EcoSPARK}^{\mathsf{TM}}$ RapidConnect™ $MSXPro^{TM}$ I^2C^{TM} $\mathsf{UltraFET}^{\circledR}$ E²CMOSTM OCX^{TM} uSerDes™ i-Lo™ ScalarPump™ UniFET™ EnSigna™ $OCXPro^{TM}$ ImpliedDisconnect™ $\mathsf{OPTOLOGIC}^{\circledR}$ SILENT SWITCHER® VCX^{TM} FACT™ IntelliMAX™ OPTOPLANAR™ SMART START™ Wire™ FACT Quiet Series™ PACMAN™ SPM™ Across the board. Around the world.™ POP^{TM} Stealth™ The Power Franchise® Power247™ SuperFET™ Programmable Active Droop™ SuperSOT™-3 PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I18