

Is Now Part of

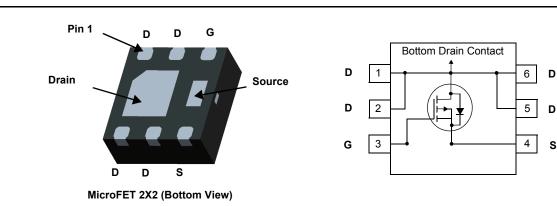
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

Single P-Channel PowerTrench[®] MOSFET -12 V, -10 A, 16 m Ω

Features


- Max r_{DS(on)} = 16 mΩ at V_{GS} = -4.5 V, I_D = -10 A
- Max r_{DS(on)} = 21 mΩ at V_{GS} = -2.5 V, I_D = -8.9 A
- Max $r_{DS(on)}$ = 82 m Ω at V_{GS} = -1.8 V, I_D = -4.5 A
- Low profile 0.8 mm maximum in the new package MicroFET 2X2 mm
- Free from halogenated compounds and antimony oxides
- RoHS Compliant

General Description

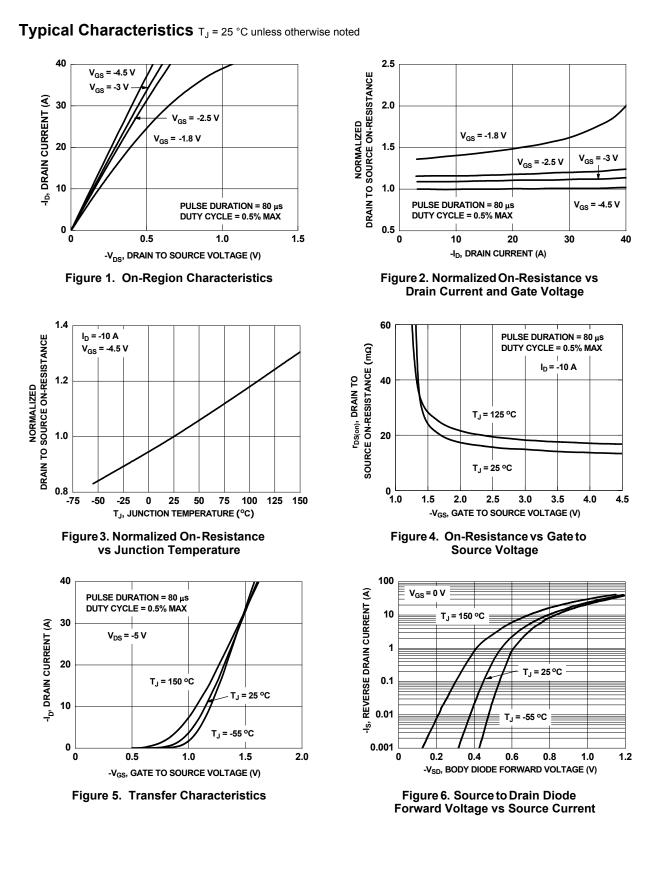
This device is designed specifically for battery charge or load switching in cellular handset and other ultraportable applications. It features a MOSFET with low on-state resistance.

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

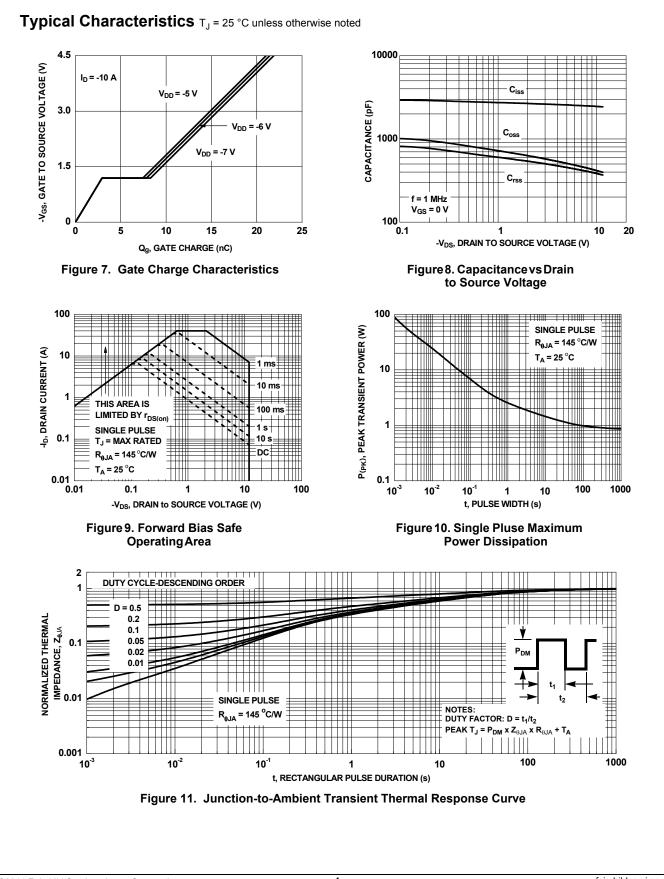
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		-12	V	
V _{GS}	Gate to Source Voltage		±8	V	
1	Drain Current -Continuous	(Note 1a)	-10	•	
D	-Pulsed		-40	Α	
D	Power Dissipation	(Note 1a)	2.4	w	
PD	Power Dissipation	(Note 1b)	0.9		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics


$R_{\theta JC}$	Thermal Resistance, Junction to Case		6.9	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note	e 1a)	52	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note	e 1b)	145	

Package Marking and Ordering Information

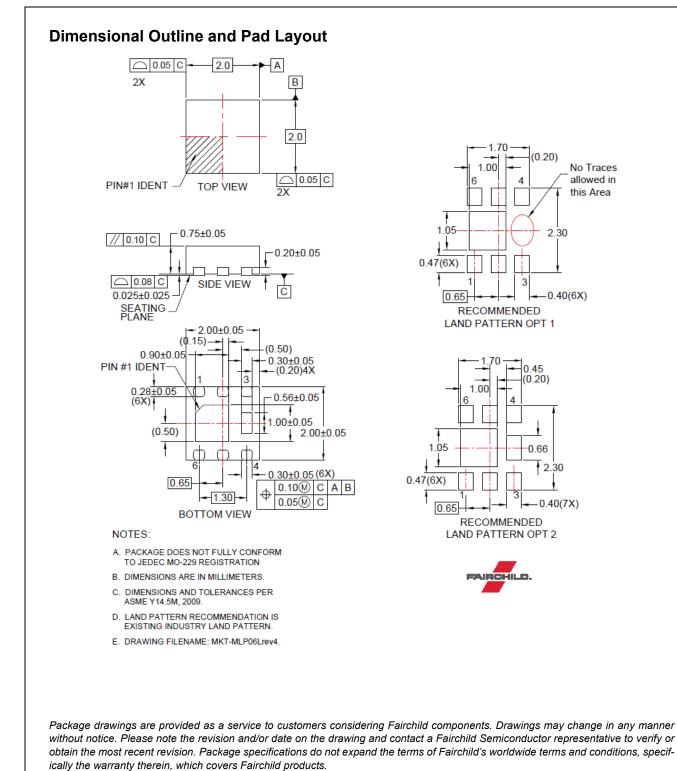

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
A95	FDMA905P	MicroFET 2X2	7 "	8 mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0V	-12			V
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature	$I_D = -250 \ \mu$ A, referenced to 25 °C		-4.3		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -9.6 V, V _{GS} = 0 V			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 V, V_{DS} = 0 V$			±100	nA
	cteristics			• •		
			-0.4	0.7	1.0	V
V _{GS(th)}	Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4	-0.7	-1.0	v
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Temperature Coefficient	I_D = -250 μ A, referenced to 25 °C		2.6		mV/°C
		V _{GS} = -4.5 V, I _D = -10 A		14	16	
-	Statia Drain ta Sauraa On Dagiatanga	V _{GS} = -2.5 V, I _D = -8.9 A		17	21	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = -1.8 V, I _D = -4.5 A		21	82	mΩ
		V _{GS} = -4.5 V, I _D = -10 A, T _J = 125 °C		16	21	1
9 _{FS}	Forward Transconductance	V _{DD} = -5 V, I _D = -10 A		50		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			2559	3405	pF
C _{oss}	Output Capacitance	V _{DS} = -6 V, V _{GS} = 0 V,		490	735	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		437	655	pF
						р.
Switching	Characteristics	1				
t _{d(on)}	Turn-On Delay Time	_		11	20	ns
t _r	Rise Time	V _{DD} = -6 V, I _D = -10 A,		11	20	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		120	192	ns
t _f	Fall Time			59	94	ns
Qg	Total Gate Charge	– V _{DD} = -6 V, I _D = -10 A,		21	29	nC
Q _{gs}	Gate to Source Charge	$V_{GS} = -4.5 V$		3.5		nC
Q _{gd}	Gate to Drain "Miller" Charge			4.2		nC
Drain-Sou	urce Diode Characteristics					
. ,		$V_{GS} = 0 V, I_S = -2 A$ (Note 2)		-0.6	-1.2	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -10 A$ (Note 2)		-0.8	-1.2	V
t _{rr}	Reverse Recovery Time			21	34	ns
Q _{rr}	Reverse Recovery Charge	–I _F = -10 A, di/dt = 100 A/μs		6.1	12	nC
lotes: . R _{θJA} is determ the user's boz	nined with the device mounted on a 1 in ² pad 2 oz copper p rrd design. a. 52 °C/W when mo a 1 in ² pad of 2 oz	unted on b	. 145 °C/W v	by design whil	ion a	etermined by
2. Pulse Test: Pi	ulse Width < 300 μ s, Duty cycle < 2.0 %.					
•						

FDMA905P Single P-Channel PowerTrench[®] MOSFET

©2011 Fairchild Semiconductor Corporation FDMA905P Rev.C2

FDMA905P Single P-Channel PowerTrench[®] MOSFET


No Traces

allowed in

this Area

2.30

0.40(6X)

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_MLDEB-C06

