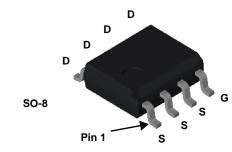
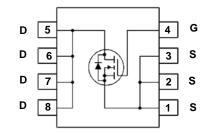

Is Now Part of




ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

MOSFET Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units			
V _{DS}	Drain to Source Voltage		60	V		
V _{GS}	Gate to Source Voltage		±20	V		
	Drain Current -Continuous		6.1	•		
D	-Pulsed		30	A		
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	73	mJ		
D	Power Dissipation $T_A = 25^{\circ}C$	(Note 1a)	5	w		
PD	Power Dissipation $T_A = 25^{\circ}C$	(Note 1b)	2.5	vv		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C		

Thermal Characteristics

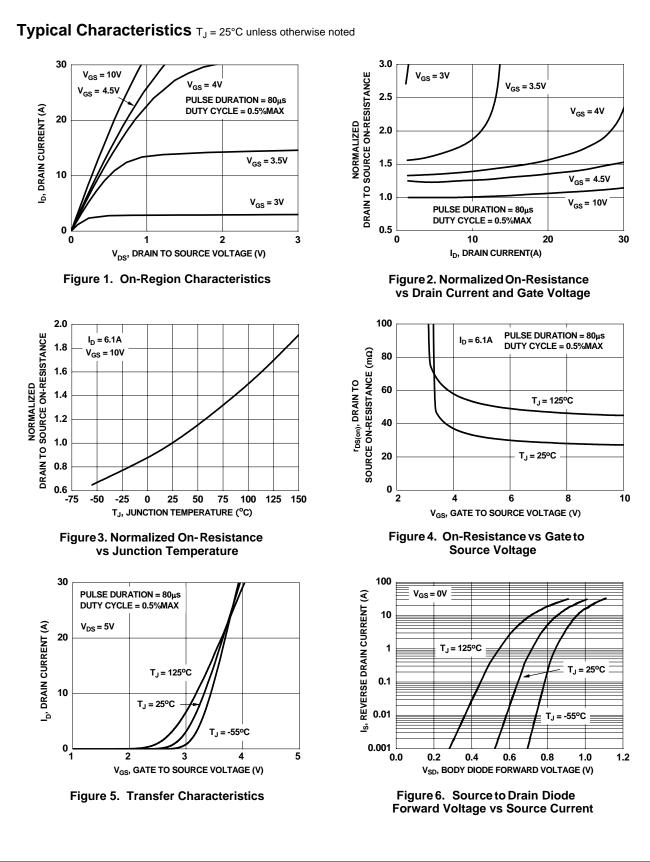
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	50	C/vv

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS5351	FDS5351	SO-8	13"	12mm	2500units

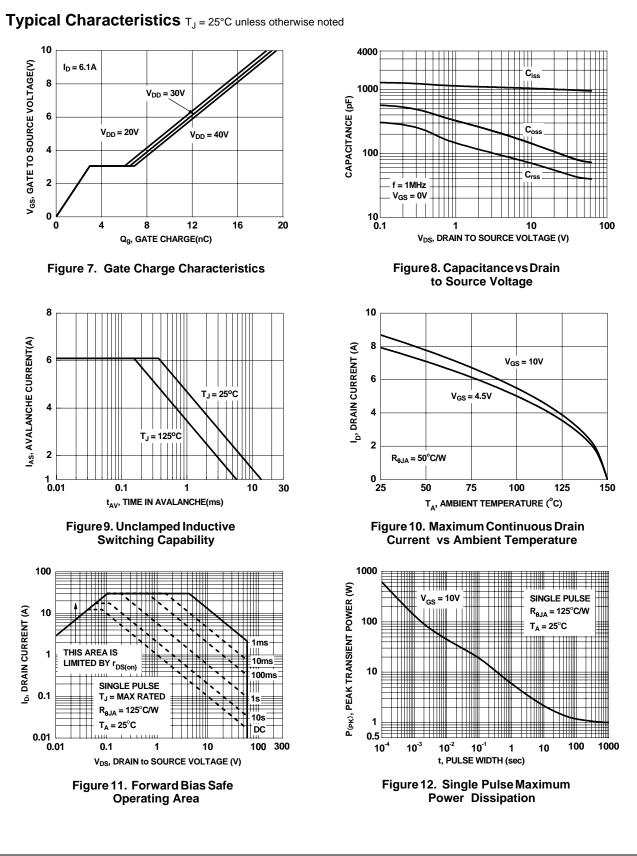
FDS5351 N-Channel PowerTrench[®] MOSFET

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics				1	
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	60			V
ΔBV_{DSS}	Breakdown Voltage Temperature	$I_D = 250 \mu A$, referenced to 25°C		55		mV/°C
ΔT _J	Coefficient Zero Gate Voltage Drain Current	$V_{DS} = 48V, V_{GS} = 0V$			1	μA
I _{DSS}	Gate to Source Leakage Current	$V_{DS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{GSS}		VGS - 1200, VDS - 00			100	10.4
On Chara	acteristics					1
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, \ I_D = 250 \mu A$	1.0	2.0	3.0	V
$\Delta V_{GS(th)}$ ΔT_J	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250\mu A$, referenced to $25^{\circ}C$		-6.2		mV/°C
		$V_{GS} = 10V, I_D = 6.1A$		26.5	35.0	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5 V, I_D = 5.5 A$		32.4	42.0	mΩ
		$V_{GS} = 10V, I_D = 6.1A, T_J = 125^{\circ}C$		44.5	58.8	
9 _{FS}	Forward Transconductance	$V_{DD} = 5V, I_D = 6.1A$		24		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			985	1310	pF
C _{oss}	Output Capacitance	$-V_{DS} = 30V, V_{GS} = 0V,$		90	120	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		50	75	pF
R _g	Gate Resistance	f = 1MHz		1.7	10	Ω
*						
	g Characteristics			8	16	20
t _{d(on)}	Turn-On Delay Time Rise Time	V _{DD} = 30V, I _D = 6.1A,		3	10	ns ns
t _r	Turn-Off Delay Time	$-V_{GS} = 10V, R_{GEN} = 6\Omega$		21	34	ns
t _{d(off)}	Fall Time	-		2	10	ns
t _f	Total Gate Charge	V _{GS} = 0V to 10V		19	27	nC
Q _g	Total Gate Charge	$V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 30V,$		9	13	nC
Q _g	Gate to Source Charge	$V_{\text{GS}} = 0V \text{ to } 4.5V$ $V_{\text{DD}} = 30V,$ $I_{\text{D}} = 6.1A$		3	15	nC
Q _{gs}	Gate to Drain "Miller" Charge	-		3.5		nC
Q _{gd}				5.5		no
Drain-So	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 6.1A$ (Note 2) $V_{GS} = 0V, I_S = 2.1A$ (Note 2)		0.82	1.3 1.2	V
	Reverse Recovery Time			0.76 24	38	ns
ter		— I _F = 6.1A, di/dt = 100A/μs		15	27	nC
t _{rr} Q _{rr}	Reverse Recovery Charge					


2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. UIL condition: Starting T_J = 25°C, L = 3mH, I_{AS} = 7A, V_{DD} = 60V, V_{GS} = 10V.

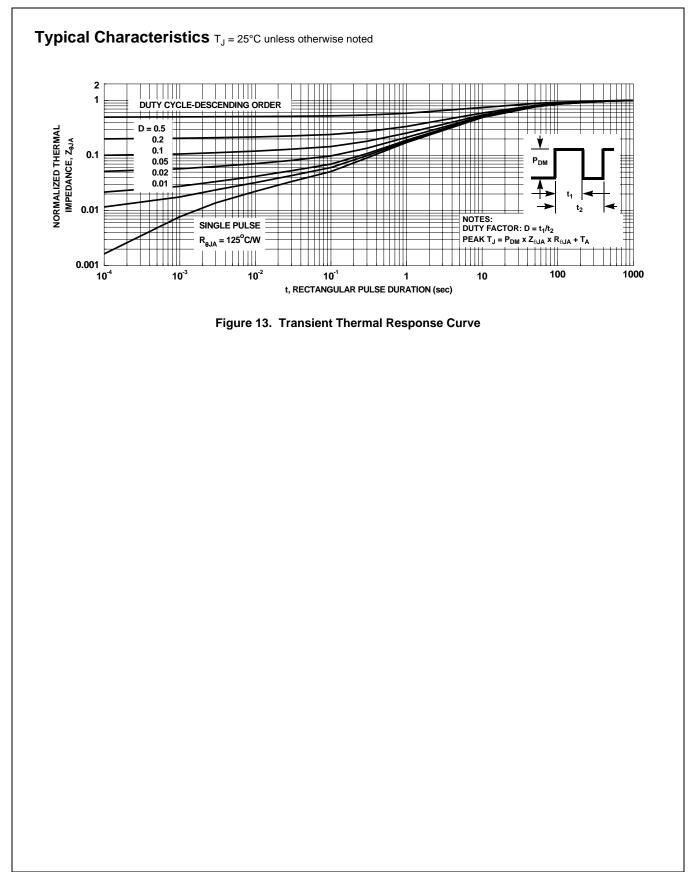
80000


©2008 Fairchild Semiconductor Corporation FDS5351 Rev.C

www.fairchildsemi.com

©2008 Fairchild Semiconductor Corporation FDS5351 Rev.C

www.fairchildsemi.com



FDS5351 N-Channel PowerTrench[®] MOSFET

©2008 Fairchild Semiconductor Corporation FDS5351 Rev.C

4

www.fairchildsemi.com

FDS5351 N-Channel PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

	Build it Now [™] CorePLUS [™] CorePOWER [™] CROSSVOLT [™] CTL [™] Current Transfer Logic [™] coSPARK [®] :fficentMax [™] :ZSWITCH [™] *	F-PFS [™] FRFET [®] Global Power Resource SM Green FPS [™] e-Series [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] MGROCOUPLER [™] MicroFET [™] MicroFET [™] MillerDrive [™] MotionMax [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®]	Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] Saving our world 1mW at a time [™] SmartMax [™] SMART START [™] SMART START [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SuperMOS [™]	the franchise TinyBoost [™] TinyBuck [™] TinyLogic [®] TINYOPTO [™] TinyPower [™] TinyPWM [™] TinyPWM [™] TinyWire [™] µSerDes [™] UHC [®] Ultra FRFET [™] UniFET [™] VCX [™] VisualMax [™]
F	AST [®] ēastvCore™ flashWriter [®] *	OPTOPLANAR [®]	SuperMOS™ System [®]	VisualMax™

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		