

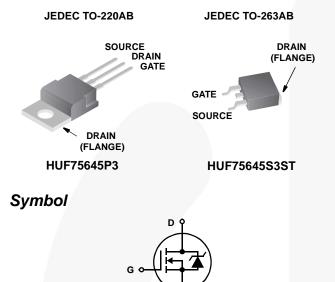
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

HUF75645P3, HUF75645S3S



Data Sheet

October 2013

N-Channel UltraFET Power MOSFET 100 V, 75 A, 14 mΩ

Packaging

Features

- Ultra Low On-Resistance
 - $r_{DS(ON)} = 0.014\Omega, V_{GS} = 10V$
- Simulation Models
 - Temperature Compensated PSPICE® and SABER™ Electrical Models
 - Spice and Saber Thermal Impedance Models
 - www.fairchildsemi.com
- Peak Current vs Pulse Width Curve
- UIS Rating Curve

Ordering Information

PART NUMBER	PACKAGE	BRAND
HUF75645P3	TO-220AB	75645P
HUF75645S3ST	TO-263AB	75645S

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

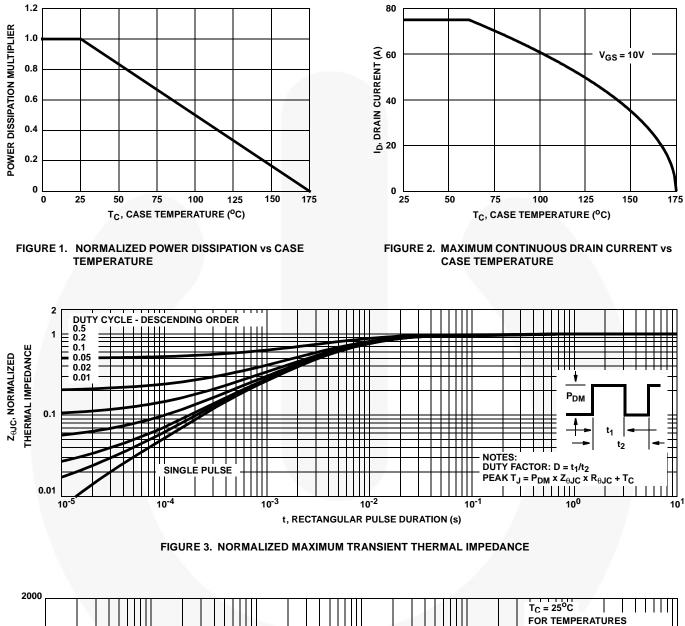
	HUF75645P3, HUF75645S3ST	UNITS
Drain to Source Voltage (Note 1) V _{DSS}	100	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) V_{DGR}	100	V
Gate to Source Voltage	±20	V
Drain Current		
Continuous (T _C = 25° C, V _{GS} = 10V) (Figure 2) I _D	75	А
Continuous (T _C = 100° C, V _{GS} = 10 V) (Figure 2)	65	A
Pulsed Drain Current	Figure 4	
Pulsed Avalanche RatingUIS	Figures 6, 14, 15	
Power Dissipation	310	W
Derate Above 25°C	2.07	W/ ^o C
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief TB334Tpkg	260	°C
NOTES:		

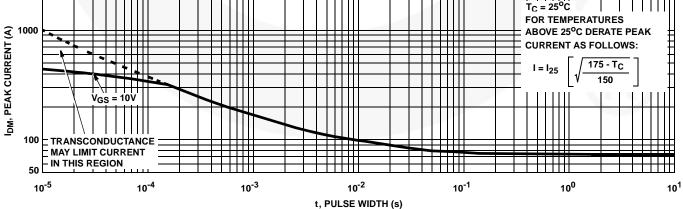
1. $T_{J} = 25^{\circ}C$ to $150^{\circ}C$.

CAUTION: Stresses above those listed in "Absol24ute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html For severe environments, see our Automotive HUFA series.

All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.


PARAMETER	SYMBOL	TEST	CONDITIONS	MIN	ТҮР	MAX	UNITS
OFF STATE SPECIFICATIONS	I			L.		1	1
Drain to Source Breakdown Voltage	BV _{DSS}	$I_{\rm D} = 250 \mu {\rm A}, V_{\rm GS} = 0 V_{\rm CS}$	/ (Figure 11)	100	-	-	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 95V, V _{GS} = 0V		-	-	1	μΑ
		$V_{DS} = 90V, V_{GS} = 0V$	/, T _C = 150 ^o C	-	-	250	μΑ
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$		-	-	±100	nA
ON STATE SPECIFICATIONS	I			1		1	1
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250$	uA (Figure 10)	2	-	4	V
Drain to Source On Resistance	rDS(ON)	I _D = 75A, V _{GS} = 10V	(Figure 9)	-	0.0115	0.014	Ω
THERMAL SPECIFICATIONS							
Thermal Resistance Junction to Case	R _{θJC}	TO-220 and TO-263		-	-	0.48	°C/W
Thermal Resistance Junction to Ambient	R _{θJA}			-	-	62	°C/W
SWITCHING SPECIFICATIONS (V _{GS} =	= 10V)						1
Turn-On Time	ton	$V_{DD} = 50V, I_D = 75A$ $V_{GS} = 10V,$ $R_{GS} = 2.5\Omega$ (Figures 18, 19)		-	-	197	ns
Turn-On Delay Time	^t d(ON)			-	14	-	ns
Rise Time	t _r			-	117	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	41	-	ns
Fall Time	t _f			-	97	-	ns
Turn-Off Time	tOFF			-	-	207	ns
GATE CHARGE SPECIFICATIONS	I						
Total Gate Charge	Q _{g(TOT)}	$V_{GS} = 0V$ to 20V	V _{DD} = 50V,	-	198	238	nC
Gate Charge at 10V	Q _{g(10)}	$V_{GS} = 0V \text{ to } 10V$	I _D = 75A, I _{g(REF)} = 1.0mA (Figures 13, 16, 17)	-	106	127	nC
Threshold Gate Charge	Q _{g(TH)}	$V_{GS} = 0V$ to 2V		-	6.8	8.2	nC
Gate to Source Gate Charge	Q _{gs}			-	14	-	nC
Gate to Drain "Miller" Charge	Q _{gd}	_		-	41	-	nC
CAPACITANCE SPECIFICATIONS		1				1	1
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V,		-	3790	-	pF
Output Capacitance	C _{OSS}	f = 1MHz (Figure 12)		-	810	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	230		pF


Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 75A	-	-	1.25	V
		I _{SD} = 35A	-	-	1.00	V
Reverse Recovery Time	t _{rr}	I _{SD} = 75A, dI _{SD} /dt = 100A/μs	-	-	145	ns
Reverse Recovered Charge	Q _{RR}	I _{SD} = 75A, dI _{SD} /dt = 100A/μs	-	-	360	nC

Typical Performance Curves

FIGURE 4. PEAK CURRENT CAPABILITY

Typical Performance Curves (Continued)

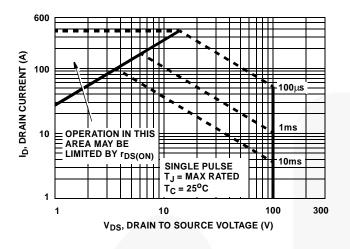


FIGURE 5. FORWARD BIAS SAFE OPERATING AREA

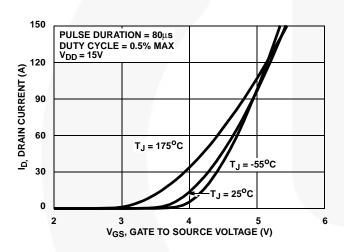
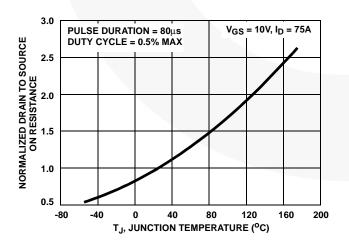
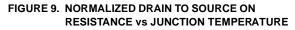
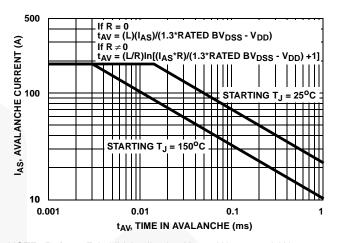





FIGURE 7. TRANSFER CHARACTERISTICS

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING

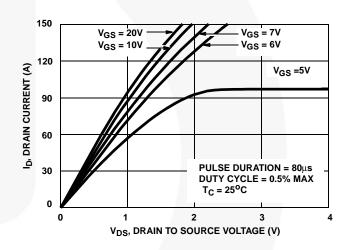
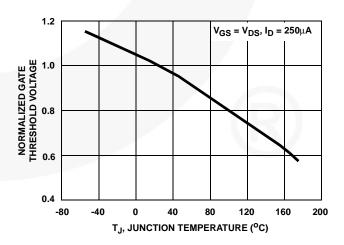
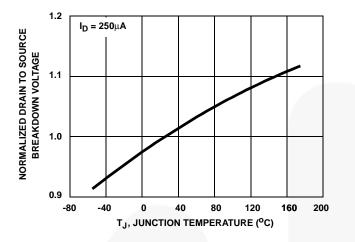
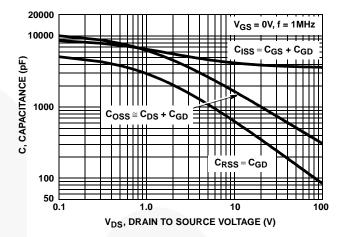
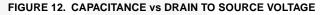
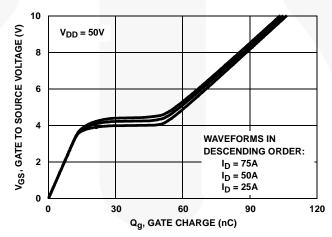




FIGURE 8. SATURATION CHARACTERISTICS






Typical Performance Curves (Continued)

Test Circuits and Waveforms

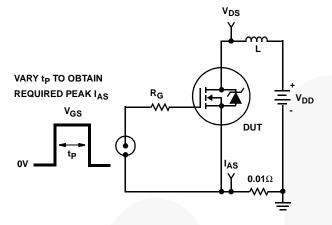


FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

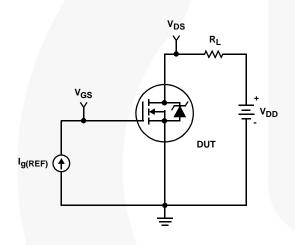


FIGURE 16. GATE CHARGE TEST CIRCUIT

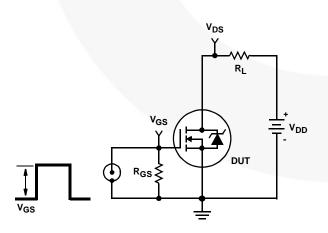


FIGURE 18. SWITCHING TIME TEST CIRCUIT

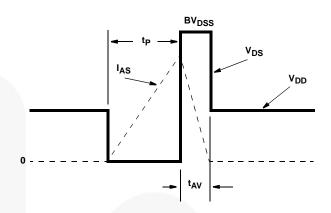
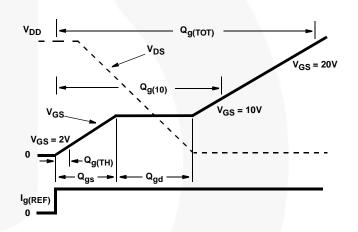



FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

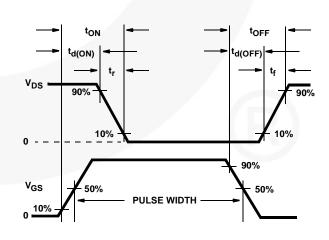
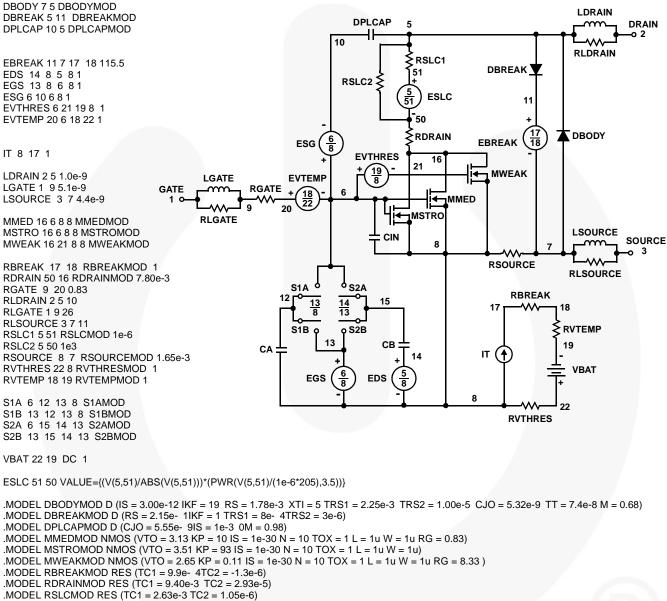



FIGURE 19. SWITCHING TIME WAVEFORM

PSPICE Electrical Model

.SUBCKT HUF75645 2 1 3 ; rev 21 May 1999

CA 12 8 5.31e-9 CB 15 14 5.31e-9 CIN 6 8 3.56e-9


```
MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
```

```
.MODEL RVTHRESMOD RES (TC1 = -2.57e-3 TC2 = -7.05e-6)
```

```
.MODEL RVTEMPMOD RES (TC1 = -2.87e- 3TC2 = -2.21e-6)
```

```
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.2 VOFF = -2.4)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.4 VOFF = -6.2)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.8 VOFF = 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF = -1.8)
```

.ENDS

NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical Model

REV 21 May 1999 template ta75645 n2,n1,n3 electrical n2,n1,n3 var i iscl d..model dbodymod = (is = 3.00e-12, cjo = 5.32e-9, tt = 7.4e-8, xti = 5, m = 0.68) d..model dbreakmod = () d..model dplcapmod = (cjo = 5.55e-9, is = 1e-30, vj=1.0, m = 0.8) m..model mmedmod = (type=_n, vto = 3.13, kp = 10, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.51, kp = 93, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.65, kp = 0.11, is = 1e-30, tox = 1) LDRAIN sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -2.4) DPLCAP 5 DRAIN sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.4, voff = -6.2) o 2 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.8, voff = 0.5) 10 RLDRAIN sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.8) RSLC1 RDBREAK 51 c.ca n12 n8 = 5.31e-9 RSLC2 ≥ 72 c.cb n15 n14 = 5.31e-9 RDBODY ISCL c.cin n6 n8 = 3.56e-9 DBREAK 50 d.dbody n7 n71 = model=dbodymod 71 RDRAIN d.dbreak n72 n11 = model=dbreakmod 6 8 ESG 11 d.dplcap n10 n5 = model=dplcapmod EVTHRES 16 21 19 8 MWEAK i.it n8 n17 = 1 LGATE EVTEMP DBODY RGATE GATE 6 18 22 EBREAK I.Idrain n2 n5 = 1e-9 MMED I w 9 20 1.0ate n1 n9 = 5.1e-9I ← _ MSTR RLGATE l.lsource n3 n7 = 4.4e-9 LSOURCE CIN SOURCE 8 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u 3 m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u RSOURCE m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u RLSOURCE o S2A S1A res.rbreak n17 n18 = 1, tc1 = 9.9e-4, tc2 = -1.3e-6 RBREAK <u>13</u> 8 15 <u>14</u> 13 res.rdbody n71 n5 = 1.78e-3, tc1 = 2.25e-3, tc2 = 1.e-5 17 18 res.rdbreak n72 n5 = 2.15e-1, tc1 = 8e-4, tc2 = 3e-6 RVTEMP res.rdrain n50 n16 = 7.8e-3, tc1 = 9.4e-3, tc2 = 2.93e-5 o S2B S1B res.rgate n9 n20 = 0.83 CB 19 CA res.rldrain n2 n5 = 10 IT (♠ 14 res.rlgate n1 n9 = 26 VBAT <u>6</u> 8 res.rlsource n3 n7 = 11 5 EGS EDS res.rslc1 n5 n51 = 1e-6, tc1 = 2.63e-3, tc2 = 1.05e-6 8 res.rslc2 n5 n50 = 1e3 22 res.rsource n8 n7 = 1.65e-3, tc1 = 1e-3, tc2 = 1e-6 RVTHRES res.rvtemp n18 n19 = 1, tc1 = -2.87e-3, tc2 = -2.21e-6 res.rvthres n22 n8 = 1, tc1 = -2.57e-3, tc2 = -7.05e-6 spe.ebreak n11 n7 n17 n18 = 115.5 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/205))** 3.5))

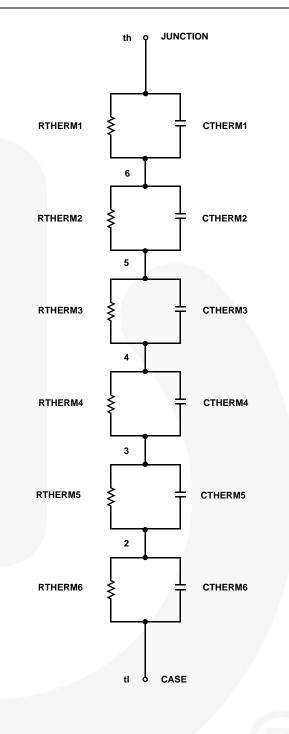
SPICE Thermal Model

REV 28 July 1999

HUF75645T

CTHERM1 th 6 8.80e-3 CTHERM2 6 5 2.50e-2 CTHERM3 5 4 2.70e-2 CTHERM4 4 3 3.70e-2 CTHERM5 3 2 4.40e-2 CTHERM6 2 tl 3.40e-1

RTHERM1 th 6 1.20e-2 RTHERM2 6 5 3.00e-2 RTHERM3 5 4 4.30e-2 RTHERM4 4 3 8.80e-2 RTHERM5 3 2 9.90e-2 RTHERM6 2 tl 1.10e-1


SABER Thermal Model

SABER thermal model HUF75645T

template thermal_model th tl thermal_c th, tl

ctherm.ctherm1 th 6 = 8.80e-3ctherm.ctherm2 6 5 = 2.50e-2ctherm.ctherm3 5 4 = 2.70e-2ctherm.ctherm4 4 3 = 3.70e-2ctherm.ctherm5 3 2 = 4.40e-2ctherm.ctherm6 2 tl = 3.40e-1

rtherm.rtherm1 th 6 = 1.20e-2 rtherm.rtherm2 6 5 = 3.00e-2rtherm.rtherm3 5 4 = 4.30e-2rtherm.rtherm4 4 3 = 8.80e-2rtherm.rtherm5 3 2 = 9.90e-2rtherm.rtherm6 2 tl = 1.10e-1

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AX-CAP [®] * BitSiC TM Build it Now TM CorePCUS TM CorePOWER TM CROSSVOLT TM CTL TM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®]	F-PFS™ FRFET [®] Global Power Resource SM Green FPS™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound L and Better™ MegaBuck™ MICROCOUPLER™ MicroPat™ MicroPak™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™	Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM [®] STEALTH™	Sync-Lock [™] EGENERAL TinyBoost [®] TinyBuck [®] TinyCalc [™] TinyCogic [®] TINYOPTO [™] TinyPWM [™] TinyPWM [™] TinyPWM [™] TinyPWI [™] TranSiC [™] TriFault Detect [™] TRUECURRENT [®] * µSerDes [™] UHC [®]
	MicroPak2™	SPM [®] STEALTHM	\mathcal{M}

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

VoltagePlus™

XS™

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.