

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

November 2014

NC7SZ11 TinyLogic[®] UHS Three-Input AND Gate

Features

- Ultra-High Speed: t_{PD} 2.7 ns (Typical) into 50 pF at 5V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Power Down High Impedance Inputs/Outputs
- Over-Voltage Tolerance inputs facilitate 5 V to 3 V Translation
- Proprietary Noise/EMI Reduction Circuitry
- Ultra-Small MicroPak™ Packages
- Space-Saving SC70 Package

Description

The NC7SZ11 is a single three-input AND Gate from Fairchild's Ultra-High Speed Series of TinyLogic $^{\! \odot}\!\!$. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive while maintaining low static power dissipation over a broad VCC operating range. The device is specified to operate over the 1.65 V to 5.5 V VCC operating range. The inputs and output are high impedance when VCC is 0 V. Inputs tolerate voltages up to 7 V, independent of VCC operating voltage.

Ordering Information

Part Number	Top Mark	Package	Packing Method
NC7SZ11P6X	Z11	6-Lead SC70, EIAJ SC-88a, 1.25 mm Wide	3000 Units on Tape & Reel
NC7SZ11L6X	E7	6-Lead MicroPak™, 1.00 mm Wide	5000 Units on Tape & Reel

Connection Diagrams

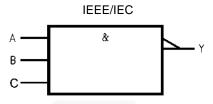
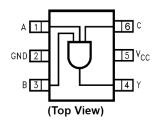
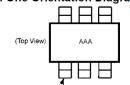




Figure 1. Logic Symbol

Pin Configurations

Pin One Orientation Diagram

Pin One

AAA represents Product Code Top Mark - see ordering code.

Note: Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram)

Figure 2. SC70 (Top View)

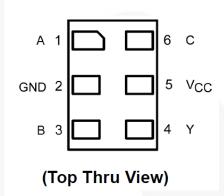


Figure 3. MicroPak (Top Through View)

Pin Definitions

Pin # SC70	Pin # MicroPak	Name	Description
1	1	A	Input
2	2	GND	Ground
3	3	В	Input
4	4	Υ	Output
5	5	Vcc	Supply Voltage
6	6	С	Input

Function Table

Y=ABC

Inputs			Output
Α	В	С	Y
X	Х	L	L
X	L	X	L
L	X	Х	L
Н	Н	Н	Н

H = HIGH Logic Level

L = LOW Logic Level

X = Either LOW or HIGH Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Par	ameter	Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	7.0	V
V _{IN}	DC Input Voltage		-0.5	7.0	V
V _{OUT}	DC Output Voltage		-0.5	7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < -0.5 V		-50	mA
1	DC Output Diada Current	V _{OUT} < -0.5 V		-50	A
I _{OK}	DC Output Diode Current	V _{OUT} > 6 V, V _{CC} =GND		+20	mA mA
l _{out}	DC Output Current			±50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current			±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under E	Bias		+150	°C
TL	Junction Lead Temperature (S	oldering, 10 Seconds)		+260	°C
Б	Davier Dissipation at 1959C	SC70-6		150	\/
P_D	Power Dissipation at +85°C	MicroPak-6		130	mW
FCD	Human Body Model, JESD22-		4000	\/	
ESD	Charged Device Model, JESD2	22-C101	N N	2000	V

Recommended Operating Conditions

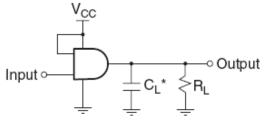
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V	Supply Voltage Operating		1.65	5.50	V
V_{CC}	Supply Voltage Data Retention		1.50	5.50	7 v
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	Vcc	V
T _A	Operating Temperature		-40	+85	°C
-		V _{CC} at 1.8 V, 2.5 V ± 0.2 V	0	20	
t _r , t _f	Input Rise and Fall Times	V_{CC} at 3.3 V \pm 0.3 V	0	10	ns/V
		V_{CC} at 5.0 V ± 0.5 V	0	5	
0	Thermal Resistance	SC70-6		425	°C/W
$\theta_{\sf JA}$	Thermal Resistance	MicroPak-6		500	C/VV

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


0	Obal Barraratan		0	Т	_A =25°	С	T _A =-40 t	o +85°C	11!1
Symbol Parameter	V _{CC}	Conditions		Тур.	Max.	Min.	Max.	Unit	
	HIGH Level Input	1.8 ± 0.15		0.75 V _{CC}			0.75 V _{CC}		
V_{IH}	Voltage	2.30 to 5.50		0.70 V _{CC}			0.70 V _{CC}		V
W	LOW Level Input	1.8 ± 0.15				0.25 V _{CC}		0.25 V _{CC}	V
V_{IL}	Voltage	2.30 to 5.50				0.30 V _{CC}		0.30 V _{CC}	V
		1.65		1.55	1.65		1.55		
		2.30)	2.20	2.30		2.20		
		3.00	V _{IN} =V _{IH} , I _{OH} =-100 μA	2.90	3.00		2.90		
		4.50		4.40	4.50		4.40		
V_{OH}	HIGH Level Output Voltage	1.65	I _{OH} =-4 mA	1.29	1.52	_	1.29		V
	Output Voltage	2.30	I _{OH} =-8 mA	1.90	2.15		1.90		
	/	3.00	I _{OH} =-16 mA	2.50	2.80	1, 1/1	2.40		
	<i>(</i> ************************************	3.00	I _{OH} =-24 mA	2.40	2.68		2.30		
		4.50	I _{OH} =-32 mA	3.90	4.20		3.80		
		1.65			0.00	0.10		0.10	
	/	2.30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.00	0.10		0.10	
		3.00	$V_{IN}=V_{IL}$, $I_{OL}=100 \mu A$		0.00	0.10		0.10	
		4.50			0.00	0.10		0.10	
V_{OL}	LOW Level Output Voltage	1.65	I _{OL} =4 mA		0.80	0.24	Y	0.24	V
	Cutput Voltage	2.30	I _{OL} =8 mA		0.10	0.30		0.30	
		3.00	I _{OL} =16 mA		0.15	0.40		0.40	
		3.00	I _{OL} =24 mA		0.22	0.55		0.55	
		4.50	I _{OL} =32 mA		0.22	0.55		0.55	
I _{IN}	Input Leakage Current	0 to 5.5	V _{IN} =5.5 V, GND			±1		±10	μΑ
l _{OFF}	Power Off Leakage Current	0	V _{IN} or V _{OUT} =5.5 V			1		10	μΑ
I _{CC}	Quiescent Supply Current	1.65 to 5.50	V _{IN} =5.5 V, GND			2	/	20	μΑ

AC Electrical Characteristics

Symbol Parameter	V	Conditions	T _A =25°C		T _A =-40 to +85°C		Unit	Eiguro		
Syllibol	Symbol Parameter	V _{CC} Conditions		Min.	Тур.	Max.	Min.	Max.	Onit	Figure
		1.80 ± 0.15		2.0	9.0	18.5	2.0	19.0		
		2.50 ± 0.20	$C_L=15 \text{ pF},$ $R_L=1M \Omega$ $C_L=50 \text{ pF},$	0.8	4.9	10.5	0.8	11.0		
	t _{PLH} , t _{PHL} Propagation Delay 5.	3.30 ± 0.30		0.5	3.5	8.5	0.5	9.0	ns	Figure 4 Figure 5
IPLH, IPHL		5.00 ± 0.50		0.5	2.5	6.5	0.5	7.0		
		3.30 ± 0.30		1.5	4.1	8.5	1.5	9.0		
		5.00 ± 0.50	R _L =500 Ω	0.8	2.9	7.5	0.8	8.0		
C _{IN}	Input Capacitance	0.00			4				pF	
Power Dissipation	3.30		_	20					Fig C	
CPD	Capacitance ⁽²⁾	5.00			25				pF	Figure 6

Note:

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output lading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD}=(C_{PD})(V_{CC})(f_{IN})+(I_{CC}static).

Notes:

- 3. C_L includes load and stray capacitance.
- 4. Input PRR=1.0 MHz; t_W500 ns.

Figure 4. AC Test Circuit

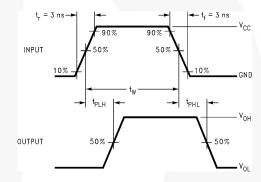
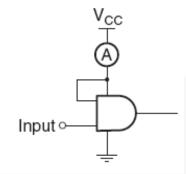
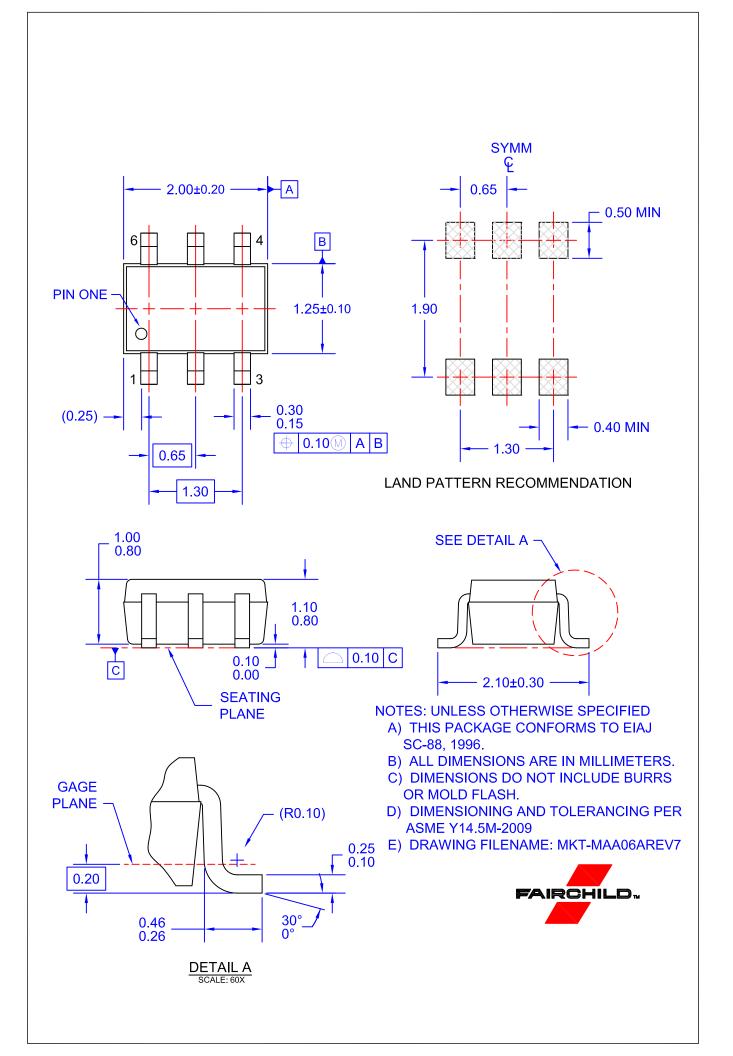
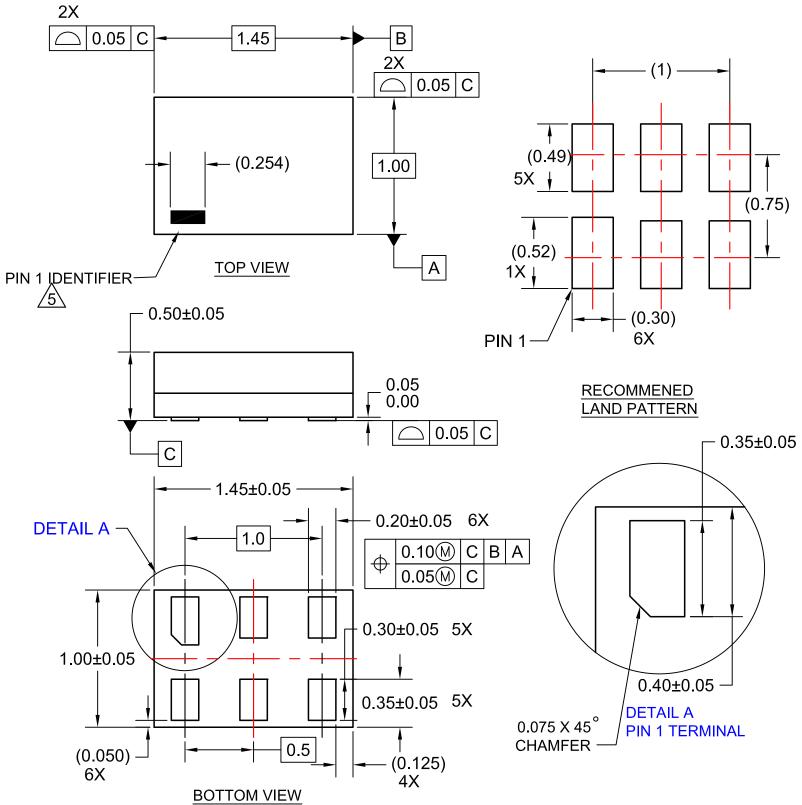



Figure 5. AC Waveforms

Note:


5. Input=AC Waveform; t_r=t_f=1.8 ns; PRR=10 MHz; Duty Cycle=50%.


Figure 6. I_{CCD} Test Circuit

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Package Designator	Tape Section	Tape Section Cavity Number		Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

NOTES:

- 1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009
- 4. LANDPATTERN RECOMMENDATION PER FSC

PIN ONE IDENTIFIER IS 2X LENGTH OF ANY

OTHER LINE IN THE MARK CODE LAYOUT.

6. FILENAME AND REVISION: MAC06AREV6

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177