

Is Now Part of

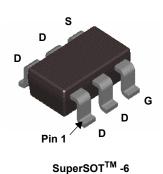
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

FDC610PZ P-Channel PowerTrench[®] MOSFET -30V, -4.9A, 42mΩ Features

- Max $r_{DS(on)}$ = 42m Ω at V_{GS} = -10V, I_D = -4.9A
- Max $r_{DS(on)}$ = 75m Ω at V_{GS} = -4.5V, I_D = -3.7A
- Low gate charge (17nC typical).
- High performance trench technology for extremely low r_{DS(on)}.
- SuperSOTTM –6 package: small footprint (72% smaller than standard SO–8) low profile (1mm thick).
- RoHS Compliant


General Description

This P-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance. These devices are well suited for battery power applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Application

DC - DC Conversion

D

MOSFET Maximum Ratings TA= 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DS}	Drain to Source Voltage		-30	V
V _{GS}	Gate to Source Voltage		±25	V
	Drain Current -Continuous	(Note 1a)	-4.9	^
D	-Pulsed		-20	A
P _D	Power Dissipation(Note 1a)Power Dissipation(Note 1b)		1.6	W
			0.8	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	78	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	156	C/VV

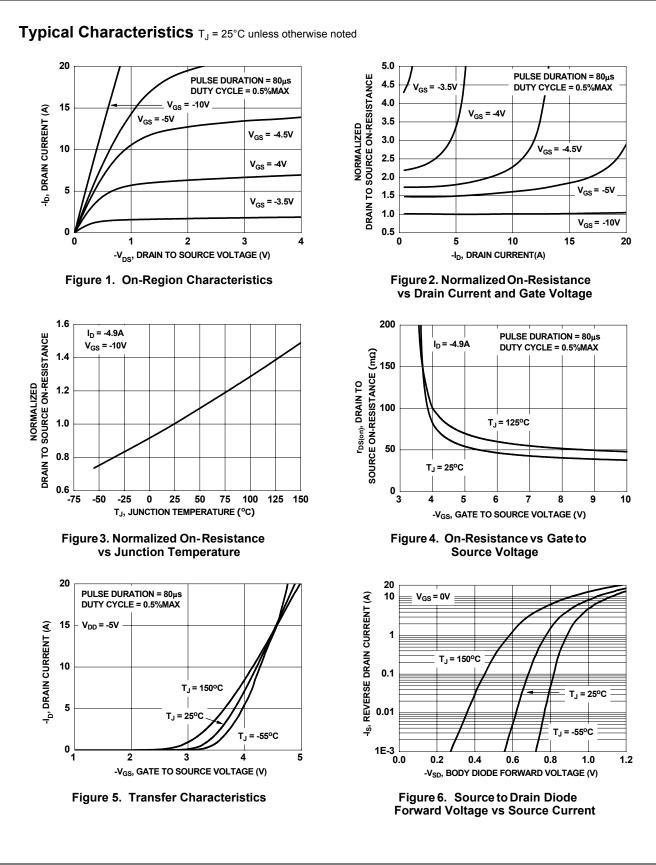
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.610Z	FDC610PZ	SSOT6	7"	8mm	3000units

August 2007

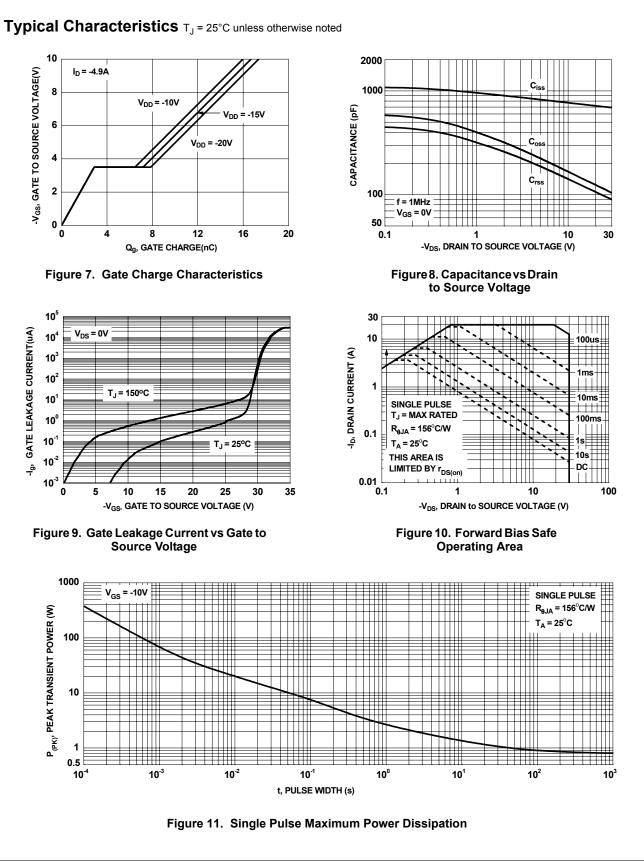
6 D

5 D

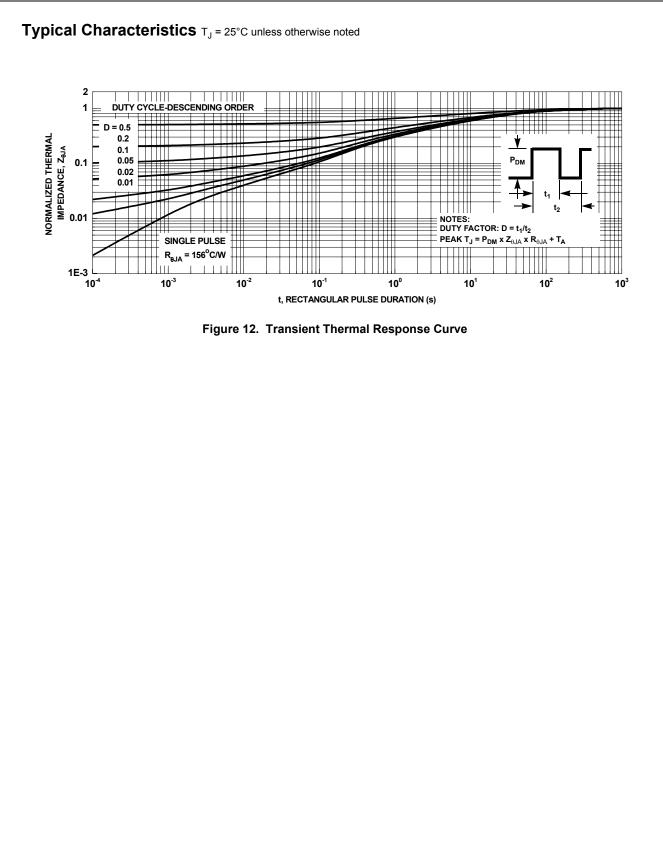

S

4

GaseGate to Source Leakage Current $V_{GS} = \pm 25V$, $V_{DS} = 0V$ ± 10 μA On Characteristics $V_{GS(th)}$ Gate to Source Threshold Voltage Temperature Coefficient $V_{GS} = V_{DS}$, $I_D = -250\mu A$, referenced to $25^{\circ}C$ 6 $mV/^{\rho_1}$ $DS(on)$ Gate to Source On Resistance $V_{GS} = -10V$, $I_D = -4.9A$ 3642 $mV/^{\rho_1}$ $DS(on)$ Static Drain to Source On Resistance $V_{GS} = -10V$, $I_D = -4.9A$ 3642 $mQ/^{\rho_1}$ $PS(on)$ Static Drain to Source On Resistance $V_{GS} = -10V$, $I_D = -4.9A$, $T_J = 125^{\circ}C$ 5060 V_{CS} Forward Transconductance $V_{DD} = -10V$, $I_D = -4.9A$ 15S bynamic Characteristics $V_{DS} = -15V$, $V_{GS} = 0V$, $f = 1MHz$ 7551005 pF C_{SS} Reverse Transfer Capacitance $f = 1MHz$ 13 Ω C_{SS} Gate Resistance $f = 1MHz$ 13 Ω M_{CS} Turn-On Delay Time r $Rise Time$ γ 14ns C_{MS} Total Gate Charge $V_{GS} = 0V$ to $-10V$ $V_{DD} = -15V$, $I_D = -4.9A$ 410ns C_{MS} Total Gate Charge $V_{GS} = 0V$ to $-10V$ $V_{DD} = -15V$, $I_D = -4.9A$ 2.9nC Q_{gd} Total Gate Charge $V_{GS} = 0V$ to $-10V$ $V_{DD} = -15V$, $I_D = -4.9A$ 2.9nC Q_{gd} Gate to Source Gate Charge $V_{GS} = 0V$ to $-10V$ $V_{DD} = -15V$, $I_D = -4.9A$ 2.9nC Q_{gd} Gate to Charge <td< th=""><th>Symbol</th><th>Parameter</th><th>Test Conditions</th><th>Min</th><th>Тур</th><th>Мах</th><th>Units</th></td<>	Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Off Chara	cteristics					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$I_{D} = -250 \mu A V_{CS} = 0 V$	-30			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
GaseGate to Source Leakage Current $V_{GS} = \pm 25V$, $V_{DS} = 0V$ ± 10 μA On Characteristics $V_{GS(th)}$ Gate to Source Threshold Voltage Temperature Coefficient $V_{GS} = V_{DS}$, $I_D = -250\mu A$, referenced to $25^{\circ}C$ 6 $mV/^{\rho_1}$ $DS(on)$ Gate to Source On Resistance $V_{GS} = -10V$, $I_D = -4.9A$ 3642 $mV/^{\rho_1}$ $DS(on)$ Static Drain to Source On Resistance $V_{GS} = -10V$, $I_D = -4.9A$ 3642 $mQ/^{\rho_1}$ $PS(on)$ Static Drain to Source On Resistance $V_{GS} = -10V$, $I_D = -4.9A$, $T_J = 125^{\circ}C$ 5060 V_{CS} Forward Transconductance $V_{DD} = -10V$, $I_D = -4.9A$ 15S bynamic Characteristics $V_{DS} = -15V$, $V_{GS} = 0V$, $f = 1MHz$ 7551005 pF C_{SS} Reverse Transfer Capacitance $f = 1MHz$ 13 Ω C_{SS} Gate Resistance $f = 1MHz$ 13 Ω M_{CS} Turn-On Delay Time r $Rise Time$ γ 14ns C_{MS} Total Gate Charge $V_{GS} = 0V$ to $-10V$ $V_{DD} = -15V$, $I_D = -4.9A$ 410ns C_{MS} Total Gate Charge $V_{GS} = 0V$ to $-10V$ $V_{DD} = -15V$, $I_D = -4.9A$ 2.9nC Q_{gd} Total Gate Charge $V_{GS} = 0V$ to $-10V$ $V_{DD} = -15V$, $I_D = -4.9A$ 2.9nC Q_{gd} Gate to Source Gate Charge $V_{GS} = 0V$ to $-10V$ $V_{DD} = -15V$, $I_D = -4.9A$ 2.9nC Q_{gd} Gate to Charge <td< td=""><td></td><td></td><td>$I_D = -250\mu A$, referenced to 25°C</td><td></td><td>-22</td><td></td><td>mV/°C</td></td<>			$I_D = -250\mu A$, referenced to 25°C		-22		mV/°C
On Characteristics $M_{GS(Ih)}$ Gate to Source Threshold Voltage Temperature Coefficient $V_{GS} = V_{DS}$, $I_D = -250\muA$, referenced to $25^{\circ}C$ 6mV/r $M_{GS(Ih)}$ Gate to Source Threshold Voltage Temperature Coefficient $I_D = -250\muA$, referenced to $25^{\circ}C$ 6mV/r $DS(on)$ Static Drain to Source On Resistance $V_{GS} = -10V$, $I_D = -4.9A$ 3642 $V_{GS} = -10V$, $I_D = -4.9A$ 3642 $V_{GS} = -10V$, $I_D = -4.9A$ 5875 $V_{GS} = -10V$, $I_D = -4.9A$, $T_J = 125^{\circ}C$ 5060 V_{FS} Forward Transconductance $V_{DD} = -10V$, $I_D = -4.9A$ 15S Oynamic Characteristics $V_{DD} = -15V$, $V_{GS} = 0V$, f = 1MHz7551005pF C_{SS} Output Capacitance f = 1MHz125190pF R_{SG} Gate Resistancef = 1MHz13 Ω M_{CS} $Turn-On Delay Time$ r r $R_{SS} = -10V$, $R_{GEN} = 6\Omega$ 3353ns M_{CS} $Turn-Off Delay Time$ r $R_{SS} = 0V$ to $-10V$ $V_{GS} = -10V, R_{GEN} = 6\Omega3353nsM_{CS}Total Gate ChargeV_{GS} = 0V to -10VV_{GS} = -15V, Q_D = -15V,Q_D = -15V,<$	I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24V, V_{GS} = 0V$			-1	μA
	I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±25V, V_{DS} = 0V			±10	μA
	On Chara	cteristics					
$ \begin{array}{c c c c c c c c c } \hline AT_J & Gate to Source Threshold Voltage Temperature Coefficient & I_D = -250 \mu A, referenced to 25°C & 6 & mV/^{\circ} \\ \hline AT_J & D_D & D_D$			$V_{00} = V_{00}$ $I_0 = -250 \mu \Delta$	_1	_22	_3	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-1	-2.2	-5	
		•	$I_D = -250 \mu A$, referenced to 25°C		6		mV/°C
V _{GS} = -10V, I _D = -4.9A, T _J = 125°C 50 60 HFS Forward Transconductance V _{DD} = -10V, I _D = -4.9A 15 S Dynamic Characteristics Input Capacitance V _{DS} = -15V, V _{GS} = 0V, f = 1MHz 145 195 pF Coss Output Capacitance V _{DS} = -15V, V _{GS} = 0V, f = 1MHz 145 195 pF Crass Reverse Transfer Capacitance f = 1MHz 13 Ω Ω Cost Gate Resistance f = 1MHz 13 Ω Ω Writching Characteristics f = 1MHz 13 Ω Ω d(on) Turn-On Delay Time r V _{DD} = -15V, I _D = -4.9A 4 10 ns r Rise Time Q _{GS} = 0V to -10V V _{GS} = 0V to -10V 33 53 ns Q _g Total Gate Charge V _{GS} = 0V to -4.5V V _{DD} = -4.9A 2.9 nC Q _g Total Gate Charge V _{GS} = 0V to -4.5V V _{DD} = -15V, I _D = -4.9A 2.9 nC Q _g Total Gate Charge V _{GS} = 0V to -4.5V V _{DD} =		· · ·	$V_{GS} = -10V, I_{D} = -4.9A$		36	42	
Input Capacitance $V_{DD} = -10V, I_D = -4.9A$ 15SOpnamic Characteristics $V_{DS} = -15V, V_{GS} = 0V, f = 1MHz$ 7551005pFCossOutput Capacitance $V_{DS} = -15V, V_{GS} = 0V, f = 1MHz$ 145195pFCrssReverse Transfer Capacitancef = 1MHz13 Ω RgGate Resistancef = 1MHz13 Ω Switching Characteristics $V_{DD} = -15V, I_D = -4.9A$ γ 144nsd(on)Turn-On Delay Time $V_{DD} = -15V, I_D = -4.9A$ 4 10nsfFall Time $V_{GS} = 0V to -10V$ $V_{GS} = 0V to -10V$ $V_{DD} = -15V, I_D = -4.9A$ 4 10ns Q_g Total Gate Charge $V_{GS} = 0V to -10V$ $V_{DD} = -15V, I_D = -4.9A$ 4 10ns Q_g Total Gate Charge $V_{GS} = 0V to -10V$ $V_{DD} = -15V, I_D = -4.9A$ 177 24nC Q_g Total Gate Charge $V_{GS} = 0V to -4.5V$ $V_{DD} = -15V, I_D = -4.9A$ 2.9 nC Q_{gd} Gate to Drain "Miller" Charge $I_D = -4.9A$ 2.9 nC D_{gd} Gate to Drain "Miller" Charge $I_D = -4.9A$ 2.9 nC D_{gd} Gate to Drain "Miller" Charge $I_D = -4.9A$ <td>r_{DS(on)}</td> <td>Static Drain to Source On Resistance</td> <td>$V_{GS} = -4.5V, I_D = -3.7A$</td> <td></td> <td>58</td> <td>75</td> <td>mΩ</td>	r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = -4.5V, I_D = -3.7A$		58	75	mΩ
Dynamic CharacteristicsCissInput Capacitance $V_{DS} = -15V, V_{GS} = 0V,$ 7551005pFCossOutput Capacitance $f = 1MHz$ 145195pFCrssReverse Transfer Capacitance $f = 1MHz$ 13 Ω CrssReverse Transfer Capacitance $f = 1MHz$ 13 Ω CrssReverse Transfer Capacitance $f = 1MHz$ 13 Ω CrssReverse Transfer Capacitance $f = 1MHz$ 13 Ω RgGate Resistance $f = 1MHz$ 13 Ω Switching Characteristics $V_{DD} = -15V, I_D = -4.9A$ 4 10ns d_{doff} Turn-On Delay Time $V_{GS} = -10V, R_{GEN} = 6\Omega$ 33 53ns f_{af} Fall Time $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -15V, I_D = -4.9A$ 4 10ns Ω_{g} Total Gate Charge $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -15V, I_D = -4.9A$ 2.9 nc Ω_{gs} Gate to Source Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V, I_D = -4.9A$ 2.9 nc Ω_{gs} Gate to Drain "Miller" Charge $I_D = -4.9A$ 2.9 nc Ω_{gd} Gate to Drain "Miller" Charge $I_D = -4.9A$ 2.9 ncDrain-Source Diode Characteristics			$V_{GS} = -10V, I_D = -4.9A, T_J = 125^{\circ}C$		50	60	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 _{FS}	Forward Transconductance			15		S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic	Charactoristics					
CossOutput Capacitance $V_{DS} = -15V$, $V_{GS} = 0V$, f = 1MHz145195pF C_{rss} Reverse Transfer Capacitancef = 1MHz125190pF R_g Gate Resistancef = 1MHz13 Ω Switching Characteristics $d(on)$ Turn-On Delay Time r $V_{DD} = -15V$, $I_D = -4.9A$ $V_{GS} = -10V$, $R_{GEN} = 6\Omega$ q q M_{Cff} Turn-Off Delay Time r $V_{DD} = -15V$, $I_D = -4.9A$ $V_{GS} = -10V$, $R_{GEN} = 6\Omega$ q q R_{g} Total Gate Charge Q_{g} $V_{GS} = 0V$ to $-10V$ $V_{GS} = 0V$ to $-4.5V$ $V_{DD} = -15V$, $I_D = -4.9A$ q q Q_{g} Total Gate Charge Q_{g} $V_{GS} = 0V$ to $-4.5V$ $V_{DD} = -15V$, $I_D = -4.9A$ q q Q_{g} Gate to Source Gate Charge Q_{gd} $Q_{gs} = 0V$ to $-4.5V$ $V_{DD} = -15V$, $I_D = -4.9A$ q q Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = 0V$ to $-4.5V$ $V_{DD} = -15V$, $I_D = -4.9A$ q q Q_{gd} Gate to Drain "Miller" Charge Q Q Q Q Q Q_{gd} Gate to Drain "Miller" Charge Q Q Q Q Q_{gd} Q	-			1	755	1005	۳E
Social CrassReverse Transfer CapacitanceT = TMHZ125190pF R_g Gate Resistancef = 1MHz13 Ω Switching Characteristics $d(on)$ Turn-On Delay Time $f = 1MHz$ 13 Ω r_{r} Rise Time $V_{DD} = -15V, I_D = -4.9A$ 4 10ns r_{d} Rise Time $V_{GS} = -10V, R_{GEN} = 6\Omega$ 33 53 ns r_{g} Total Gate Charge $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -15V, I_D = -4.9A$ 17 24 nC R_{g} Total Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V, I_D = -4.9A$ 17 24 nC R_{g} Total Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V, I_D = -4.9A$ 17 24 nC R_{g} Gate to Source Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V, I_D = -4.9A$ 2.9 nC R_{g} Gate to Drain "Miller" Charge $I_D = -4.9A$ 2.9 nC R_{g} Gate to Drain "Miller" Charge $I_D = -4.9A$ $I_D = -4.9A$ $I_D = -4.9A$ R_{g} Gate to Drain "Miller" Charge $I_D = -4.9A$ $I_D = -4.9A$ $I_D = -4.9A$ R_{g} Gate to Drain "Miller" Charge $I_D = -4.9A$ $I_D = -4.9A$ $I_D = -4.9A$ R_{g} Gate to Drain "Miller" Charge $I_D = -4.9A$ $I_D = -4.9A$ $I_D = -4.9A$ R_{g} $I_D = -4.9A$ $I_D = -4.9A$ $I_D = -4.9A$ $I_D = -4.9A$ R_{g} $I_D = -4.9A$ $I_D = -4.9A$ $I_D = -4.9A$			$V_{DS} = -15V, V_{GS} = 0V,$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			f = 1MHz		-		
gd(on)Turn-On Delay Time $V_{DD} = -15V, I_D = -4.9A$ 7 14nsrRise Time $V_{GS} = -10V, R_{GEN} = 6\Omega$ 33 53nsd(off)Turn-Off Delay Time $V_{GS} = -10V, R_{GEN} = 6\Omega$ 33 53 ns Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -15V, I_D = -4.9A$ 17 24 nc Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -15V, I_D = -4.9A$ 17 24 nC Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V, I_D = -4.9A$ 2.9 nC Q_{gd} Gate to Source Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -4.9A$ 2.9 nC D_{gd} Gate to Drain "Miller" Charge 4.3 nC Orain-Source Diode Characteristics		•	f - 1MU7		-	190	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· ·g						
Rise Time $V_{DD} = -15V$, $I_D = -4.9A$ 410ns $d_{(off)}$ Turn-Off Delay Time $V_{GS} = -10V$, $R_{GEN} = 6\Omega$ 3353ns f_f Fall Time2337ns Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -15V$,1724nC Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V$,913nC Q_{gs} Gate to Source Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -4.9A$ 2.9nC Q_{gd} Gate to Drain "Miller" Charge4.3nC0Orain-Source Diode Characteristics	Switching	g Characteristics					
rRise Time $V_{DD} = -15V$, $I_D = -4.9A$ 410nsd(off)Turn-Off Delay Time $V_{GS} = -10V$, $R_{GEN} = 6\Omega$ 3353ns R_g Fall Time2337ns Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -15V$,1724nC Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V$,913nC Q_{gs} Gate to Source Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -4.9A$ 2.9nC Q_{gd} Gate to Drain "Miller" Charge4.3nC4.3nCOrain-Source Diode Characteristics	t _{d(on)}	Turn-On Delay Time			7	14	ns
d(off)Turn-Off Delay Time3353ns f Fall Time2337ns Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -10V$ $V_{DD} = -15V$,1724nC Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V$,913nC Q_{gd} Gate to Source Gate Charge $I_D = -4.9A$ 2.9nC Q_{gd} Gate to Drain "Miller" Charge4.3nCOrain-Source Diode Characteristics	t _r	Rise Time			4	10	ns
Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -10V$ 1724nC Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V$,913nC Q_{gs} Gate to Source Gate Charge $I_D = -4.9A$ 2.9nC Q_{gd} Gate to Drain "Miller" Charge4.3nCOrain-Source Diode Characteristics	t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -10V, R_{GEN} = 602$		33	53	ns
Q_g Total Gate Charge $V_{GS} = 0V \text{ to } -4.5V$ $V_{DD} = -15V$,913nC Q_{gs} Gate to Source Gate Charge $I_D = -4.9A$ 2.9nC Q_{gd} Gate to Drain "Miller" Charge4.3nCOrain-Source Diode Characteristics	t _f	Fall Time			23	37	ns
Q _{gd} Gate to Drain "Miller" Charge 4.3 nC Orain-Source Diode Characteristics	Qg	Total Gate Charge			17	24	nC
Q _{gd} Gate to Drain "Miller" Charge 4.3 nC Orain-Source Diode Characteristics	Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } -4.5V V_{DD} = -15V,$		9	13	nC
Drain-Source Diode Characteristics	Q _{gs}	Gate to Source Gate Charge	I _D = -4.9A		2.9		nC
	Q _{gd}	Gate to Drain "Miller" Charge			4.3		nC
	Drain-Sou	urco Diodo Charactoristics					
2 Maximum Continuous Drain-Source Diode Forward Current			de Ferryard Ourreat		1	4.0	•
					0.0		
			$V_{GS} = 0V, I_{S} = -1.5A$ (Note 2)				-
			– I _F = –4.9A, di/dt = 100A/μs				
rr Reverse Recovery Time $I_{\rm E} = -4.9$ A, di/dt = 100A/us 19 35 ns		Reverse Recovery Charge			9	10	nc
	Q _{gs} Q _{gd}	Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain-Source Dic Source to Drain Diode Forward Voltage	bde Forward Current $V_{GS} = 0V, I_S = -1.3A$ (Note 2)		2.9 4.3 -0.8	-1.3 -1.2	
SD contract or brain product or ward voltage $v_{GS} = vv$, $v_{GS} = 1.3A$ (NULE 2) -0.0 -1.2 V	rr		I _E = -4.9A, di/dt = 100A/us				
rr Reverse Recovery Time $I_{\rm E} = -4.9$ A, di/dt = 100A/us 19 35 ns	Q _{rr}	Reverse Recovery Charge			9	18	nC
$\frac{19}{18} = -4.9A, di/dt = 100A/\mu s$. $R_{\theta JA}$ is determ	nined with the device mounted on a 1in ² pad 2 oz coppe	r pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{ m R,IC}$ is	guaranteed I	oy design wh	ile R _{0CA} is de	etermined
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	the user's boa	ird design.					
rrReverse Recovery TimeIF = -4.9A, di/dt = 100A/ μ s1935ns Q_{rr} Reverse Recovery Charge918nCotes:00000		a. 78°C/W w	hen mounted on a	b. 156°	C/W when m	ounted on a	
rr Reverse Recovery Time IF = -4.9A, di/dt = 100A/ μ s 19 35 ns Orr Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. 9 18 nC Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s IF = -4.9A, di		1 in ² pad o		minir	num pad of 2	oz copper.	
$\begin{array}{ c c c c c c c c }\hline rr & Reverse Recovery Time & I_F = -4.9A, di/dt = 100A/\mu s & 19 & 35 & ns \\ \hline Q_{rr} & Reverse Recovery Charge & I_F = -4.9A, di/dt = 100A/\mu s & 9 & 18 & nC \\\hline otes: & & & \\ R_{0JA} \text{ is determined with the device mounted on a 1in2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined the user's board design. \hline \end{array}$							
rr Reverse Recovery Time IF = -4.9A, di/dt = 100A/ μ s 19 35 ns Orr Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. 9 18 nC Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s IF = -4.9A, di							
rr Reverse Recovery Time IF = -4.9A, di/dt = 100A/ μ s 19 35 ns Orr Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. 9 18 nC Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s IF = -4.9A, di		.8					
rr Reverse Recovery Time IF = -4.9A, di/dt = 100A/ μ s 19 35 ns Orr Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. 9 18 nC Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s IF = -4.9A, di		G					
rr Reverse Recovery Time IF = -4.9A, di/dt = 100A/ μ s 19 35 ns Orr Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. 9 18 nC Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s IF = -4.9A, di		ŝ	88888				
rr Reverse Recovery Time IF = -4.9A, di/dt = 100A/ μ s 19 35 ns Orr Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. 9 18 nC Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s IF = -4.9A, di							
rr Reverse Recovery Time IF = -4.9A, di/dt = 100A/ μ s 19 35 ns Orr Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. 9 18 nC Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s If the user's board design. IF = -4.9A, di/dt = 100A/ μ s IF = -4.9A, di							
rr Reverse Recovery Time IF = -4.9A, di/dt = 100A/ μ s 19 35 ns Orr Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery Charge IF = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design 9 18 nC Reverse Recovery design. If P = -4.9A, di/dt = 100A/ μ s 9 18 nC otes: Reverse Recovery design. If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s If P = -4.9A, di/dt = 100A/ μ s Reverse Recovery design while Reverse Recoverse Recovery design while Reverse Recoverse Rec	5	00000					


FDC610PZ Rev. B

www.fairchildsemi.com


FDC610PZ Rev. B

www.fairchildsemi.com

www.fairchildsemi.com

FDC610PZ P-Channel PowerTrench[®] MOSFET

FDC610PZ P-Channel PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Green FPS™ Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK[®] Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST® FastvCore™ FPS™ FRFET® Global Power Resource[™]

Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]** PDP-SPM™ Power220®

Power247® **POWEREDGE[®]** Power-SPM™ PowerTrench[®] Programmable Active Droop™ QFET[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SuperSOT[™]-8 SyncFET™ The Power Franchise[®]

pthower

franchise TinyBoost™ TinyBuck™ TinyLogic® **TINYOPTO™** TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® UniFET™ **VCX™**

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 131