

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

February 2015

FSA2567 — Low-Power, Dual SIM Card Analog Switch

Features

- Low On Capacitance for Data Path: 10 pF Typical
- Low On Resistance for Data Path: 6 Ω Typical
- Low On Resistance for Supply Path: 0.4 Ω Typical
- Wide V_{CC} Operating Range: 1.65 V to 4.3 V
- Low Power Consumption: 1 µA Maximum
 - 15 μA Maximum I_{CCT} Over Expanded Voltage Range (V_{IN}=1.8 V, V_{CC}=4.3 V)
- Wide -3 db Bandwidth: > 160 MHz
- Packaged in:
 - Pb-free 16-Lead MLP & 16-Lead UMLP
- 3 kV ESD Rating, >12 kV Power/GND ESD Rating

Applications

- Cell phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSA2567 is a bi-directional, low-power, dual double-pole, double-throw (4PDT) analog switch targeted at dual SIM card multiplexing. It is optimized for switching the WLAN-SIM data and control signals and dedicates one channel as a supply-source switch.

The FSA2567 is compatible with the requirements of SIM cards and features a low on capacitance (C_{ON}) of 10 pF to ensure high-speed data transfer. The V_{SIM} switch path has a low R_{ON} characteristic to ensure minimal voltage drop in the dual SIM card supply paths.

The FSA2567 contains special circuitry that minimizes current consumption when the control voltage applied to the SEL pin is lower than the supply voltage (V_{CC}). This feature is especially valuable in ultra-portable applications, such as cell phones; allowing direct interface with the general-purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package		
FSA2567MPX	FSA2567	-40 to +85°C	16-Lead, Molded Leadless Package (MLP) Quad, JEDEC MO-220, 3 mm Square		
FSA2567UMX	GX	GX 16-Lead, Quad, Ultrathin Molded Leadless Pac (UMLP), 1.8 x 2.6 mm			

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

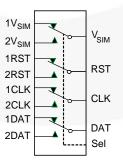


Figure 1. Analog Symbol

Pin Assignments

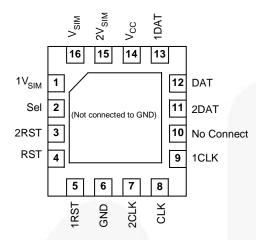


Figure 2. Pad Assignment MLP16 (Top Through View)

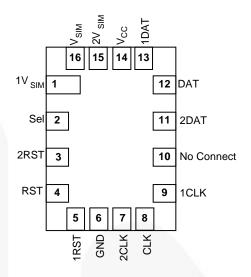


Figure 3. Pad Assignment UMLP16 (Top Through View)

Pin Definitions

Pin	Description
nDAT, nRST, nCLK	Multiplexed Data Source Inputs
nV _{SIM}	Multiplexed SIM Supply Inputs
V _{SIM} , DAT, RST, CLK	Common SIM Ports
Sel	Switch Select

Truth Table

Sel	Function
Logic LOW	1DAT = DAT, 1RST = RST, 1CLK = CLK, 1V _{SIM} = V _{SIM}
Logic HIGH	2DAT = DAT, 2RST = RST, 2CLK = CLK, 2V _{SIM} = V _{SIM}

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.5	+5.5	V
V _{CNTRL}	DC Input Voltage (Sel) ⁽¹⁾		-0.5	Vcc	V
V_{SW}	DC Switch I/O Voltage ⁽¹⁾		-0.5	V _{CC} + 0.3	V
I _{IK}	DC Input Diode Current		-50		mA
I _{SIM}	DC Output Current - V _{SIM}			350	mA
I _{OUT}	DC Output Current – DAT, CLK, RST			35	mA
T _{STG}	Storage Temperature		-65	+150	°C
7	Human Badu Madal JEDEC JESDOO A444	All Pins	1	3	
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND		12	kV
	Charged Device Model, JEDEC: JESD22-C101			2	

Note:

 The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	1.65	4.30	V
V _{CNTRL}	Control Input Voltage (Sel) ⁽²⁾		V _{cc}	V
V _{SW}	Switch I/O Voltage	-0.5	Vcc	V
I _{SIM}	DC Output Current - V _{SIM}		150	mA
l _{OUT}	DC Output Current – DAT, CLK, RST		25	mA
T _A	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are at 25°C, 3.3 V V_{CC} unless otherwise specified.

Symbol	D = 11 = 11 = 1	0 1111	V _{cc} (V)	T _A =- 40°C to +85°C			11	
	Parameter	Conditions		Min.	Тур.	Max.	Units	
V _{IK}	Clamp Diode Voltage	I _{IN} = -18 mA	2.7			-1.2	V	
			1.65 to 2.3	1.1				
V_{IH}	Input Voltage High		2.7 to 3.6	1.3			V	
			4.3	1.7				
			1.65 to 2.3			0.4		
V_{IL}	Input Voltage Low		2.7 to 3.6			0.5	V	
			4.3			0.7		
I _{IN}	Control Input Leakage	$V_{SW} = 0$ to V_{CC}	4.3	-1		1	μA	
I _{nc(off),} I _{no(off),}	Off State Leakage	nRST, nDAT, nCLK, $nV_{SIM} = 0.3 V$ or 3.6 V Figure 10	4.3	-60		60	nA	
D	R _{OND} Data Path Switch On Resistance ⁽³⁾	V _{SW} = 0, 1.8 V, I _{ON} = -20 mA Figure 9	1.8		7.0	12.0		
KOND		V _{SW} = 0, 2.3 V, I _{ON} = -20 mA Figure 9	2.7		6.0	10.0	Ω	
D	V _{SIM} Switch	V _{SW} = 0, 1.8V, I _{ON} = -100mA Figure 9	1.8		0.5	0.7		
R_{ONV}	On Resistance ⁽³⁾	V _{SW} = 0, 2.3 V, I _{ON} = -100 mA Figure 9	2.7		0.4	0.6	Ω	
ΔR_{OND}	Data Path Delta On Resistance ⁽⁴⁾	V _{SW} = 0 V, I _{ON} = -20 mA	2.7		0.2		Ω	
Icc	Quiescent Supply Current	V _{CNTRL} = 0 or V _{CC} , I _{OUT} = 0	4.3			1.0	μA	
ķi.	Increase in I _{CC}	$V_{CNTRL} = 2.6 \text{ V}, V_{CC} = 4.3 \text{ V}$	4.3		5.0	10.0	μA	
I _{CCT} Current Per Control Voltage and V _{CC}		V _{CNTRL} = 1.8 V, V _{CC} = 4.3 V	4.3		7.0	15.0	μA	

Notes:

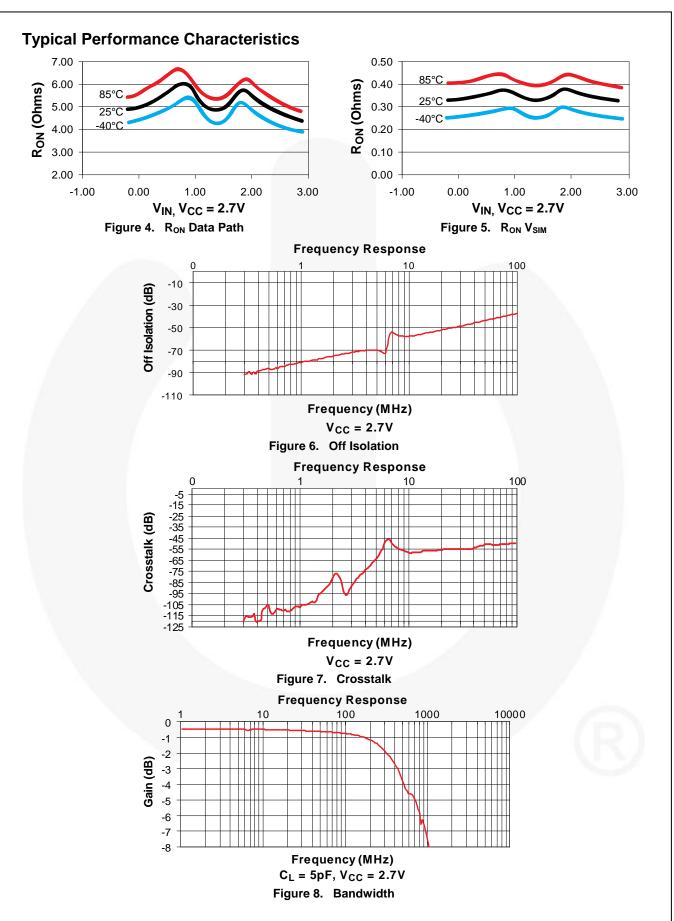
- 3. Measured by the voltage drop between nDAT, nRST, nCLK and relative common port pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the relative ports.
- 4. Guaranteed by characterization.

AC Electrical Characteristics

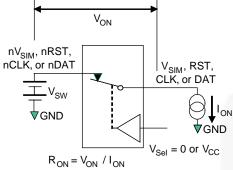
All typical value are for V_{CC} =3.3V at 25°C unless otherwise specified.

Symbol	Davamatar	Conditions V	V (V)	T _A =- 40°C to +85°C			Units
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Ullits
t _{OND}	Turn-On Time Sel to Output	$R_L = 50 \Omega, C_L = 35 pF$ $V_{SW} = 1.5 V$	1.8 ⁽⁵⁾		65	95	ns
OND	(DAT,CLK,RST)	Figure 11, Figure 12	2.7 to 3.6		42	60	ns
t _{OFFD}	Turn-Off Time Sel to Output	$R_L = 50 \Omega, C_L = 35 pF$ $V_{SW} = 1.5 V$	1.8 ⁽⁵⁾		30	50	ns
4011 D	(DAT,CLK,RST)	Figure 11, Figure 12	2.7 to 3.6		20	40	ns
t _{ONV}	Turn-On Time	$R_L = 50 \Omega, C_L = 35 pF$ $V_{SW} = 1.5 V$	1.8 ⁽⁵⁾		55	80	ns
ONV	Sel to Output (V _{SIM})	Figure 11, Figure 12	2.7 to 3.6		35	55	ns
torry	Turn-Off Time Sel to Output (V _{SIM})	R_L = 50 Ω , C_L = 35 pF V_{SW} = 1.5 V Figure 11, Figure 12	1.8 ⁽⁵⁾		35	50	
COFFV			2.7 to 3.6		22	40	ns
t _{PD}	Propagation Delay ⁽⁵⁾ (DAT,CLK,RST)	C_L = 35 pF, R_L = 50 Ω Figure 11, Figure 13	3.3		0.25		ns
t _{BBMD}	Break-Before-Make ⁽⁵⁾ (DAT,CLK,RST)	$R_L = 50 \ \Omega, \ C_L = 35 \ pF$ $V_{SW1} = V_{SW2} = 1.5 \ V$ Figure 15	2.7 to 3.6	3	18		ns
t _{BBMV}	Break-Before-Make ⁽⁵⁾	$R_L = 50 \ \Omega, \ C_L = 35 \ pF$ $V_{SW1} = V_{SW2} = 1.5 \ V$ Figure 15	2.7 to 3.6	3	12		ns
Q	Charge Injection (DAT,CLK,RST)	$\begin{split} C_{L} = 50 \text{ pF, } R_{GEN} = 0 \Omega, \\ V_{GEN} = 0 V \end{split}$	2.7 to 3.6		10		pC
O _{IRR}	Off Isolation (DAT,CLK,RST)	$R_L = 50 \Omega$, $f = 10 MHz$ Figure 17	2.7 to 3.6		-60		dB
Xtalk	Non-Adjacent Channel Crosstalk (DAT,CLK,RST)	$R_L = 50 \Omega$, $f = 10 MHz$ Figure 18	2.7 to 3.6		-60		dB
BW	-3 db Bandwidth (DAT,CLK,RST)	$R_L = 50 \Omega$, $C_L = 5 pF$ Figure 16	2.7 to 3.6		475		MHz

Note:

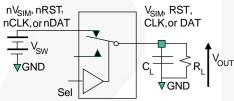

5. Guaranteed by characterization.

Capacitance


Symbol	Doromotor	Conditions	T _A =- 40°C to +85°C			Units
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} = 0 V		1.5		
C _{OND}	RST, CLK, DAT On Capacitance ⁽⁶⁾	V _{CC} = 3.3 V, f = 1 MHz Figure 20		10	12	
C _{ONV}	V _{SIM} On Capacitance ⁽⁶⁾	V _{CC} = 3.3 V, f = 1 MHz Figure 20		110	150	pF
C _{OFFD}	RST, CLK, DAT Off Capacitance	V _{CC} = 3.3 V, Figure 19		3		
C_{OFFV}	V _{SIM} Off Capacitance	V _{CC} = 3.3 V, Figure 19		40		

Note:

6. Guaranteed by characterization.



Test Diagrams

NC

 $\boldsymbol{R}_{\!\scriptscriptstyle L}$ and $\boldsymbol{C}_{\!\scriptscriptstyle L}$ are functions of the application environment (see tables for specific values). C_I includes test fixture and stray capacitance.

V_{CC} - . - . 90% 90% Input - V_{Sel} $V_{CC}/2$ $V_{CC}/2$ 10% **GND** V_{OH} 90% 90% Output - Vout

I_{nA(OFF)}

A

 $V_{Sel} = 0 \text{ or } V_{CC}$

t_{FALL} = 2.5ns

Figure 11. AC Test Circuit Load

Figure 12. Turn-On / Turn-Off Waveforms

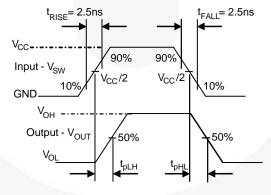
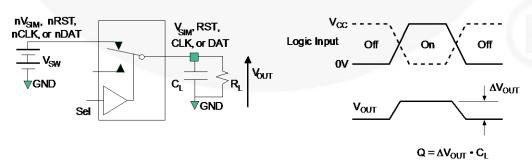
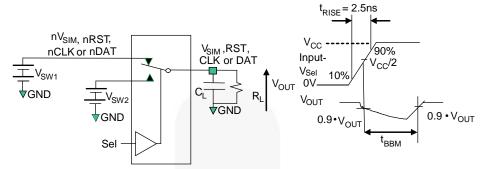
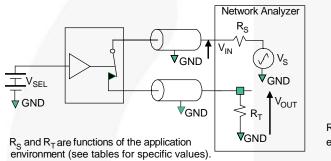
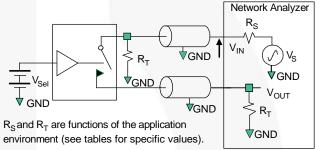


Figure 13. Propagation Delay


Figure 14. Charge Injection


Test Diagrams (Continued)

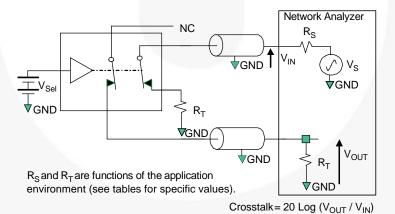
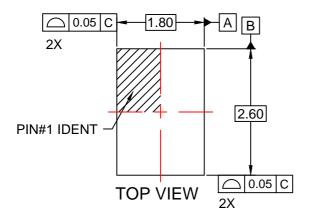
 R_L and C_L are functions of the application environment (see tables for specific values). C_L includes test fixture and stray capacitance.

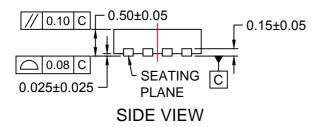
Figure 15. Break-Before-Make Interval Timing

Off isolation = 20 Log (V_{OUT} / V_{IN})

Figure 16. Bandwidth

Figure 17. Channel Off Isolation


Figure 18. Non-Adjacent Channel-to-Channel Crosstalk

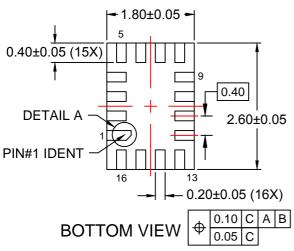
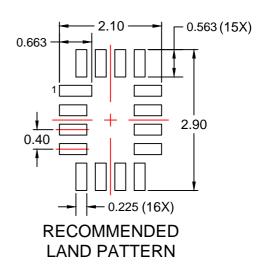
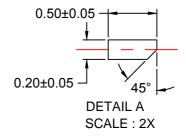
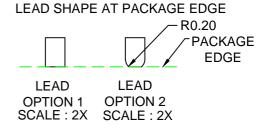


Figure 19. Channel Off Capacitance

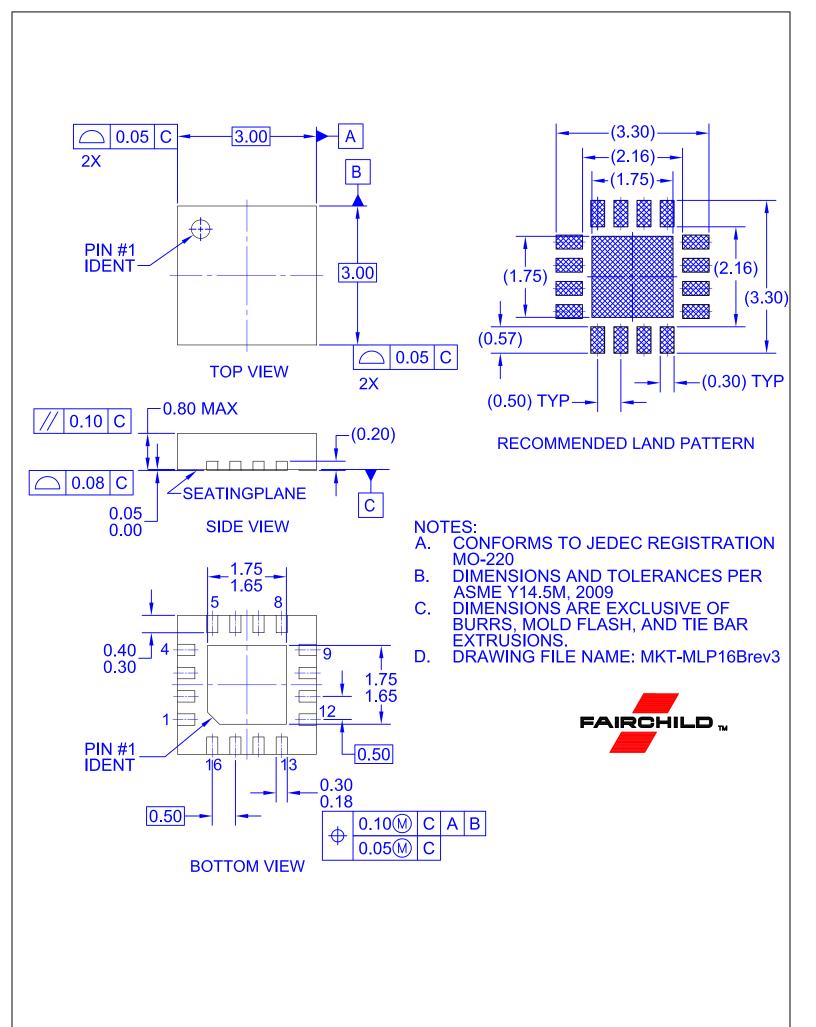
Figure 20. Channel On Capacitance







NOTES:


- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-UMLP16Arev5.
- F. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AttitudeEngine™ FRFET®

Global Power ResourceSM Awinda[®]

AX-CAP®* GreenBridge™ BitSiC™ Green FPS™ Build it Now™

Green FPS™ e-Series™ CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOLT™ IntelliMAX™

CTL™ ISOPLANAR™ Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™

ESBC™ MicroPak™ MicroPak2™ MillerDrive™ Fairchild® MotionMax™

Fairchild Semiconductor® MotionGrid® FACT Quiet Series™ MTi[®] FACT[®] MTx® FastvCore™ MVN® FETBench™ mWSaver® FPS™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXSTI

Programmable Active Droop™

OFFT QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* սSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™

VoltagePlus™ XSTM. Xsens™ 仙童®

-®

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>AIRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms		
Datasheet Identification		Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 177

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.