

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

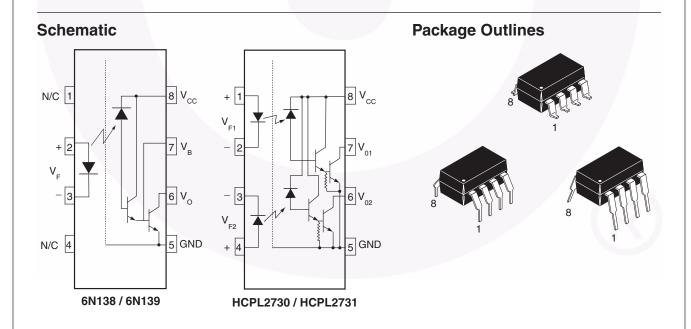
August 2008

Single-Channel: 6N138, 6N139 Dual-Channel: HCPL2730, HCPL2731 Low Input Current High Gain Split Darlington Optocouplers

Features

- Low current 0.5mA
- Superior CTR-2000%
- Superior CMR-10kV/µs
- CTR guaranteed 0-70°C
- U.L. recognized (File # E90700)
- VDE recognized (File # 120915) Ordering option V, e.g., 6N138V
- Dual Channel HCPL2730, HCPL2731

Applications


- Digital logic ground isolation
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- µP bus isolation
- Current loop receiver

Description

The 6N138/9 and HCPL2730/HCPL2731 optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector.

The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler. In the dual channel devices, HCPL2730/HCPL2731, an integrated emitter-base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements. An internal noise shield provides exceptional common mode rejection of 10 kV/µs.

Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise specified) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Value	Units
T _{STG}	Storage Temperature		-55 to +125	°C
T _{OPR}	Operating Temperature		-40 to +85	°C
T _{SOL}	Lead Solder Temperature (Wave solder only. See recompraph for SMD mounting)	mended reflow profile	260 for 10 sec	°C
EMITTER				
I _F (avg)	DC/Average Forward Input Current	Each Channel	20	mA
I _F (pk)	Peak Forward Input Current (50% duty cycle, 1 ms P.W.) Each Channel		40	mA
I _F (trans)	Peak Transient Input Current - (≤1µs P.W., 300 pps)		1.0	Α
V _R	Reverse Input Voltage	Each Channel	5	V
P _D	Input Power Dissipation	Each Channel	35	mW
DETECTO	R			
I _O (avg)	Average Output Current	Each Channel	60	mA
V _{ER}	Emitter-Base Reverse Voltage	6N138 and 6N139	0.5	V
V _{CC} , V _O	Supply Voltage, Output Voltage	6N138, HCPL2730	-0.5 to 7	V
		6N139, HCPL2731	-0.5 to 18	
Po	Output Power Dissipation	Each Channel	100	mW

Electrical Characteristics (T_A = 0 to 70°C unless otherwise specified)

Individual Component Characteristics

Symbol	Parameter	Test Cond	itions	Device	Min.	Тур.*	Max.	Unit
EMITTER		1		1	Į.		Į.	
V _F	Input Forward Voltage		T _A = 25°C	All		1.30	1.7	V
		Each channel (I _F = 1.6	SmA)				1.75	
BV _R	Input Reverse Breakdown Voltage	$T_A = 25^{\circ}C, I_R = 10\mu A$		All	5.0	20		V
$\Delta V_F / \Delta T_A$	Temperature Coefficient of Forward Voltage	I _F = 1.6mA		All		-1.8		mV/°C
DETECTO	R			•	•		•	
I _{OH}	Logic HIGH Output Current	$I_F = 0mA, V_O = V_{CC} = 18V$		6N139		0.01	100	μA
			Each Channel	HCPL2731				
		$I_F = 0$ mA, $V_O = V_{CC} = 7$ V		6N138		0.01	250	
			Each Channel	HCPL2730				
I _{CCL}	Logic LOW supply	$I_F = 1.6$ mA, $V_O = Open$	n, V _{CC} = 18V	6N138, 6N139		0.4	1.5	mA
		I _{F1} = I _{F2} = 1.6mA, V _{CC} = 18V		HCPL2731		1.3	3	
		V _{O1} – V _{O2} = Open, V _{CC} = 7V		HCPL2730				
I _{CCH}	Logic HIGH Supply	$I_F = 0$ mA, $V_O = 0$ pen, $V_{CC} = 18V$		6N138, 6N139		0.05	10	μA
		$I_{F1} = I_{F2} = 0 \text{mA}, V_{CC}$	= 18V	HCPL2731		0.10	20	
		$V_{O1} - V_{O2} = Open, V_{C}$	_C = 7V	HCPL2730				

Transfer Characteristics

Symbol	Parameter	Test Cond	Device	Min.	Typ.*	Max.	Unit	
COUPLE	D					l	l	
	Current Transfer	$I_F = 0.5 \text{mA}, V_O = 0.4$	V, V _{CC} = 4.5V	6N139	400	1100		%
	Ratio ⁽¹⁾⁽²⁾		Each Channel	HCPL2731		3500		
	$I_F = 1.6 \text{mA}, V_O = 0.4$	V, V _{CC} = 4.5V	6N139	500	1300			
		Each Channel	HCPL2731		2500			
	I _F = 1.6mA, V _O = 0.4 V, V _{CC} = 4.5V		6N138	300	1300			
			Each Channel	HCPL2730		2500		
V _{OL}	V _{OL} Logic LOW Output	$I_F = 0.5 \text{mA}, I_O = 2 \text{mA}, V_{CC} = 4.5 \text{V}$		6N139		0.08	0.4	V
	Voltage ⁽²⁾	I _F = 1.6mA, I _O = 8mA, V _{CC} = 4.5V		6N139		0.01	0.4	
			Each Channel	HCPL2731			//	
		$I_F = 0.5 \text{mA}, I_O = 15 \text{mA}$	A, V _{CC} = 4.5V	6N139		0.13	0.4	
		Each Channel	HCPL2731					
		$I_F = 12mA, I_O = 24mA$	A, V _{CC} = 4.5V	6N139		0.20	0.4	
		Each Channel	HCPL2731					
		$I_F = 1.6 \text{mA}, I_O = 4.8 \text{m}$	A, V _{CC} = 4.5V	6N138		0.10	0.4	
			Each Channel	HCPL2730				

^{*}All Typicals at $T_A = 25^{\circ}C$

Electrical Characteristics (Continued) ($T_A = 0$ to 70° C unless otherwise specified)

Switching Characteristics ($V_{CC} = 5V$)

Symbol	Parameter	Test Condit	ions	Device	Min.	Тур.*	Max.	Unit
T _{PHL}	Propagation Delay	$R_L = 4.7\Omega, I_F = 0.5 \text{mA}$		6N139			30	μs
	Time to Logic LOW ⁽²⁾ (Fig. 24)		T _A = 25°C			4	25	
	LOVV (Fig. 24)	$R_L = 4.7\Omega, I_F = 0.5 \text{mA}$		HCPL2731			120	
		Each Channel	T _A = 25°C			3	100	
		$R_L = 270\Omega, I_F = 12mA$	•	6N139			2	•
			T _A = 25°C			0.2	1	
		$R_L = 270\Omega, I_F = 12mA, E$	ach Channel	HCPL2730			3	
			T _A = 25°C	HCPL2731		0.3	2	
	$R_L = 2.2\Omega, I_F = 1.6 \text{mA}$		6N138			15		
		T _A = 25°C			1.5	10		
		$R_L = 2.2\Omega$, $I_F = 1.6$ mA, Each Channel		HCPL2731			25	
		T _A = 25°C	HCPL2730		1	20		
T _{PLH}	Propagation Delay	$R_L = 4.7\Omega, I_F = 0.5 \text{mA}$		6N139			90	μs
Time to Logic HIGH ⁽²⁾ (Fig. 24)		Each Channel	HCPL2731					
	111GH 7 (11g. 24)	$R_L = 4.7\Omega$, $I_F = 0.5$ mA, $T_A = 25$ °C		6N139		12	60	
			Each Channel	HCPL2731		22		
		$R_L = 270\Omega$, $I_F = 12mA$		6N139			10	
			T _A = 25°C			1.3	7	
		$R_L = 270\Omega$, $I_F = 12mA$, E	ach Channel	HCPL2730			15	
			T _A = 25°C	HCPL2731		5	10	
		$R_L = 2.2\Omega, I_F = 1.6 \text{mA}$		6N138			50	
			Each Channel	HCPL2730/1				
		$R_L = 2.2\Omega$, $I_F = 1.6$ mA, T_A	_A = 25°C	6N138		7	35	
			Each Channel	HCPL2730/1		16		
ICM _H I Common Mode Transient		$I_F = 0$ mA, $IV_{CM}I = 10V_{P-F}I_{CM}I = 2.2\Omega$	$_{o}$, $T_{A} = 25^{\circ}C$,	6N138 6N139	1,000	10,000		V/µs
Immunity at Logic HIGH ⁽³⁾ (Fig. 25)		Each Channel	HCPL2730 HCPL2731					
ICM _L I	Common Mode Transient	$(I_F = 1.6 \text{mA}, V_{CM} = 10 V_{P-P}, R_L = 2.2 \Omega)$ $T_A = 25 ^{\circ}\text{C}$		6N138 6N139	1,000	10,000		V/µs
Immunity at Logic LOW ⁽³⁾ (Fig. 25)		Each Channel	HCPL2730 HCPL2731					

^{**} All Typicals at $T_A = 25^{\circ}C$

Electrical Characteristics (Continued) (T_A = 0 to 70°C unless otherwise specified)

Isolation Characteristics

Symbol	Characteristics Test Conditions		Min.	Тур.*	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current ⁽⁴⁾	Relative humidity = 45% , $T_A = 25$ °C, $t = 5$ s, $V_{I-O} = 3000$ VDC			1.0	μA
V _{ISO}	Withstand Insulation Test Voltage ⁽⁴⁾	$RH \leq 50\%, T_A = 25^{\circ}C, I_{I\text{-}O} \leq 2\mu A, \\ t = 1 \text{ min.}$	2500			V _{RMS}
R _{I-O}	Resistance (Input to Output) ⁽⁴⁾	V _{I-O} = 500VDC		10 ¹²		Ω
C _{I-O}	Capacitance (Input to Output) ⁽⁴⁾⁽⁵⁾	f = 1MHz		0.6		pF
l _{I-I}	Input-Input Insulation Leakage Current ⁽⁶⁾	$RH \le 45\%$, $V_{I-I} = 500VDC$, $t = 5s$, $HCPL2730/2731$ only		0.005		μA
R _{I-I}	Input-Input Resistance ⁽⁶⁾	V _{I-I} = 500VDC, HCPL2730/2731 only		10 ¹¹		Ω
C _{I-I}	Input-Input Capacitance ⁽⁶⁾	f = 1MHz, HCPL2730/2731 only		0.03		pF

^{*}All Typicals at $T_A = 25$ °C

Notes:

- Current Transfer Ratio is defined as a ratio of output collector current, I_O, to the forward LED input current, I_E, times 100%.
- 2. Pin 7 open. (6N138 and 6N139 only)
- 3. Common mode transient immunity in logic HIGH level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic HIGH state (i.e., V_O > 2.0V). Common mode transient immunity in logic LOW level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic LOW state (i.e., V_O < 0.8V).</p>
- 4. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 5. For dual channel devices, C_{I-O} is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
- 6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

Electrical Characteristics (Continued) $T_A = 25$ °C unless otherwise specified)

Current Limiting Resistor Calculations

$$R_1 \text{ (Non-Invert)} = \underbrace{V_{DD1} - V_{DF} - V_{OL1}}_{I_F}$$

$$R_1 \text{ (Invert)} = V_{DD1} - V_{OH1} - V_{DF}$$

$$\mathsf{R}_2 = \underbrace{\mathsf{V}_{\mathsf{DD2}} = \mathsf{V}_{\mathsf{OLX}} \left(@ \ \mathsf{I}_{\mathsf{L}} - \mathsf{I}_{\mathsf{2}} \right)}_{\mathsf{I}_{\mathsf{L}}}$$

Where:

 V_{DD1} = Input Supply Voltage

V_{DD2} = Output Supply Voltage

V_{DF} = Diode Forward Voltage

V_{OL1} = Logic "0" Voltage of Driver

V_{OH1} = Logic "1" Voltage of Driver

I_F = Diode Forward Current

V_{OLX} = Saturation Voltage of Output Transistor

I_L = Load Current Through Resistor R2

I₂ = Input Current of Output Gate

						OUTPU	Т		
IN	INPUT		CMOS @ 5V	CMOS @ 10V	74XX	74LXX	74SXX	74LSXX	74HXX
			R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)	R2 (V)
CMOS	NON-INV.	2000	1000	2200	750	1000	1000	1000	560
@ 5V	INV.	510							
CMOS	NON-INV.	5100							
@ 10V	INV.	4700							
74XX	NON-INV.	2200							
	INV.	180							
74LXX	NON-INV.	1800							
	INV.	100							
74SXX	NON-INV.	2000							
	INV.	360							
74LSXX	NON-INV.	2000							
	INV.	180							
74HXX	NON-INV.	2000							
	INV.	180							

Fig. 1 Resistor Values for Logic Interface

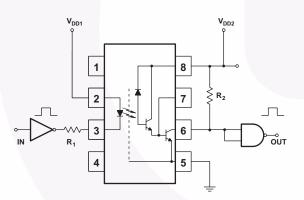


Fig. 2 Non-Inverting Logic Interface

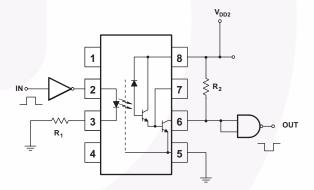


Fig. 3 Inverting Logic Interface

Typical Performance Curves

Fig. 4 LED Forward Current vs. Forward Voltage

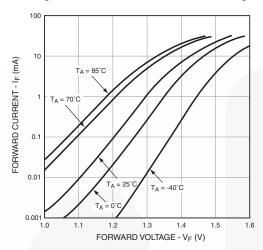


Fig. 6 Non-saturated Rise and Fall Times vs. Load Resistance (6N138 / 6N139 Only)

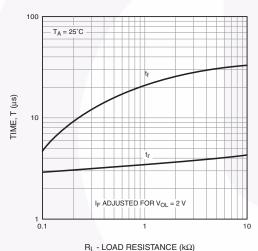


Fig. 8 Propagation Delay To Logic Low vs. Base-Emitter Resistance (HCPL2730 / HCPL2731 Only)

Fig. 5 LED Forward Voltage vs. Temperature

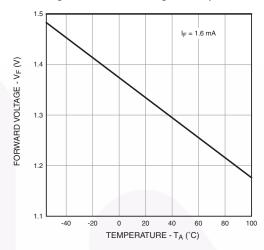


Fig. 7 Non-saturated Rise and Fall Times vs. Load Resistance (HCPL2730 / HCPL2731 Only)

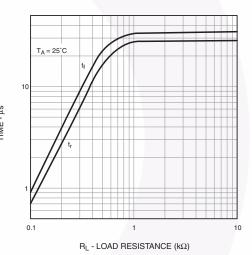
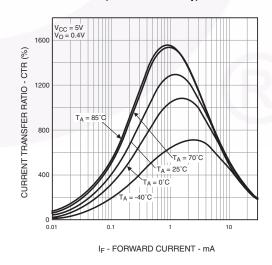



Fig. 9 Current Transfer Ratio vs. Forward Current (6N138 / 6N139 Only)

Typical Performance Curves (Continued)

Fig. 10 Current Transfer Ratio vs. Base-Emitter Resistance (6N138 / 6N139 Only)

 $\mbox{R}_{\mbox{\footnotesize{BE}}}$ - $\mbox{\footnotesize{BASE}}$ RESISTANCE (k\$\Omega)

Fig. 12 Output Current vs Output Voltage (6N138 / 6N139 Only)

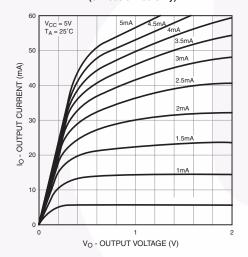


Fig. 14 Output Current vs. Input Diode Forward Current (6N138 / 6N139 Only)

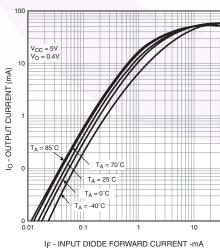


Fig. 11 Current Transfer Ratio vs. Forward Current (HCPL2730 / HCPL2731 Only)

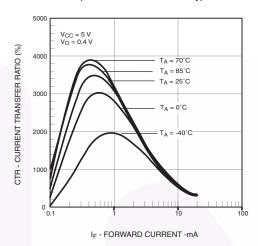


Fig. 13 Output Current vs Output Voltage (HCPL2730 / HCPL2731 Only)

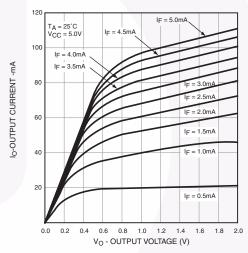
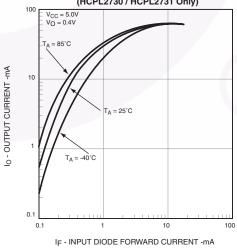



Fig. 15 Output Current vs Input Diode Forward Current (HCPL2730 / HCPL2731 Only)

Typical Performance Curves (Continued)

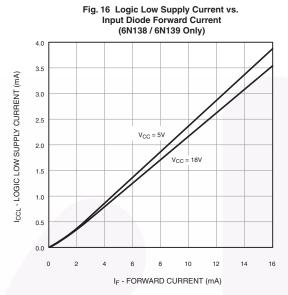


Fig. 17 Logic Low Supply Current vs. Input Diode Forward Current (HCPL2730 / HCPL2731 Only)

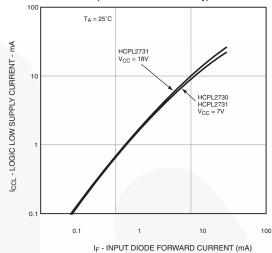


Fig. 18 Propagation Delay vs. Input Diode Forward Current (6N138 / 6N139 Only)

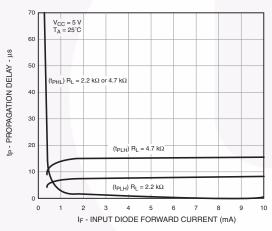


Fig. 19 Propagation Delay vs. Input Diode Forward Current (HCPL2730 / HCPL2731 Only)

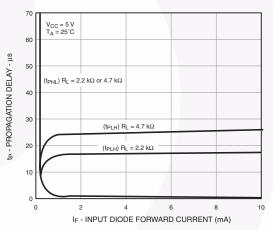
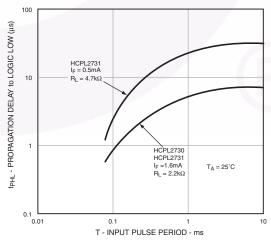



Fig. 20 Propagation Delay to Logic Low vs. Pulse Period (6N138 / 6N139 Only)

Fig. 21 Propagation Delay to Logic Low vs. Pulse Period (HCPL2730 / HCPL2731 Only)

Typical Performance Curves (Continued)

Fig. 22 Propagation Delay vs. Temperature (6N138 / 6N139 Only)

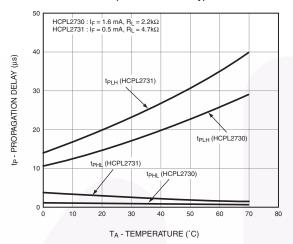
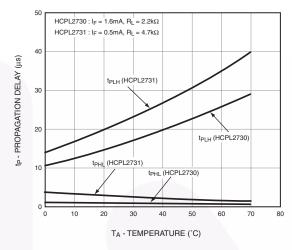
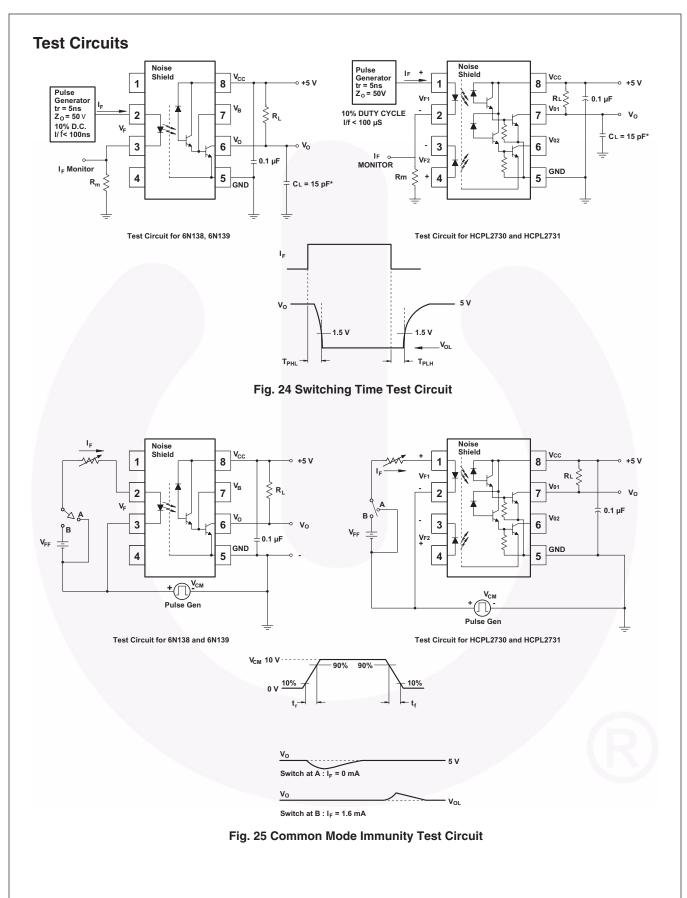
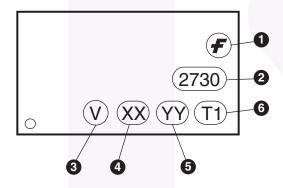
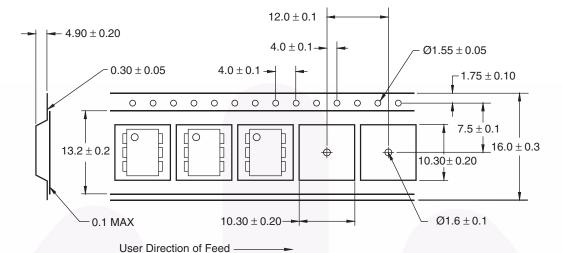




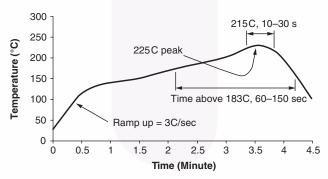
Fig. 23 Propagation Delay vs. Temperature (HCPL2730 / HCPL2731 Only)



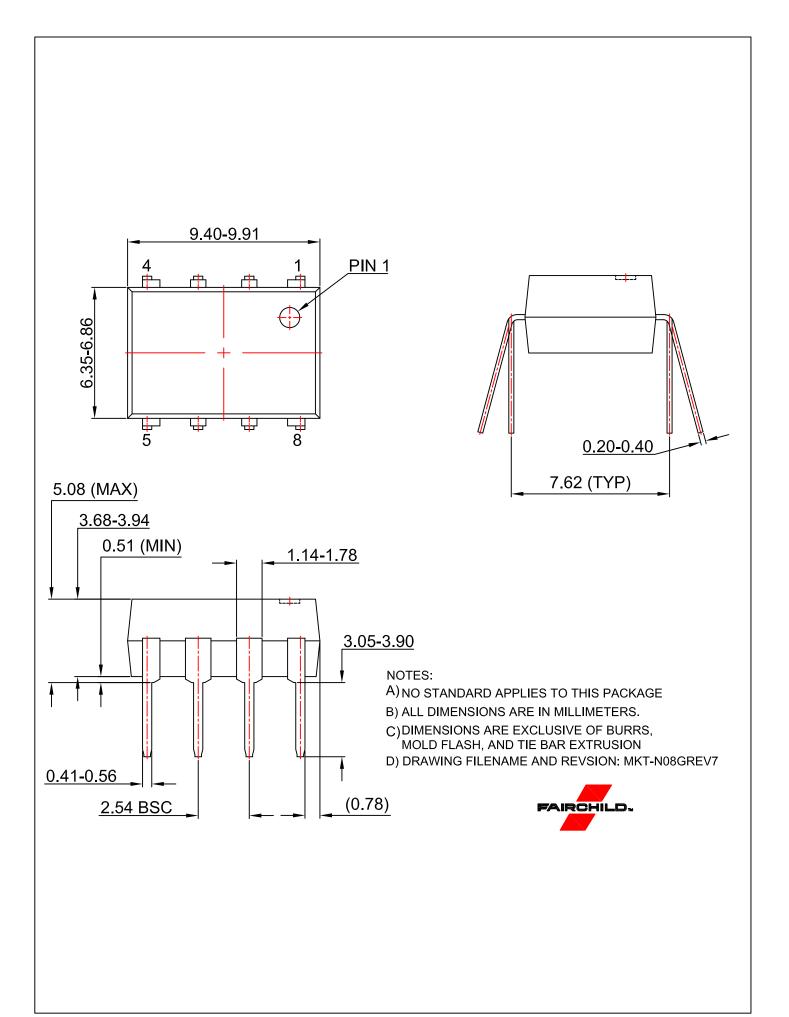
Ordering Information

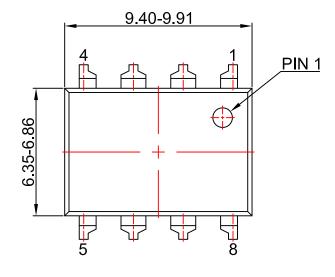

Option	Example Part Number	Description
No Suffix	6N138	Standard Through Hole Device, 50 pcs per tube
S	6N138S	Surface Mount Lead Bend
SD	6N138SD	Surface Mount; Tape and reel
W	6N138W	0.4" Lead Spacing
V	6N138V	VDE0884
WV	6N138WV	VDE0884; 0.4" lead spacing
SV	6N138SV	VDE0884; surface mount
SDV	6N138SDV	VDE0884; surface mount; tape and reel

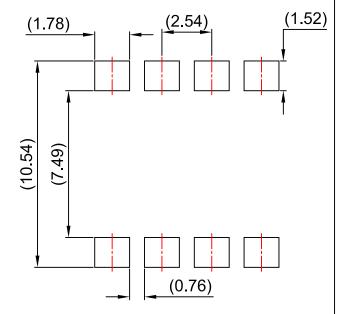
Marking Information

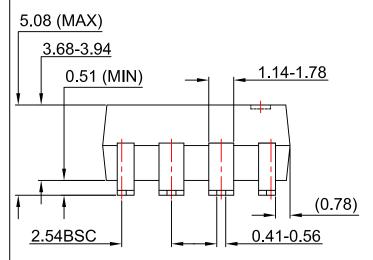


Definiti	Definitions					
1	Fairchild logo					
2	Device number					
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)					
4	Two digit year code, e.g., '07'					
5	Two digit work week ranging from '01' to '53'					
6	Assembly package code					

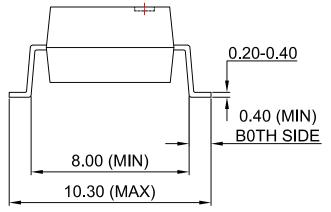

Tape Specifications




Reflow Profile



- Peak reflow temperature: 225C (package surface temperature)
 Time of temperature higher than 183C for 60–150 seconds
 One time soldering reflow is recommended



NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N08Hrev7.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms		
Datasheet Identification		Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177