

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FDG8842CZ

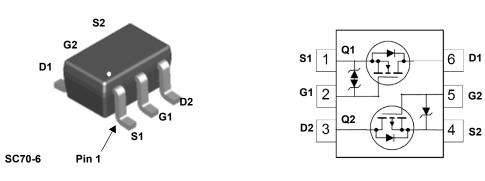
Complementary PowerTrench[®] MOSFET Q1:30V,0.75A,0.4 Ω ; Q2:-25V,-0.41A,1.1 Ω

Features

Q1: N-Channel

- Max $r_{DS(on)}$ = 0.4 Ω at V_{GS} = 4.5V, I_D = 0.75A
- Max r_{DS(on)} = 0.5Ω at V_{GS} = 2.7V, I_D = 0.67A

Q2: P-Channel


- Max r_{DS(on)} = 1.1Ω at V_{GS} = -4.5V, I_D = -0.41A
- Max r_{DS(on)} = 1.5Ω at V_{GS} = -2.7V, I_D = -0.25A
- Very low level gate drive requirements allowing direct operation in 3V circuits(V_{GS(th)} <1.5V)</p>
- Very small package outline SC70-6
- RoHS Compliant

General Description

These N & P-Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for bipolar digital transistors and small signal MOSFETs. Since bias resistors are not required, this dual digital FET can replace several different digital transistors, with different bias resistor values.

April 2007

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain to Source Voltage		30	-25	V
V _{GS}	Gate to Source Voltage		±12	-8	V
I _D	Drain Current -Continuous		0.75	-0.41	^
	-Pulsed		2.2	-1.2	A
Power Dissipation for Single Operation		(Note 1a)	0.36		14/
P _D	(Note 1b)		0.30		W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	o +150	°C

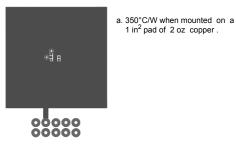
Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient Single operation	(Note 1a)	350	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient Single operation	(Note 1b)	415	C/vv

Package Marking and Ordering Information

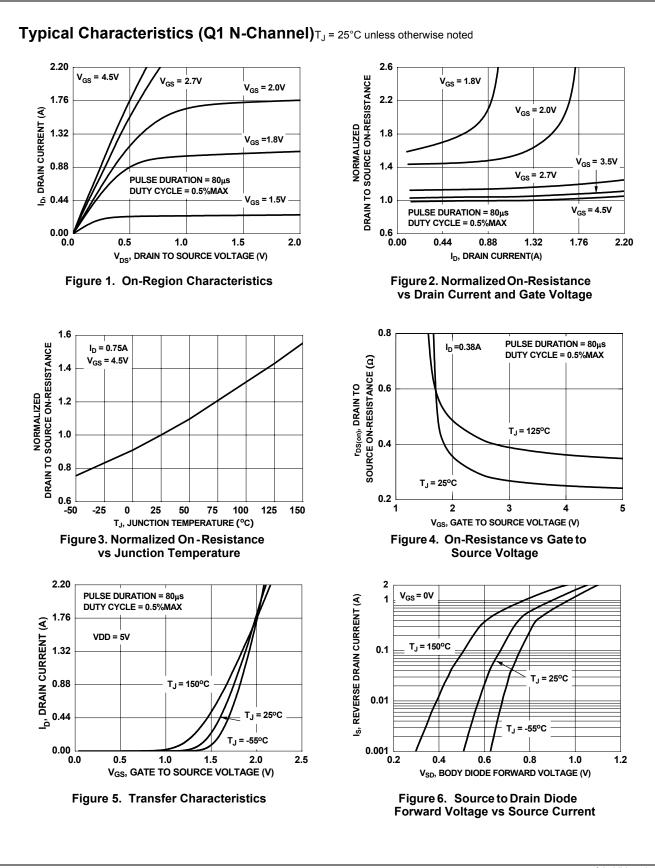
Device Marking	Device	Reel Size	Tape Width	Quantity
.42	FDG8842CZ	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0V$ $I_D = -250 \mu A, V_{GS} = 0V$	Q1 Q2	30 –25			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25°C $I_D = -250\mu$ A, referenced to 25°C	Q1 Q2		25 –21		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V, V_{GS} = 0V$ $V_{DS} = -20V, V_{GS} = 0V$	Q1 Q2			1 _1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$ $V_{GS} = -8V, V_{DS} = 0V$	Q1 Q2			±10 –100	μA nA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$ $V_{GS} = V_{DS}, I_D = -250 \mu A$	Q1 Q2	0.65 0.65	1.0 0.8	1.5 –1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C $I_D = -250 \mu A$, referenced to 25°C	Q1 Q2		-3.0 1.8		mV/°C
Static Drain to Source On	Static Drain to Source On		Q1		0.25 0.29 0.36	0.4 0.5 0.6	- Ω
r _{DS(on)}	Resistance	$ \begin{array}{l} V_{GS} = -4.5V, \ \ I_D = -0.41A \\ V_{GS} = -2.7V, \ \ I_D = -0.25A \\ V_{GS} = -4.5V, \ \ I_D = -0.41A \ , T_J = 125^\circ C \end{array} $	Q2		0.87 1.20 1.22	1.1 1.5 1.9	32
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_D = 0.75A$ $V_{DS} = -5V, I_D = -0.41A$	Q1 Q2		3 8		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance	Q1 V _{DS} = 10V, V _{GS} = 0V, f= 1MHZ	Q1 Q2		90 70	120 100	pF
C _{oss}	Output Capacitance	Q2 V _{DS} = -10V, V _{GS} = 0V, f= 1MHZ	Q1 Q2		20 30	30 40	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		15 15	25 25	pF
Switching	J Characteristics (note 2)						
t _{d(on)}	Turn-On Delay Time	Q1	Q1 Q2		4 6	10 12	ns
t _r	Rise Time	$V_{DD} = 5V, I_D = 0.5A,$ $V_{GS} = 4.5V, R_{GEN} = 6\Omega$ Q2	Q1 Q2		1 16	10 29	ns
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = -5V, I_D = -0.5A,$ $V_{GS} = -4.5V, R_{GEN} = 6\Omega$	Q1 Q2		9 35	18 56	ns
t _f	Fall Time		Q1 Q2		1 40	10 64	ns
Qg	Total Gate Charge	Q1	Q1 Q2		1.03 1.20	1.44 1.68	nC
Q _{gs}	Gate to Source Charge	V_{GS} =4.5V, V_{DD} = 5V, I_{D} = 0.75A Q2	Q1 Q2		0.29 0.31		nC
Q _{gd}	Gate to Drain "Miller" Charge	V _{GS} = -4.5V, V _{DD} = -5V, I _D = -0.41A	Q1 Q2		0.17 0.22		nC

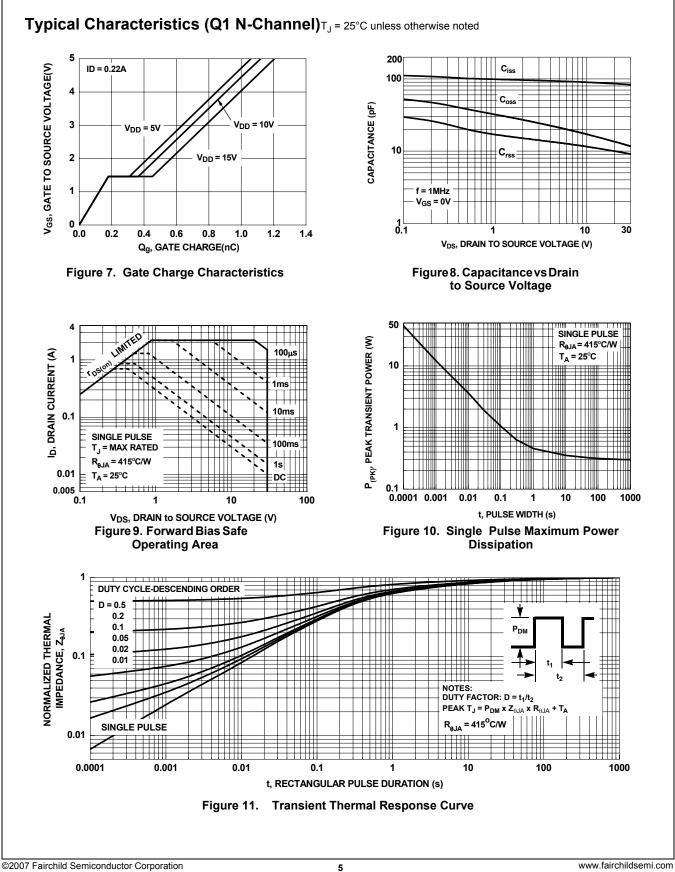

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-So	urce Diode Characteristics an	d Maximum Ratings					
			Q1	1	1	0.3	1
ls		tinuous Drain-Source Diode Forward Current					

Notes:

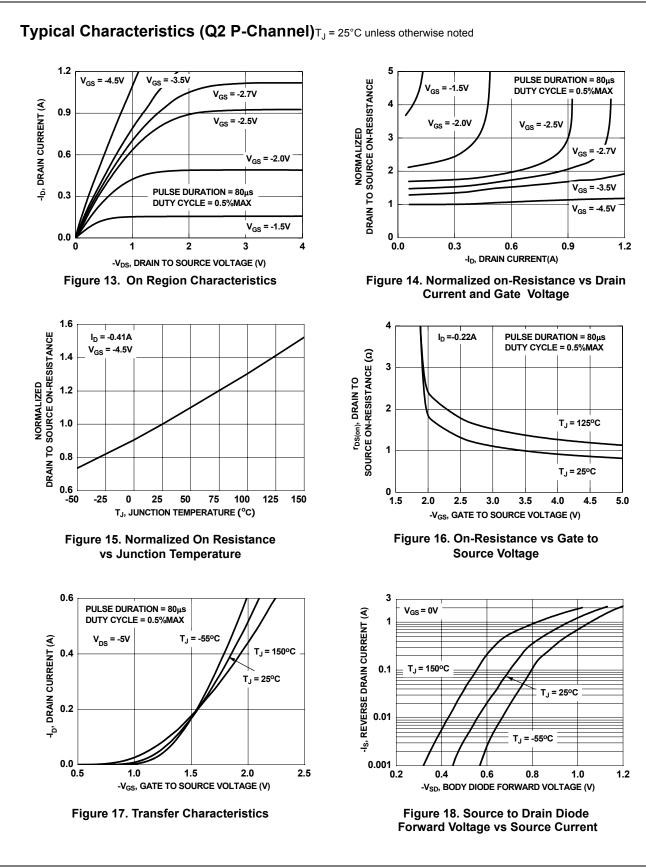
R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.
R_{0JA} is guaranteed by design while R_{0JA} is determined by the user's board design.


b. 415°C/W when mounted on a minimum pad

of 2 oz copper.

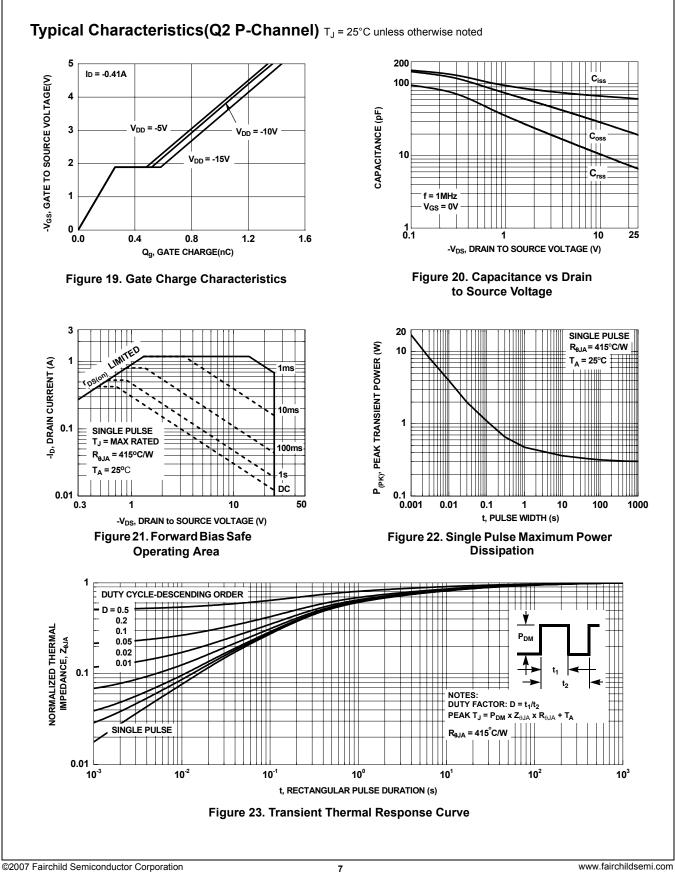

Scale 1:1 on letter size paper.

2. Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.


©2007 Fairchild Semiconductor Corporation FDG8842CZ Rev.B 4

www.fairchildsemi.com

FDG8842CZ Complementary PowerTrench[®] MOSFET


FDG8842CZ Rev.B

©2007 Fairchild Semiconductor Corporation FDG8842CZ Rev.B

6

www.fairchildsemi.com

FDG8842CZ Complementary PowerTrench[®] MOSFET

FDG8842CZ Rev.B

AIRCHIL

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®
Across the board. Around the world™
ActiveArray™
Bottomless™
Build it Now™
CoolFET™
CROSSVOLT™
CTL™
Current Transfer Logic™
DOME™
E ² CMOS™
EcoSPARK [®]
EnSigna™
FACT Quiet Series™
FACT®
FAST [®]
FASTr™
FPS™
FRFET®
GlobalOptoisolator™
GTO TM
HiSeC™

i-Lo™ ImpliedDisconnect[™] IntelliMAX[™] **ISOPLANAR™** MICROCOUPLER™ MicroPak™ MICROWIRE™ Motion-SPM™ MSX™ MSXPro™ OCX™ OCXPro™ **OPTOLOGIC**[®] **OPTOPLANAR[®]** PACMAN™ PDP-SPM™ POP™ Power220[®] Power247[®] PowerEdae™ PowerSaver™

PowerTrench® Programmable Active Droop™ **QFET**[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure[™] RapidConnect™ ScalarPump™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ The Power Franchise[®] ധ ™

Power-SPM™

TinyBoost™ TinyBuck™ TinyLogic® **TINYOPTO™** TinyPower™ TinyWire™ TruTranslation™ µSerDes™ UHC® UniFET™ VCX™ Wire™

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, DESCRIPTION OF MANDAIN THE FAIN WILL CONCEPT STREED PRODUCT. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.				