

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

January 1996 Revised August 2004

NC7S14 TinyLogic® HS Inverter with Schmitt Trigger Input

General Description

FAIRCHILD

SEMICONDUCTOR

The NC7S14 is a single high performance CMOS Inverter with Schmitt Trigger input. The circuit design provides hysteresis between the positive-going and negative going input thresholds thereby improving noise margins.

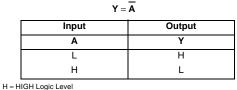
Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both input and output with respect to the V_{CC} and GND rails.

Features

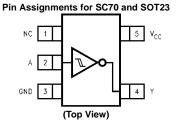
- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak[™] leadless package
- Schmitt input hysteresis: > 1V typ
- High speed: t_{PD} 4.5 ns typ
- Low quiescent power: I_{CC} < 1 μA</p>
- Balanced output drive: 2 mA I_{OL}, -2 mA I_{OH}
- Broad V_{CC} operating range: 2V 6V
- Balanced propagation delays
- Specified for 3V operation

Ordering Code:

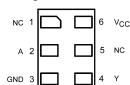
Order Number	Package Number	Package Top Mark	Package Description	Supplied As	
NC7S14M5X	MA05B	7S14	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel	
NC7S14P5X	MAA05A	S14	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel	
NC7S14L6X	MAC06A	UU	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel	


Logic Symbol

Pin Descriptions


Pin Names	Description
A	Input
Y	Output
NC	No Connect

Function Table



L = LOW Logic Level

Connection Diagrams

Pad Assignments for MicroPak

(Top Thru View)

 $\label{eq:transformation} TinyLogic \circledast is a registered trademark of Fairchild Semiconductor Corporation. \\ MicroPak^{ {\rm TM}} is a trademark of Fairchild Semiconductor Corporation. \\$

NC7S14

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$@V_{IN} \leq -0.5V$	–20 mA
$@V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _{IN})	–0.5V to V _{CC} +0.5V
DC Output Diode Current (I _{OK})	
$@V_{OUT} < -0.5V$	–20 mA
$@V_{OUT} > V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _{OUT})	–0.5V to V _{CC} +0.5V
DC Output Source or Sink	
Current (I _{OUT})	±12.5 mA
DC V _{CC} or Ground Current per	
Output Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

Recommended Operating Conditions (Note 2)

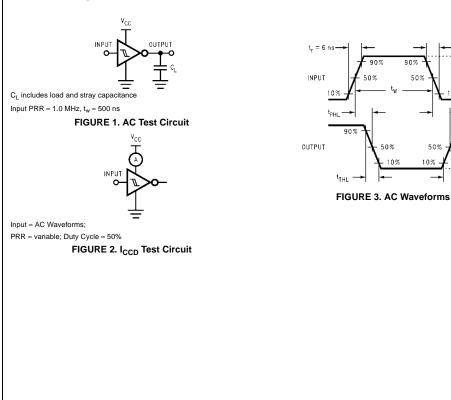
Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _{IN})	0V to V_{CC}
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications. Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc		$T_A = +25^{\circ}C$;	$T_A = -40^{\circ}$	C to +85°C	Units	Conditions
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
/ _P	Positive Threshold Voltage	2.0	1.0	1.29	1.5	1.0	1.6		
		3.0	1.5	1.90	2.2	1.5	2.2	V	
		4.5	2.3	2.73	3.15	2.3	3.15	v	
		6.0	3.0	3.56	4.2	3.0	4.2		
V _N	Negative Threshold Voltage	2.0	0.3	0.70	0.9	0.3	0.9		
		3.0	0.6	1.05	1.35	0.6	1.35	V	
		4.5	1.13	1.66	2.0	1.13	2.0	v	
		6.0	1.5	2.24	2.6	1.5	2.6		
V _H	Hysteresis Voltage	2.0	0.3	0.59	1.0	0.3	1.0		
		3.0	0.4	0.85	1.3	0.4	1.3	V	
		4.5	0.6	1.08	1.4	0.6	1.4	v	
		6.0	0.8	1.31	1.7	0.8	1.7		
V _{OH}	HIGH Level Output Voltage	2.0	1.90	2.0		1.90			
		3.0	2.90	3.0		2.90		V	$I_{OH} = -20 \ \mu A$
		4.5	4.40	4.5		4.40		v	$V_{IN} = V_{IL}$
		6.0	5.90	6.0		5.90			
									$V_{IN} = V_{IL}$
		3.0	2.68	2.87		2.63		V	$I_{OH} = -1.3 \text{ mA}$
		4.5	4.18	4.37		4.13		v	$I_{OH} = -2 \text{ mA}$
		6.0	5.68	5.86		5.63			$I_{OH} = -2.6 \text{ mA}$
/ _{OL}	LOW Level Output Voltage	2.0		0.0	0.10		0.10		
		3.0		0.0	0.10		0.10	v	$I_{OH} = 20 \ \mu A$
		4.5		0.0	0.10		0.10	v	$V_{IN}=V_{IH}$
		6.0		0.0	0.10		0.10		
									$V_{IN} = V_{IH}$
		3.0		0.1	0.26		0.33	v	$I_{OL} = 1.3 \text{ mA}$
		4.5		0.1	0.26		0.33	v	$I_{OL} = 2 \text{ mA}$
		6.0		0.1	0.26		0.33		I _{OL} = 2.6 mA

DC Electrical Characteristics (Continued)


Symbol	Parameter	V _{cc}	$T_{A} = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Cymbol	i arameter	(V)	Min	Тур	Max	Min	Мах	onno	Conditions	
I _{IN}	Input Leakage Current	6.0			±0.1		±1.0	μA	$V_{IN} = V_{CC}, GND$	
I _{CC}	Quiescent Supply Current	6.0			1.0		10.0	μA	$V_{IN} = V_{CC}, GND$	

AC Electrical Characteristics

Symbol	Parameter	v _{cc}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}$	C to +85°C	Units	Conditions	Figure
c)	i arameter	(V)	Min	Тур	Max	Min	Max	onno		Number
t _{PLH}	Propagation Delay	5.0		4.5	21			ns	C _L = 15 pF	
t _{PHL}		2.0		20	100		125		C _L = 50 pF	-
		3.0		12	27		35		F	Figures 1, 3
		4.5		8.5	20		25	ns		., 0
		6.0		7.5	17		21			
t _{TLH}	Output Transition Time	5.0		3	8			ns	C _L = 15 pF	
t _{THL}		2.0		25	125		145		$C_L = 50 \text{ pF}$	1_
		3.0		16	35		45			Figures 1, 3
		4.5		11	25		30	ns		1, 0
		6.0		9	21		24			
CIN	Input Capacitance	Open		2	10		10	pF		
C _{PD}	Power Dissipation Capacitance	5.0		7				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static).

AC Loading and Waveforms

3

www.fairchildsemi.com

= 6 ns

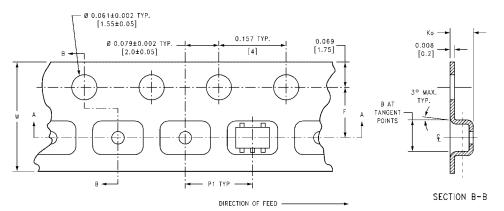
t_{PLH}

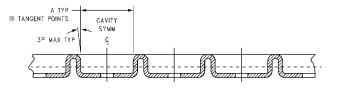
GND

90% ^Vон

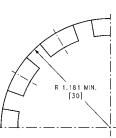
 V_{OL}

— t_{TLH}

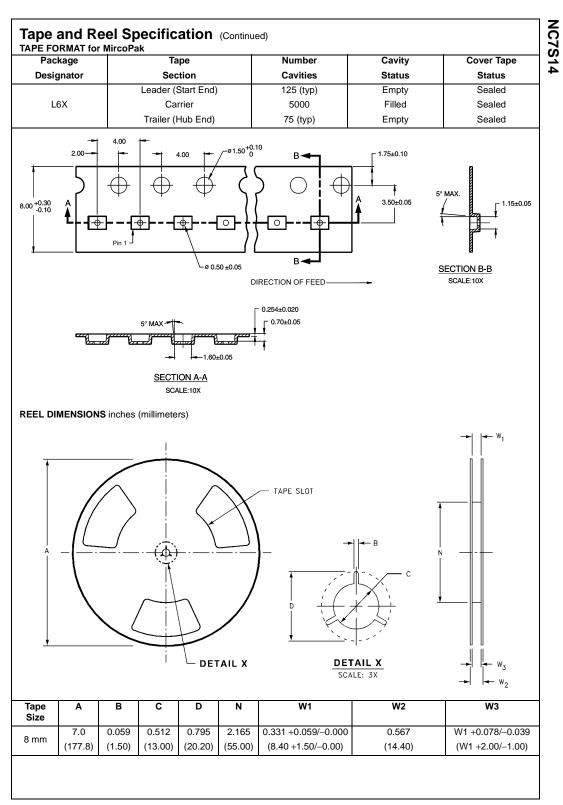

NC7S14

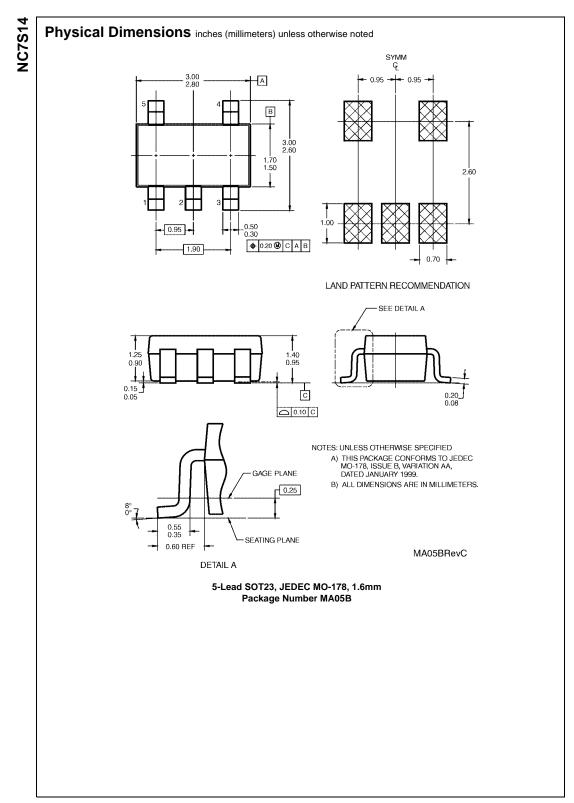

Tape and Reel Specification

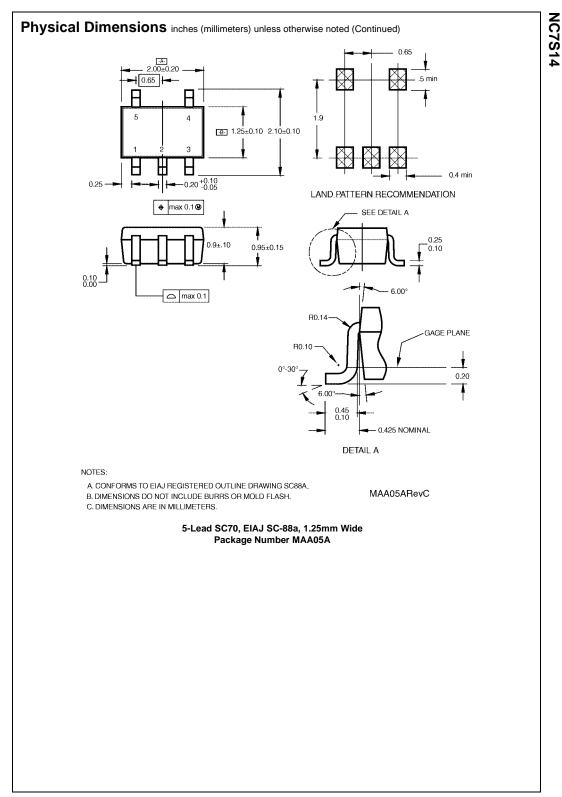
TAPE FORMAT for SC70 and SOT23

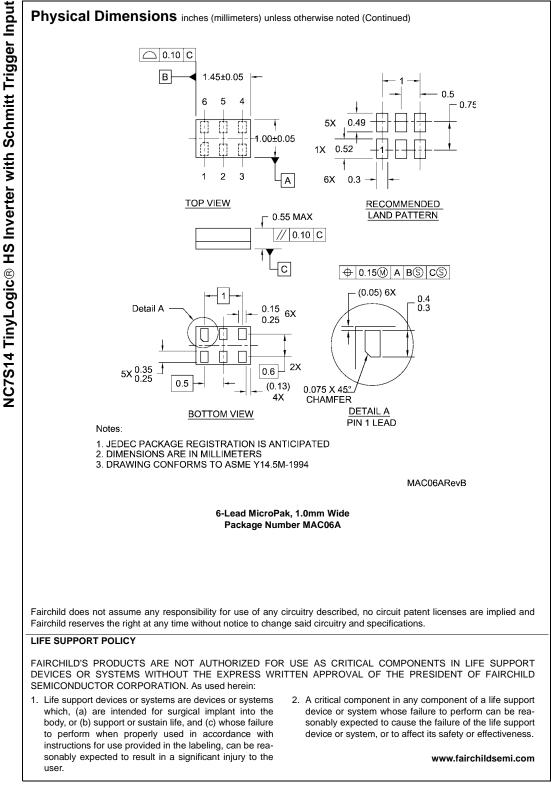

TAPE FORMAT for S	APE FORMAT for SC70 and SO123									
Package	Таре	Number	Cavity	Cover Tape						
Designator	Section	Cavities	Status	Status						
	Leader (Start End)	125 (typ)	Empty	Sealed						
M5X, P5X	Carrier	3000	Filled	Sealed						
	Trailer (Hub End)	75 (typ)	Empty	Sealed						

TAPE DIMENSIONS inches (millimeters)




SECTION A-A




BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ±0.004	0.053 ±0.004	0.157	0.315 ±0.004
		(2.35)	(2.45)	(3.5 ±0.10)	(1.35 ±0.10)	(4)	(8 ±0.1)
SOT23-5	9 mm	0.130	0.130	0.138 ±0.002	0.055 ±0.004	0.157	0.315 ±0.012
	8 mm	(3.3)	(3.3)	(3.5 ±0.05)	(1.4 ±0.11)	(4)	(8 ±0.3)

