

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

June 2001 Revised September 2004 NC7SZ332 TinyLogic® UHS 3-Input OR Gate

FAIRCHILD

SEMICONDUCTOR

NC7SZ332 TinyLogic® UHS 3-Input OR Gate

General Description

The NC7SZ332 is a single 3-Input OR Gate from Fairchild's Ultra High Speed Series of TinyLogic®. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- Ultra high speed t_{PD} 2.4 ns Typ into 50 pF at 5V V_{CC}
- High output drive ±24 mA at 3V V_{CC}

Connection Diagrams

A 1

GND 2

B 3

AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram). Pad Assignment for MicroPak

- Broad V_{CC} operating range 1.65V to 5.5V
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation

Pin Assignment for SC70

(Top View) Pin One Orientation Diagram 日日日

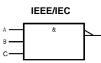
_____6 c

(Top Thru View)

5 V_{CC}

6 C

<u>5</u> V_{CC}


4 Y

Patented noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ332P6X	MAA06A	332	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SZ332L6X	MAC06A	F3	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Logic Symbol

Pin Descriptions

Pin Names	Description
A, B, C	Inputs
Y	Output

Function Table

$\mathbf{Y} = \mathbf{A} + \mathbf{B} + \mathbf{C}$

	Input					
Α	В	С	Y			
Н	Х	Х	Н			
Х	н	Х	н			
Х	х	н	н			
L	L	L	L			

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5Vto +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
@V _{IN} >6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} <-0.5V	–50 mA
@V _{OUT} >6V, (V _{CC} = GND)	+20 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T _J)	150°C
Junction Lead Temperature (T _L);	
Soldering, 10 seconds	260°C
Power Dissipation (P _D) @ +85°C	
SC70-5	150 mW

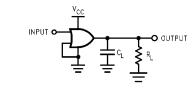
Recommended Operating Conditions (Note 2)

()	
Supply Voltage Operating (V_{CC})	1.65V to 5.5
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V_{CC} = 1.8V, 2.5V \pm 0.2V	0 ns/V to 20 ns/V
$V_{CC}=3.3V\pm0.3V$	0 ns/V to 10 ns/V
$V_{CC}=5.0V\pm0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	
SC70-5	425°C/W
Note 1: Absolute Maximum Ratings are DC val	lues beyond which the

Note 1: Absolute Maximum Ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

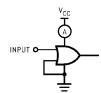
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	V _{CC}		$T_{A} = +25^{\circ}$	C	$T_A = -40^{\circ}C$	C to +85°C	Units	Conditions	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Cor	attons
VIH	HIGH Level Input Voltage	1.8 ± 0.15	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	$0.7 V_{CC}$			0.7 V _{CC}		v		
V _{IL}	LOW Level Input Voltage	1.8 ± 0.15			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH} HIGH Level Output Volta	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.2	2.3		2.2		1	$V_{IN} = V_{IH}$	L _ 100 ··· A
		3.0	2.9	3.0		2.9			$v_{IN} = v_{IH}$ $v_{OH} = -$	I _{OH} = -100 μA
		4.5	4.4	4.5		4.4		i.		
		1.65	1.29	1.52		1.29		V		$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9		i i		$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		1		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3		1		$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8		1		$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1	1	0.1		1	1
		2.3		0.0	0.1		0.1		$V_{IN} = V_{IL}$	1004
		3.0		0.0	0.1		0.1	1	$v_{IN} = v_{IL}$	I _{OL} = 100 μA
		4.5		0.0	0.1		0.1	1		
		1.65		0.08	0.24		0.24	V		$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3	1		I _{OL} = 8 mA
		3.0		0.15	0.4		0.4	1		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55	1		$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55	1		$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1	1	±10	μΑ	$V_{IN} = 5.5V,$	GND
I _{OFF}	Power Off Leakage Current	0.0			1	1	10	μA	V _{IN} or V _{OUT}	_F = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			2.0		20	μΑ	$V_{IN} = 5.5V,$	GND

Symbol	Parameter	V _{cc}	T _A = +25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure	
	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	1.8 ± 0.15	2.0	6.5	18.5	2.0	19.0		C _L = 15 pF, Figures	
t _{PHL}		2.5 ± 0.2	0.8	3.0	11.0	0.8	11.5	ns		
		3.3 ± 0.3	0.5	2.4	7.5	0.5	8.0	115	$R_L = 1M\Omega$	1, 3
	5.0 ± 0.5	0.5	1.9	5.5	0.5	6.0				
t _{PLH} ,	Propagation Delay	3.3 ± 0.3	1.5	3.0	8.5	1.5	9.0	ns	C _L = 50 pF,	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8	2.4	7.0	0.8	7.5	ns	$R_L = 500\Omega$	
CIN	Input Capacitance	0		4				pF		
C _{PD}	Power Dissipation	3.3		20				~ F	(Nata 2)	Figure 0
	Capacitance	5.0		26				pF	(Note 3)	Figure 2

t, = 3 ns-


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static).$

AC Loading and Waveforms

 $\rm C_L$ includes load and stray capacitance. Input PRR = 1.0 MHz, $t_w = 500$ ns.

FIGURE 1. AC Test Circuit

90% 90% INPUT 50% 50% -10% 10% GND ^t₽LH ^tPHL V_{OH} OUTPUT 50% 50% V_{OL}

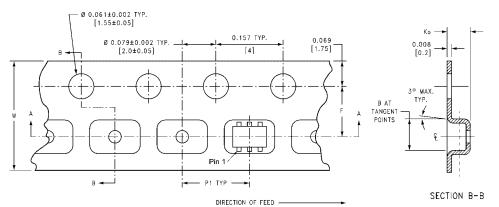
 $t_f = 3 \text{ ns}$

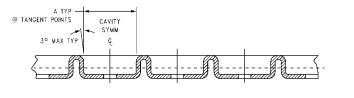
V_{CC}

FIGURE 3. AC Waveforms

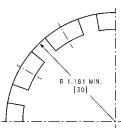
Input = AC Waveforms; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50%

FIGURE 2. I_{CCD} Test Circuit

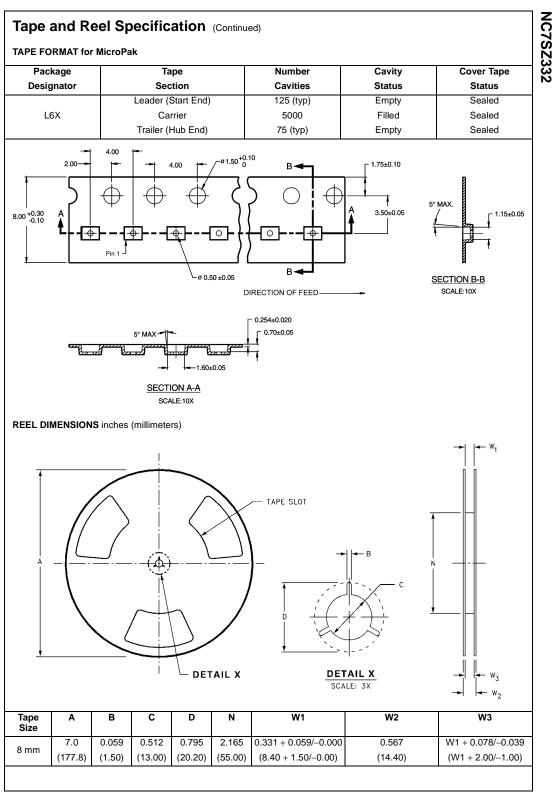



Tape and Reel Specification

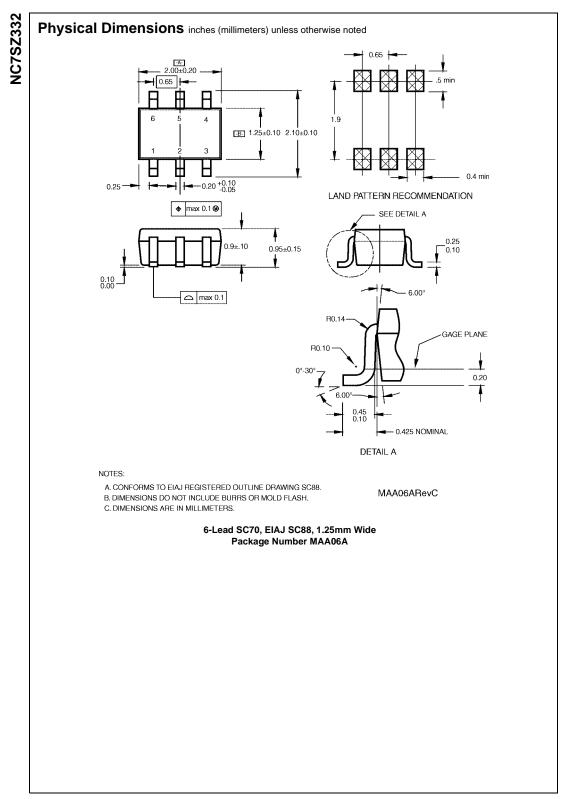
TAPE FORMAT for SC70

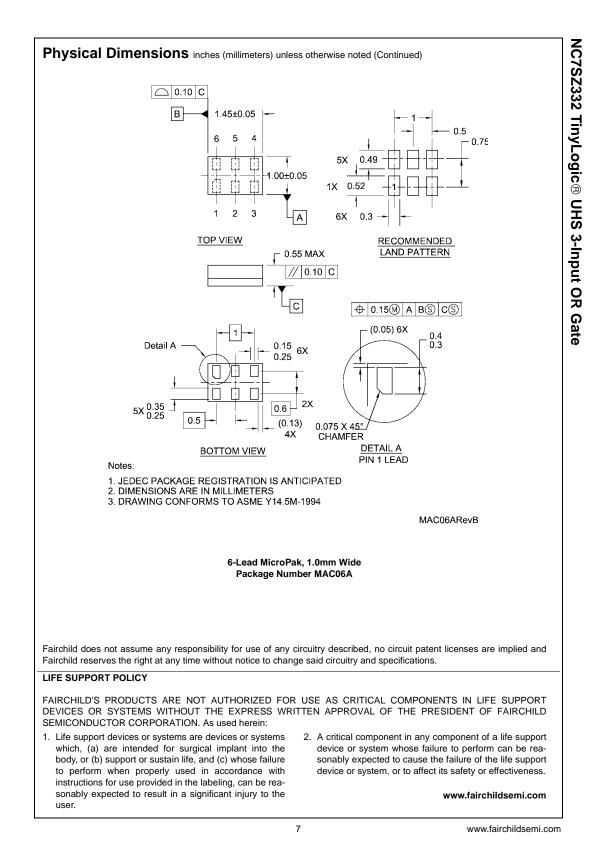

Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)



SECTION A-A


BEND RADIUS NOT TO SCALE


Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
3070-0	0 11111	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)

www.fairchildsemi.com

5

