

Is Now Part of

ON Semiconductor®

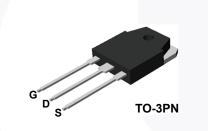
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

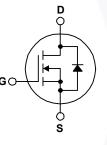
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

FDA38N30 N-Channel UniFETTM MOSFET 300 V, 38 A, 85 mΩ

Features

- $R_{DS(on)}$ = 70 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 19 A
- Low Gate Charge (Typ. 60 nC)
- Low C_{rss} (Typ. 60 pF)
- 100% Avalanche Tested
- ESD Improved Capability
- RoHS Compliant


Applications


- PDP TV
- Uninterruptible Power Supply
- AC-DC Power Supply

May 2014

Description

UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

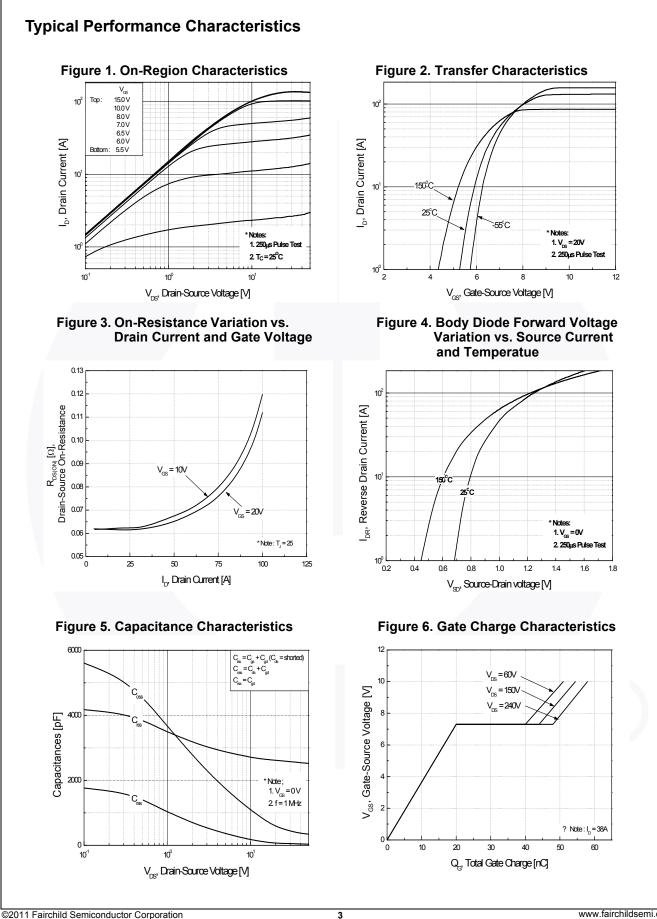
Symbol	Parameter			FDA38N30	Unit	
V _{DSS}	Drain to Source Voltage			300	V	
V _{GSS}	Gate to Source Voltage			±30	V	
I _D	Drain Current	- Continuous (T _C = 25°C)		38	•	
		- Continuous (T _C = 100 ^o C)		22	— A	
I _{DM}	Drain Current	- Pulsed	Pulsed (Note 1)		A	
E _{AS}	Single Pulsed Avalanche Energy (1200	mJ	
I _{AR}	Avalanche Current		(Note 1) 38		Α	
E _{AR}	Repetitive Avalanche Energ	ду	(Note 1)	31	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.5	V/ns	
P _D	Power Dissipation	(T _C = 25°C)		312	W	
		- Derate Above 25°C		2.5	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

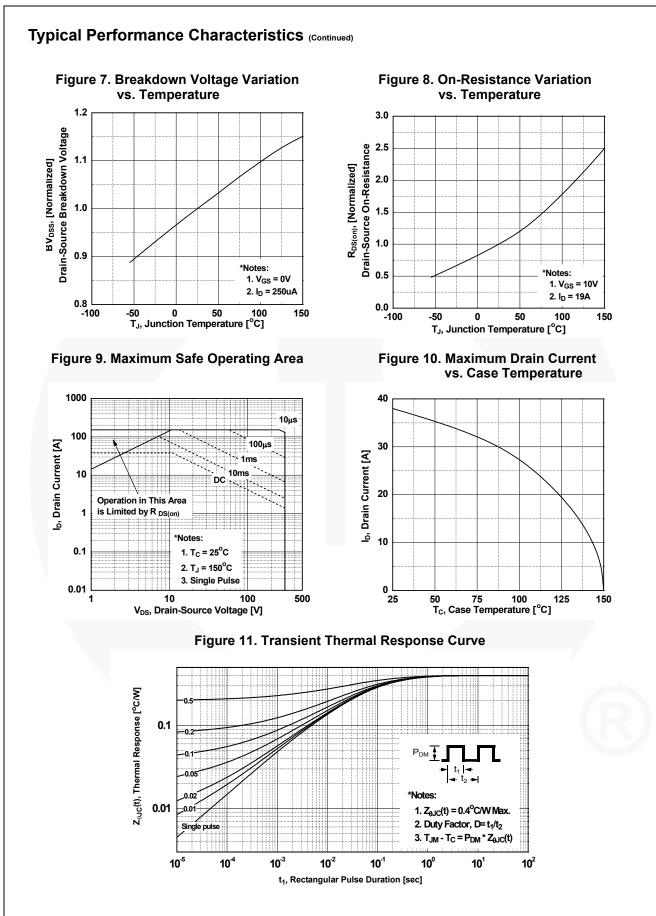
Symbol	Parameter	FDA38N30	Unit		
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max. 0.4				
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	40	− °C/W		

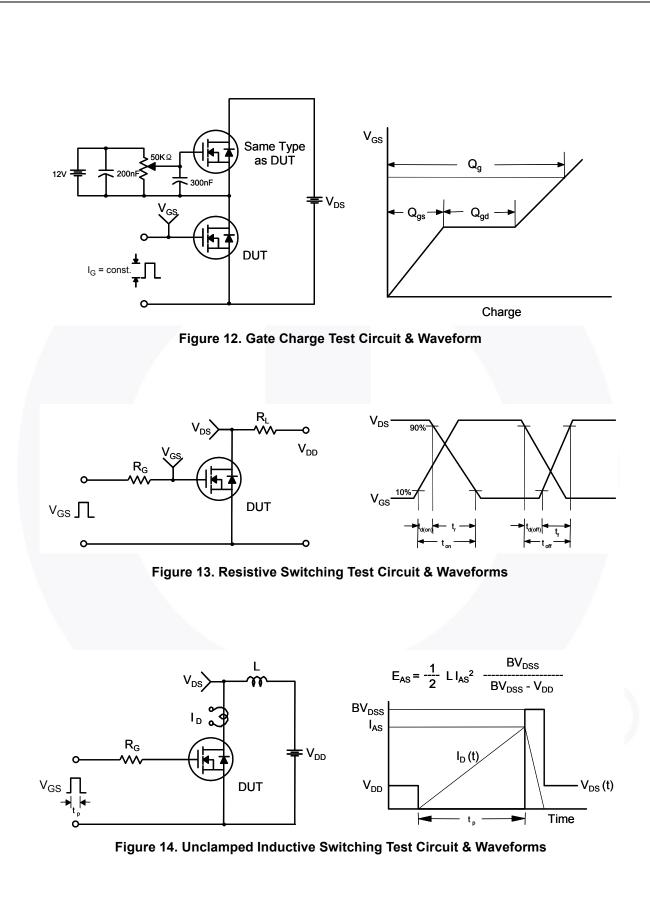
FDA38N30
- N-Channel I
UniFET TM
MOSFET

Part Number FDA38N30		Top Mark	Package			Та	pe Width	Qua	antity
		FDA38N30	TO-3PN			N/A		30 units	
Electric	al Char	acteristics T _c = 25°C	unless otherwi	se noted.					
Symbol		Parameter		Conditions		Min.	Тур.	Max	Unit
Off Charac	cteristics				ļ		Į.	ł	
BV _{DSS}	Drain to Source Breakdown Voltage		I _D = 2	$I_D = 250 \ \mu A, V_{GS} = 0 \ V, T_C = 25^{\circ}C$			-	-	V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient		I _D = 25	I_D = 250 µA, Referenced to 25°C			0.3	-	V/∘C
				V _{DS} = 300 V, V _{GS} = 0 V		-	-	1	
I _{DSS}	Zero Gate Voltage Drain Current		V _{DS} =	$V_{DS} = 240 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			-	10	μA
I _{GSS}	Gate-Bod	/ Leakage Current		V _{GS} = ±30 V, V _{DS} = 0 V			-	±100	nA
On Charac	cteristics								<u> </u>
V _{GS(th)}	Gate Threshold Voltage		V _{DS} =	V _{GS} , I _D = 250 μA		3.0	-	5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance		V _{GS} =	V _{GS} = 10 V, I _D = 19 A		-	0.070	0.085	Ω
9 _{FS}	Forward Transconductance		V _{DS} =	V _{DS} = 20 V, I _D = 19 A			6.3	-	S
Dynamic O	Characteris	tics							2
C _{iss}	Input Cap	acitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		-	2600	-	pF
C _{oss}	Output Ca	pacitance				-	500	-	pF
C _{rss}	Reverse T	ransfer Capacitance	I = I K			-	60	-	pF
Q _{g(tot)}	Total Gate	Charge at 10V	.,			-	60	-	nC
Q _{gs}	Gate to So	ource Gate Charge		$V_{DS} = 240 \text{ V}, \text{ I}_{D} = 38 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4)		-	17	-	nC
Q _{gd}	Gate to D	ain "Miller" Charge				-	28	-	nC
	Characteri								
t _{d(on)}	1	elay Time				-	53	69	ns
t _r	Turn-On F	Rise Time		V_{DD} = 150 V, I _D = 38 A, R_{G} = 25 Ω , V_{GS} = 10 V (Note 4)		-	110	143	ns
t _{d(off)}	Turn-Off D	elay Time	$R_{G} = 2$			-	118	153	ns
t _f	Turn-Off F	all Time				-	54	70	ns
	rce Diode C	haracteristics	I				1	1	L
Is	Maximum Continuous Drain to Source			rward Current		-	-	38	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current			-	-	150	Α		
V _{SD}	Drain to S	ource Diode Forward Volta	ige V _{GS} =	e V _{GS} = 0 V, I _{SD} = 38 A			-	1.4	V
t _{rr}	Reverse F	Recovery Time		0 V, I _{SD} = 38 A,		-	315	-	ns
Q _{rr}	Reverse F	Recovery Charge	dl _F /dt	dl _F /dt = 100 A/μs		-	4.0		μC

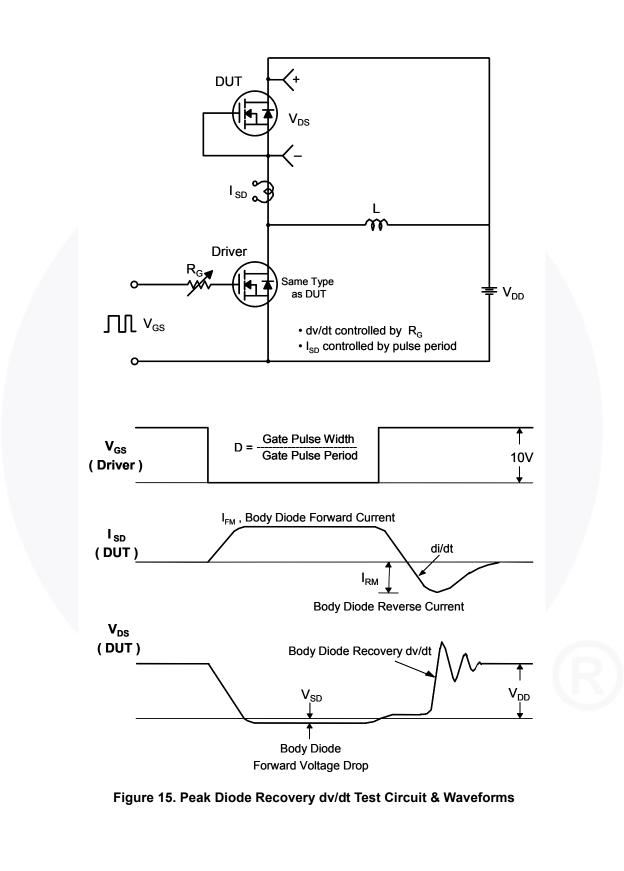

Notes:

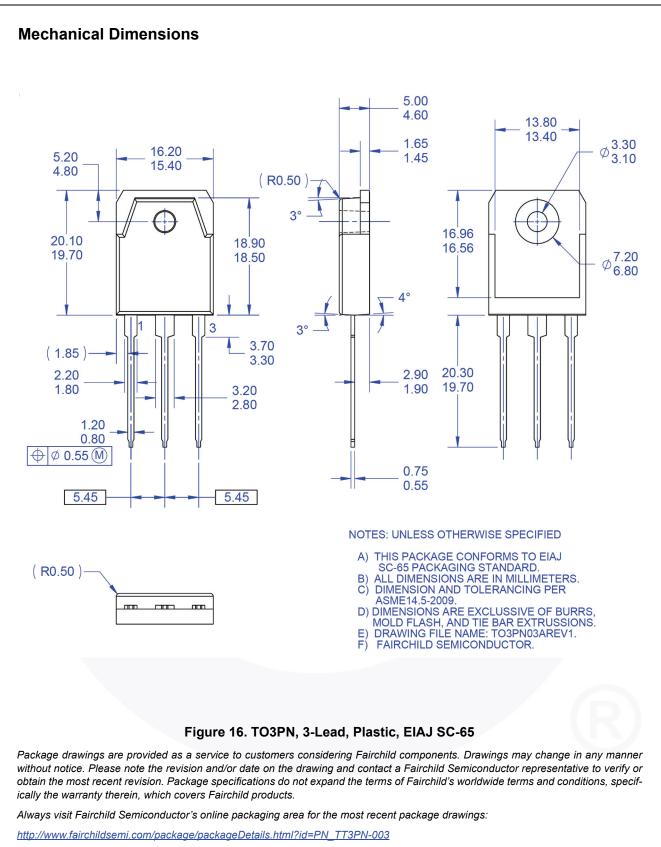
1. Repetitive rating: pulse-width limited by maximum junction temperature.


2. L = 1.7 mH, I_{AS} = 38 A, V_DD = 50 V, R_G = 25 $\Omega,$ starting T_J = 25°C.


3. I_{SD} \leq 38 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS}, starting T_J = 25°C.

4. Essentially independent of operating temperature typical characteristics.




FDA38N30 Rev. C2

FDA38N30 — N-Channel UniFETTM MOSFET

