

Is Now Part of

ON Semiconductor®

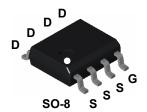
To learn more about ON Semiconductor, please visit our website at www.onsemi.com

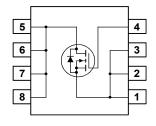
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

FDS8884

N-Channel PowerTrench® MOSFET

30V, **8.5A**, **23m**Ω


General Descriptions


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\mbox{\scriptsize DS}(on)}$ and fast switching speed.

Features

- Max $r_{DS(on)} = 23m\Omega$ at $V_{GS} = 10V$, $I_D = 8.5A$
- Max $r_{DS(on)} = 30m\Omega$ at $V_{GS} = 4.5V$, $I_D = 7.5A$
- Low gate charge
- 100% R_G Tested
- RoHS Compliant

MOSFET Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DS}	Drain to Source Voltage	30	V
V_{GS}	Gate to Source Voltage	±20	V
	Drain Current Continuous (Note 1a)	8.5	Α
ID	Pulsed	40	Α
E _{AS}	Single Pulse Avalanche Energy (Note 2)	32	mJ
В	Power dissipation	2.5	W
P_{D}	Derate above 25°C	20	mW/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to 150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS8884	FDS8884	SO-8	330mm	12mm	2500 units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

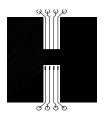
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu\text{A}$, referenced to 25°C		23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1 250	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V			±100	nA

On Characteristics (Note 3)

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.2	1.7	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		-4.9		mV/°C
		$V_{GS} = 10V, I_D = 8.5A,$		19	23	
race	Drain to Source On Resistance	$V_{GS} = 4.5V$, $I_{D} = 7.5A$,		23	30	mΩ
r _{DS(on)}	Brain to course on resistance	$V_{GS} = 10V, I_D = 8.5A,$ $T_J = 125^{\circ}C$		26	32	11152

Dynamic Characteristics

C _{iss}	Input Capacitance	V 45V V 0V	475	635	pF
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	100	135	рF
C _{rss}	Reverse Transfer Capacitance	1 – 1101112	65	100	pF
R_G	Gate Resistance	f = 1MHz	0.9	1.6	Ω


Switching Characteristics (Note 3)

t _{d(on)}	Turn-On Delay Time		5	10	ns
t _r	Rise Time	$V_{DD} = 15V, I_D = 8.5A$ $V_{GS} = 10V, R_{GS} = 33\Omega$	9	18	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, H_{GS} = 3312$	42	68	ns
t _f	Fall Time		21	34	ns
Q _g	Total Gate Charge	$V_{DS} = 15V, V_{GS} = 10V$ $I_{D} = 8.5A$	9.2	13	nC
Q_g	Total Gate Charge	$V_{DS} = 15V, V_{GS} = 5V$	5.0	7	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 8.5A	1.5		nC
Q _{gd}	Gate to Drain Charge		2.0		nC

Drain-Source Diode Characteristics

V	Source to Drain Diode Voltage	I _{SD} = 8.5A	0.9	1.25	V
V_{SD}	Source to Drain Diode Voltage	I _{SD} = 2.1A	0.8	1.0	V
t _{rr}	Reverse Recovery Time	$I_F = 8.5A$, di/dt = 100A/ μ s		33	ns
Q _{rr}	Reverse Recovery Charge			20	nC

^{1:} R_{B,IA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{B,C} is guaranteed by design while R_{B,CA} is determined by the user's board design.

a) 50°C/W when mounted on a 1 in2 pad of 2 oz copper

b) 105°C/W when mounted on a .04 in² pad of 2 oz copper

c) 125°C/W when mounted on a minimun pad

Scale 1: 1 on letter size paper

2: Starting $T_J=25^{\circ}C$, L = 1mH, I_{AS} = 8A, V_{DD} = 27V, V_{GS} = 10V. 3: Pulse Test:Pulse Width <300 μ S, Duty Cycle <2%.

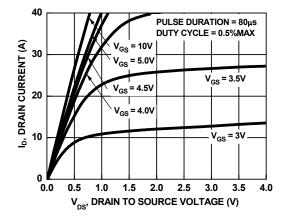


Figure 1. On Region Characteristics

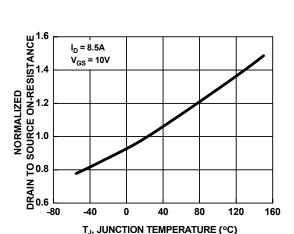


Figure 3. Normalized On Resistance vs Junction Temperature

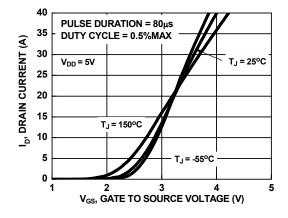


Figure 5. Transfer Characteristics

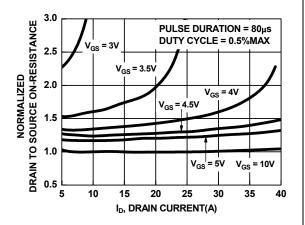


Figure 2. Normalized On-Resistance vs Drain current and Gate Voltage

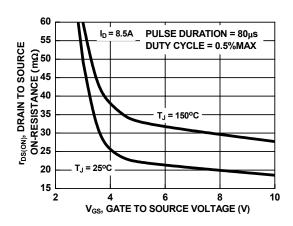


Figure 4. On-Resistance vs Gate to Source Voltage

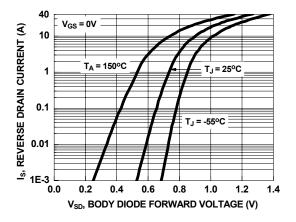


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

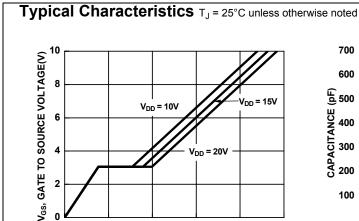


Figure 7. Gate Charge Characteristics

6

Q_g, GATE CHARGE(nC)

8

10

0

2

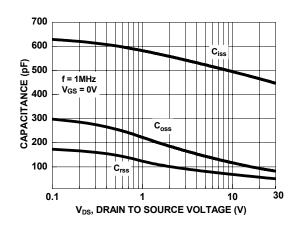


Figure 8. Capacitance vs Drain to Source Voltage

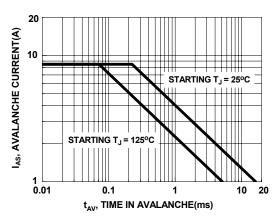


Figure 9. Unclamped Inductive Switching Capability

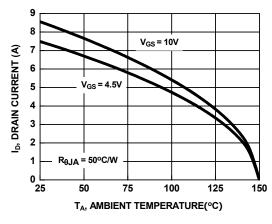


Figure 10. Maximum Continuous Drain Current vs **Ambient Temperature**

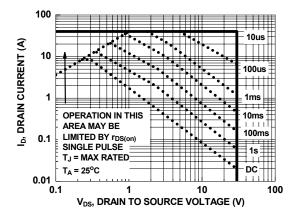


Figure 11. Forward Bias Safe Operating Area

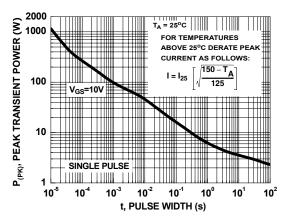


Figure 12. Single Pulse Maximum Power Dissipation

www.fairchildsemi.com

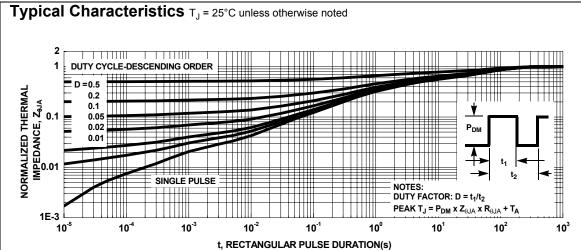


Figure 13. Transient Thermal Response Curve

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic [®]
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I ² C™	MSXPro™	RapidConnect™	UHC™
E ² CMOS™	i-Lo™	OCX™	µSerDes™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
FACT Quiet Series™		OPTOPLANAR™	SMART START™	Wire™
		PACMAN™	SPM™	
Across the board. Aro	und the world.™	POP™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

Power247™

PowerEdge™

LIFE SUPPORT POLICY

The Power Franchise®

Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SuperFET™

SuperSOT™-3

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I18