

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

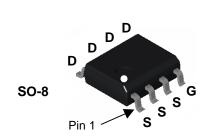
FAIRCHILD

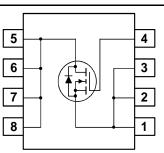
SEMICONDUCTOR®

FDS2572

150V, 0.047 Ohms, 4.9A, N-Channel UltraFET[®] Trench MOSFET

General Description


UltraFET[®] devices combine characteristics that enable benchmark efficiency in power conversion applications. Optimized for Rds(on), low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC to DC converters.


Applications

- DC/DC converters
- Telecom and Data-Com Distributed Power Architectures
- 48-volt I/P Half-Bridge/Full-Bridge
- 24-volt Forward and Push-Pull topologies

Features

- $R_{DS(ON)} = 0.040\Omega$ (Typ.), $V_{GS} = 10V$
- $Q_{g(TOT)} = 29nC (Typ.), V_{GS} = 10V$
- Low Q_{RR} Body Diode
- Maximized efficiency at high frequencies
- UIS Rated

MOSFET Maximum Ratings $T_A=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain to Source Voltage	150	V	
V _{GS}	Gate to Source Voltage	±20	V	
I _D	Drain Current			
	Continuous (T _C = 25°C, V _{GS} = 10V, $R_{\theta JA}$ = 50 °C/W)	4.9	Α	
	Continuous (T _C = 100°C, V _{GS} = 10V, $R_{\theta JA}$ = 50 °C/W)	3.1	А	
	Pulsed	Figure 4	А	
P _D	Power dissipation	2.5	W	
	Derate above 25°C	20	mW/ºC	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 150	°C	

Thermal Characteristics

$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	(NOTE1)	25	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction to Case at 10 seconds	(NOTE2)	50	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction to Case at steady state	(NOTE2)	85	°C/W

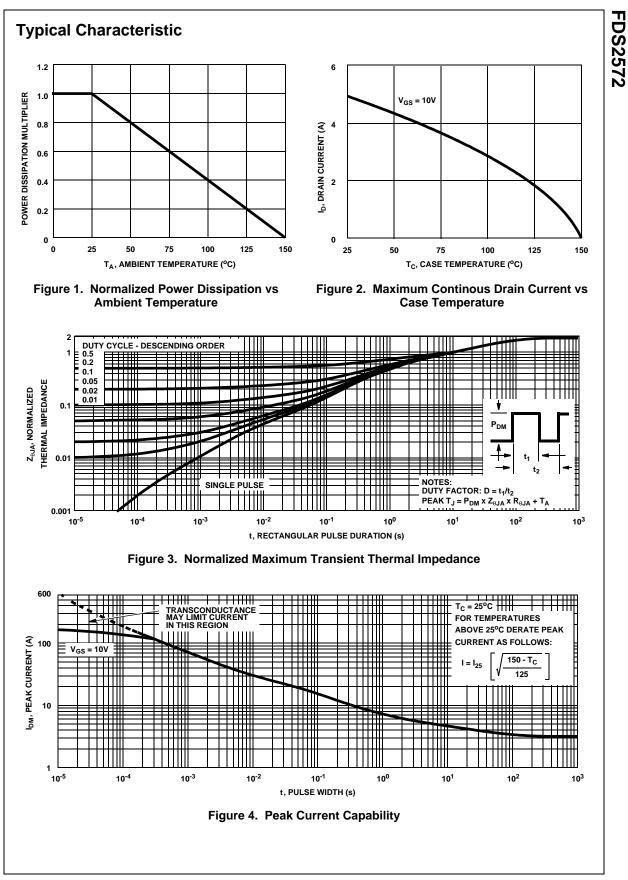
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
FDS2572	FDS2572	330mm	12mm	2500units

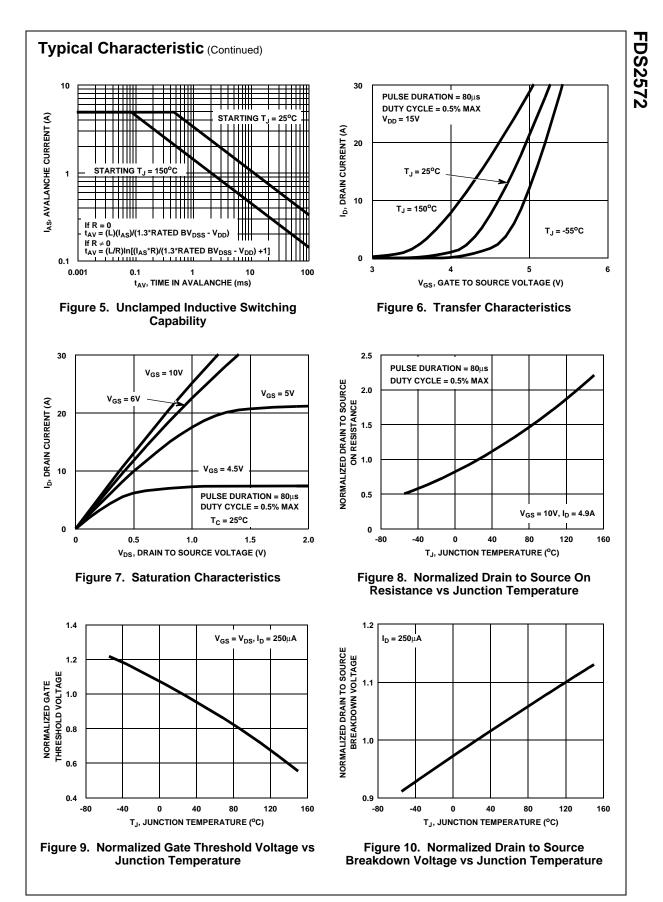
FDS2572

July 2013

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
B _{VDSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	150	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 120V$ $V_{GS} = 0V$ $T_{C} = 150^{\circ}C$	-	-	1 250	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V	-	-	±100	nA
On Chara	cteristics					
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	-	4	V
r _{DS(ON)}	Drain to Source On Resistance	$I_{\rm D} = 4.9$ A, $V_{\rm GS} = 10$ V	-	0.040	0.047	Ω
r _{DS(ON)}	Drain to Source On Resistance	I _D = 4.9A, V _{GS} = 6V	-	0.044	0.053	Ω
Dynamic	Characteristics					
C _{ISS}	Input Capacitance		-	2050	2870	pF
C _{OSS}	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ = 1MHz	-	220	310	pF
C _{RSS}	Reverse Transfer Capacitance		-	48	80	pF
R _g	Gate Resistance		0.1	1.3	3.0	Ω
Q _{g(TOT)}	Total Gate Charge at 10V	V _{GS} = 0V to 10V	-	29	38	nC
Q _{g(TH)}	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 2V$ $V_{DD} = 75V$	-	4	6	nC
Q _{gs}	Gate to Source Gate Charge	$I_D = 4.9A$ $I_a = 1.0mA$	-	8	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	6	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	4	-	nC
Switching	g Characteristics					
t _{ON}	Turn-On Time		-	-	27	ns
t _{d(ON)}	Turn-On Delay Time		-	14	-	ns
t _r	Rise Time	V _{DD} = 75V, I _D = 4.9A	-	4	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V, R_G = 10\Omega$	-	44	-	ns
t _f	Fall Time		-	22	-	ns
t _{OFF}	Turn-Off Time		-	-	100	ns
Drain-Sou	urce Diode Characteristics					
\/	Source to Droip Diade Maltara	I _{SD} = 4.9A	-	-	1.25	V
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 3.1A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 4.9A, dI_{SD}/dt = 100A/\mu s$	-	-	72	ns
Q _{RR}	Reverse Recovered Charge	I _{SD} = 4.9, dI _{SD} /dt =100A/μs	-	-	158	nC

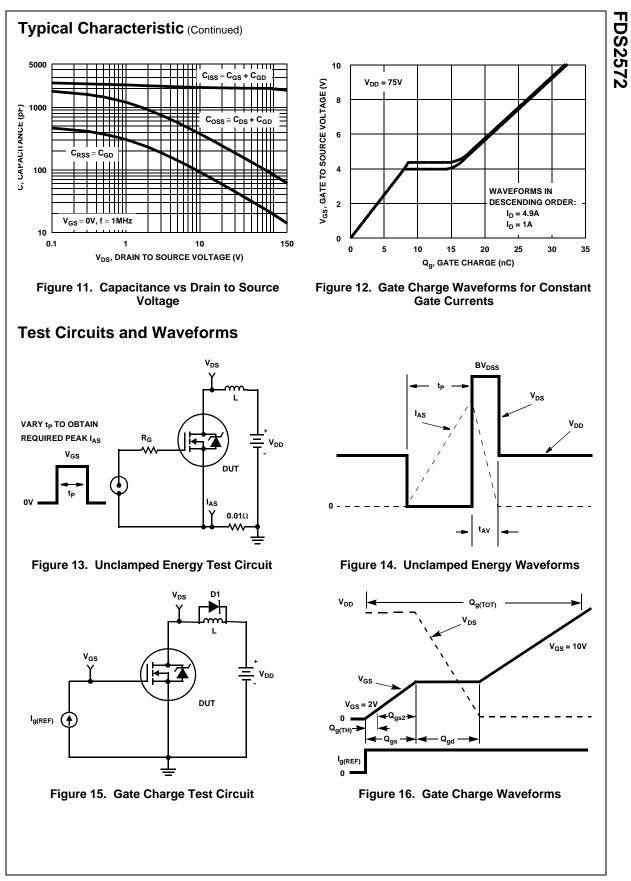

Notes:

1. R_{RJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal referance is defined as the solder mounting surface of the drain pins. R_{RJC} is guaranteed by design while R_{RCA} is determined by the user's board design.

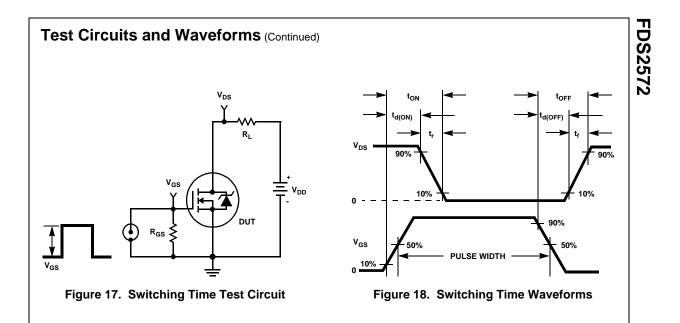

2. $R_{\theta JA}$ is measured with 1.0in $^2\,$ copper on FR-4 board

©2001 Fairchild Semiconductor Corporation

FDS2572



©2001 Fairchild Semiconductor Corporation



©2001 Fairchild Semiconductor Corporation

FDS2572 Rev. C, July 2013

©2001 Fairchild Semiconductor Corporation

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{IM}, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM}, in an application. Therefore the application's ambient temperature, T_A (^oC), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors:

- 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 19 defines the $\mathsf{R}_{\theta \mathsf{J}\mathsf{A}}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually


utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 19 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.

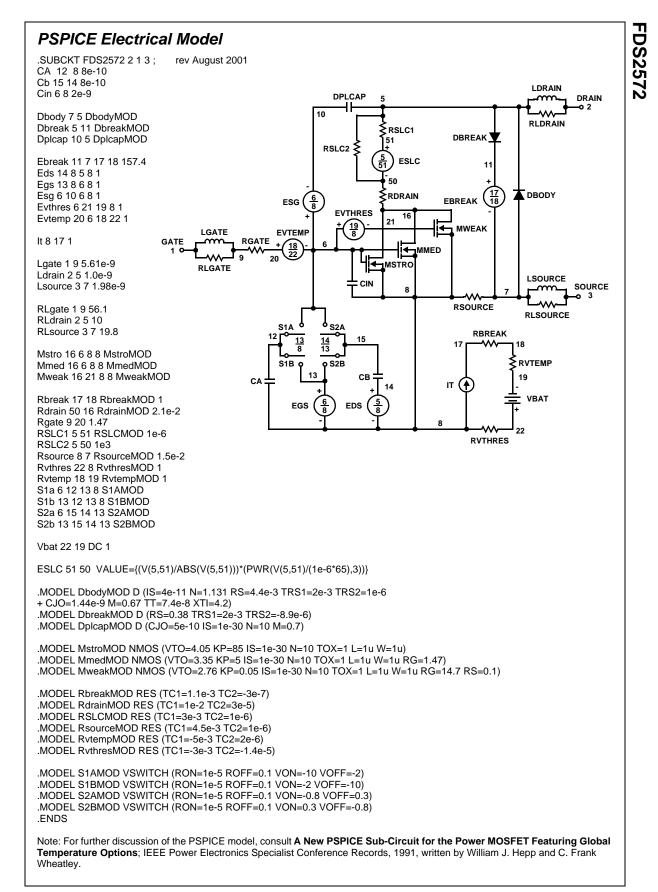
$$R_{\theta JA} = 64 + \frac{26}{0.23 + Area}$$
(EQ. 2)

The transient thermal impedance ($Z_{\theta JA}$) is also effected by varied top copper board area. Figure 20 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas.

Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.

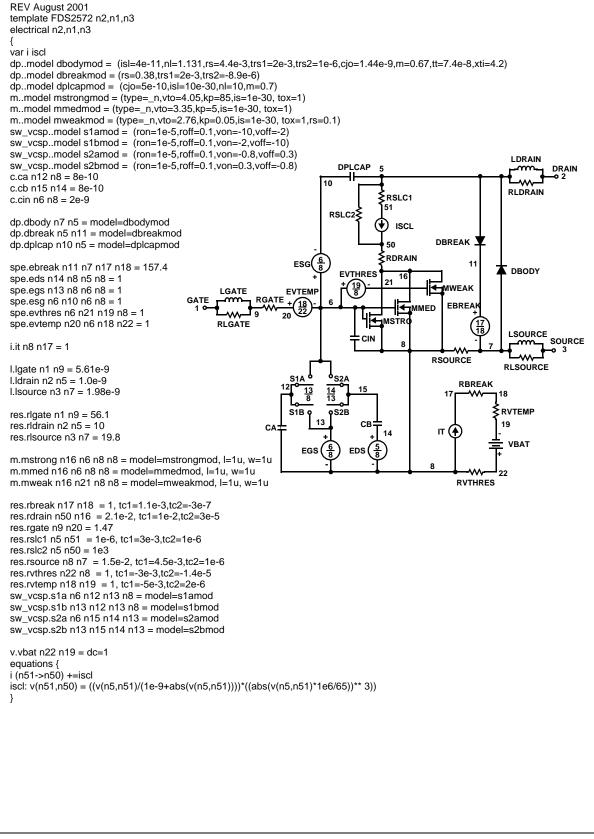
©2001 Fairchild Semiconductor Corporation

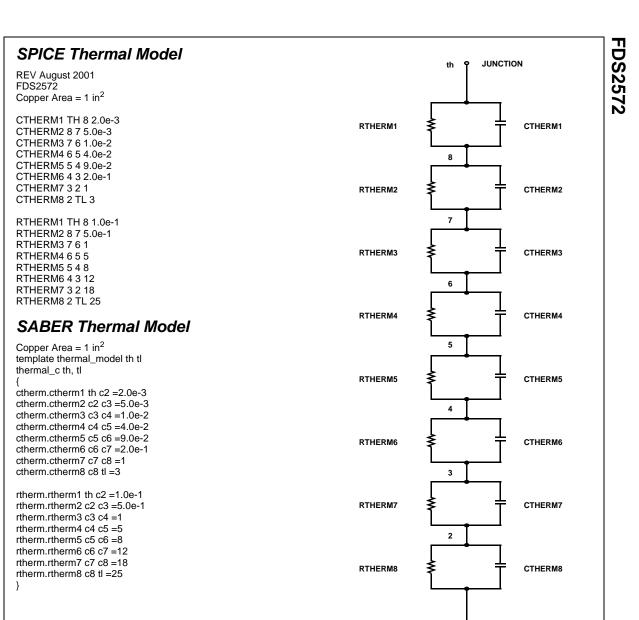
120


90

60

30

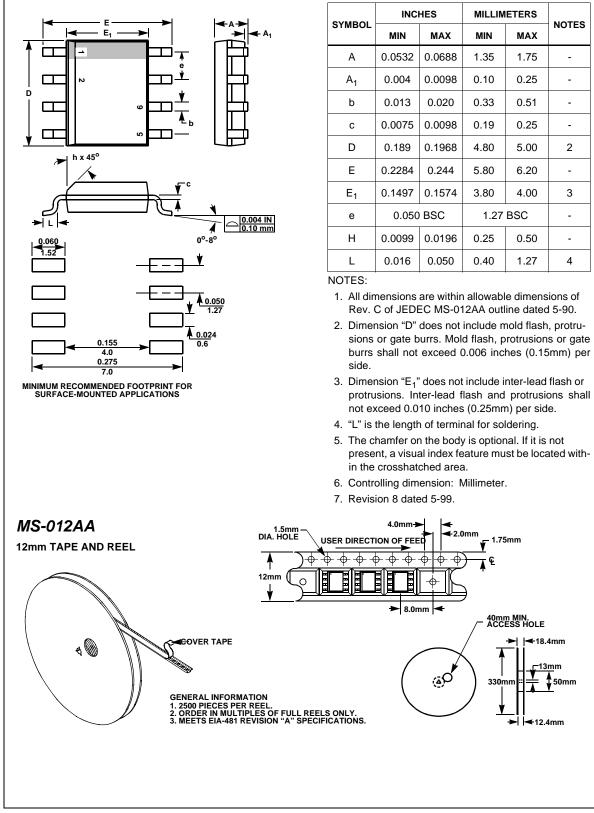

0


Z_{0JA}, THERMAL IMPEDANCE (°C/W)

FDS2572

SABER Electrical Model

TABLE 1. THERMAL MODELS


0.04 in ²	0.28 in ²	0.52 in ²	0.76 in ²	1.0 in ²
1.2e-1	1.5e-1	2.0e-1	2.0e-1	2.0e-1
0.5	1.0	1.0	1.0	1.0
1.3	2.8	3.0	3.0	3.0
26	20	15	13	12
39	24	21	19	18
55	38.7	31.3	29.7	25
	1.2e-1 0.5 1.3 26 39	1.2e-1 1.5e-1 0.5 1.0 1.3 2.8 26 20 39 24	1.2e-1 1.5e-1 2.0e-1 0.5 1.0 1.0 1.3 2.8 3.0 26 20 15 39 24 21	1.2e-1 1.5e-1 2.0e-1 2.0e-1 0.5 1.0 1.0 1.0 1.3 2.8 3.0 3.0 26 20 15 13 39 24 21 19

CASE

tl

MS-012AA

8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE

©2001 Fairchild Semiconductor Corporation

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

F-PFS™ FRFFT® Global Power ResourceSM Green Bridae™ Green FPS[™] Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2[™] MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

FPS™

 $(1)_{\mathbb{R}}$ PowerTrench® PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET®

SuperSOT™-3

SuperSOT™-6

SuperSOT™-8

SupreMOS®

SyncFET™

Sync-Lock™ SYSTEM^{®*} TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinvPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* μSerDes™

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev.