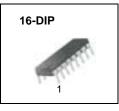


Is Now Part of

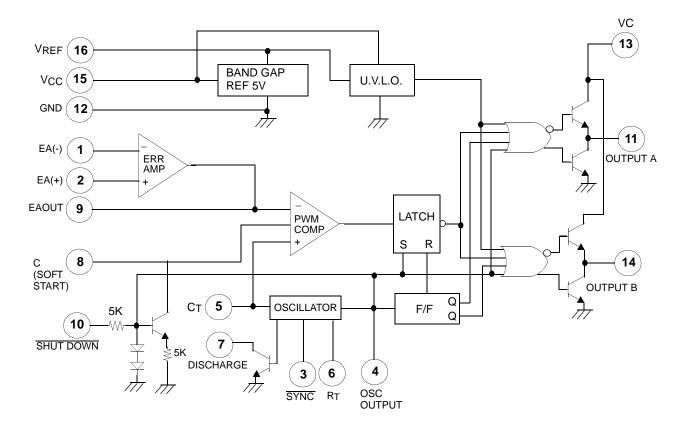
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the


KA3525A SMPS Controller

Features


- 5V ±1% Reference
- Oscillator Sync Terminal
- Internal Soft Start
- Deadtime Control
- Under Voltage Lockout

Description

The KA3525A is a monolithic integrated circuit that includes all of the control circuits necessary for a pulse width modulating regulator. There are a voltage reference, an error amplifier, a pulse width modulator, an oscillator, an under voltage lockout, a soft start circuit, and the output driver in the chip.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	40	V
Collector Supply Voltage	Vc	40	V
Output Current, Sink or Source	lo	500	mA
Reference Output Current	IREF	50	mA
Oscillator Charging Current	ICHG(OSC)	5	mA
Power Dissipation ($T_A = 25^{\circ}C$)	PD	1000	m/W
Operating Temperature	TOPR	0 ~ +70	°C
Storage Temperature	TSTG	-65 ~ +150	°C
Lead Temperature (Soldering, 10sec)	TLEAD	+300	°C

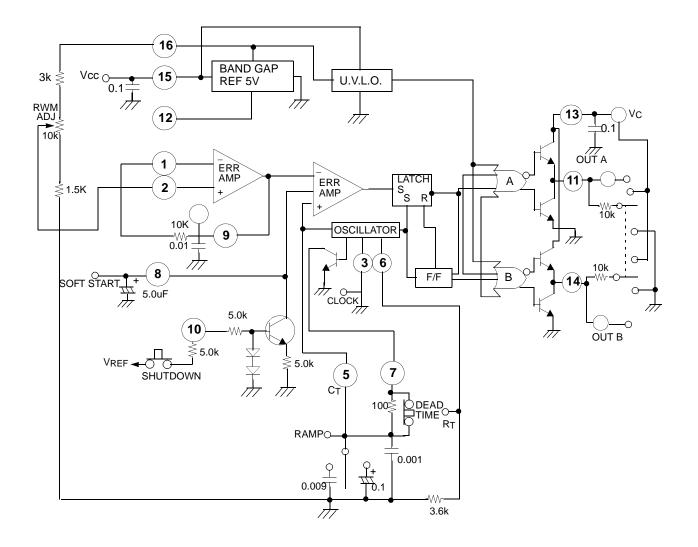
Electrical Characteristics

(V_{CC} = 20V, T_A = 0 to +70°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
REFERENCE SECTION				•		
Reference Output Voltage	Vref	$T_J = 25^{\circ}C$	5.0	5.1	5.2	V
Line Regulation	$\Delta VREF$	VCC = 8 to 35V	-	9	20	mV
Load Regulation	ΔV_{REF}	IREF = 0 to 20mA	-	20	50	mV
Short Circuit Output Current	Isc	VREF = 0, TJ = 25°C	-	80	100	mA
Total Output Variation (Note1)	ΔV_{REF}	Line, Load and Temperature	4.95	-	5.25	V
Temperature Stability (Note1)	STT	-	-	20	50	mV
Long Term Stability (Note1)	ST	T _J = 125°C ,1KHR _S	-	20	50	mV
OSCILLATOR SECTION						
Initial Accuracy (Note1, 2)	ACCUR	$T_J = 25^{\circ}C$	-	±3	±6	%
Frequency Change With Voltage	$\Delta f/\Delta VCC$	VCC = 8 to 35V (Note1, 2)	-	±0.8	±2	%
Maximum Frequency	f(MAX)	$R_T = 2k\Omega$, $C_T = 470pF$	400	430	-	kHz
Minimum Frequency	f(MIN)	$R_{T} = 200 k\Omega, C_{T} = 0.1 uF$	-	60	120	Hz
Clock Amplitude (Note1, 2)	V(CLK)	-	3	4	-	V
Clock Width (Note1, 2)	tW(CLK)	$T_J = 25^{\circ}C$	0.3	0.6	1	μs
Sync Threshold	VTH(SYNC)	-	1.2	2	2.8	V
Sync Input Current	II(SYNC)	Sync = 3.5V	-	1.3	2.5	mA

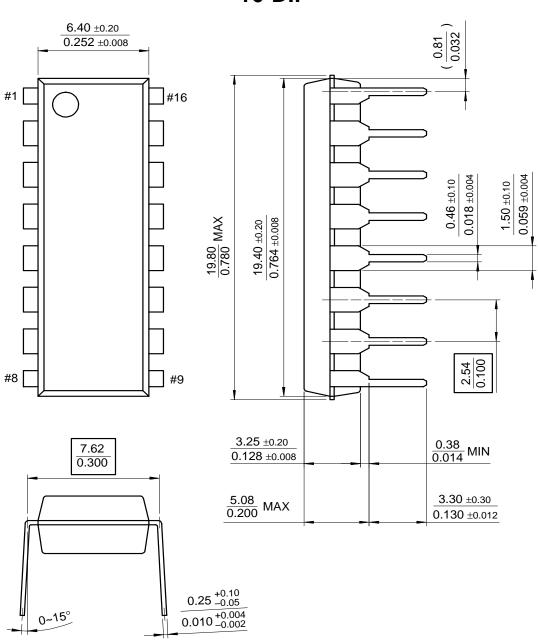
Electrical Characteristics (Continued)

(VCC = 20V, TA = 0 to +70°C, unless otherwise specified)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
ERROR AMPLIFIER SECTION (V _{CM} = 5.1V)						
Input Offset Voltage	Vio	-	-	1.5	10	mV
Input Bias Current	IBIAS	-	-	1	10	μA
Input Offset Current	lio	-	-	0.1	1	μA
Open Loop Voltage Gain	Gvo	$R_L \ge 10 M \Omega$	60	80	-	dB
Common Mode Rejection Ratio	CMRR	VCM = 1.5 to 5.2V	60	90	-	dB
Power Supply Rejection Ratio	PSRR	Vcc = 8 to 3.5V	50	60	-	dB
PWM COMPARATOR SECTION	•					
Minimum Duty Cycle	D(MIN)	-	-	-	0	%
Maximum Duty Cycle	D(MAX)	-	45	49	-	%
Input Threshold Voltage (Note2)	VTH1	Zero Duty Cycle	0.7	0.9	-	V
Input Threshold Voltage (Note2)	VTH2	Max Duty Cycle	-	3.2	3.6	V
SOFT-START SECTION	•					
Soft Start Current	ISOFT	$V_{SD} = 0V, V_{SS} = 0V$	25	51	80	μΑ
Soft Start Low Level Voltage	VSL	VSD = 25V	-	0.3	0.7	V
Shutdown Threshold Voltage	VTH(SD)	-	0.9	1.3	1.7	V
Shutdown Input Current	IN(SD)	VSD = 2.5V	-	0.3	1	mA
OUTPUT SECTION			·			
Low Output Voltage I	Voli	ISINK = 20mA	-	0.1	0.4	V
Low Output Voltage II	Vol II	ISINK = 100mA	-	0.05	2	V
High Output Voltage I	Vсні	ISOURCE = 20mA	18	19	-	V
High Output Voltage II	Vсн II	ISOURCE = 100mA	17	18	-	V
Under Voltage Lockout	Vuv	V8 and V9 = High	6	7	8	V
Collector Leakage Current	ILKG	VCC = 35V	-	80	200	μA
Rise Time (Note1)	tR	C _L = 1uF, T _J = 25°C	-	80	600	ns
Fall Time (Note1)	tF	CL = 1uF, TJ = 25°C	-	70	300	ns
STANDBY CURRENT						
Supply Current	Icc	VCC = 35V	-	12	20	mA

Note :

1. These parameters. although guaranteed over the recommended operating conditions, are not 100% tested in production


2. Tested at fOSC=40kHz (RT =3.6K, CT =0.01uF, RI = 0Ω)

Test Circuit

Mechanical Dimensions

Package

16-DIP

Ordering Information

Product Number	Package	Operating Temperature
KA3525A	16-DIP	0 ~ +70°C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com