

Is Now Part of

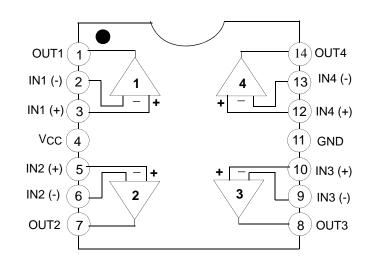
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

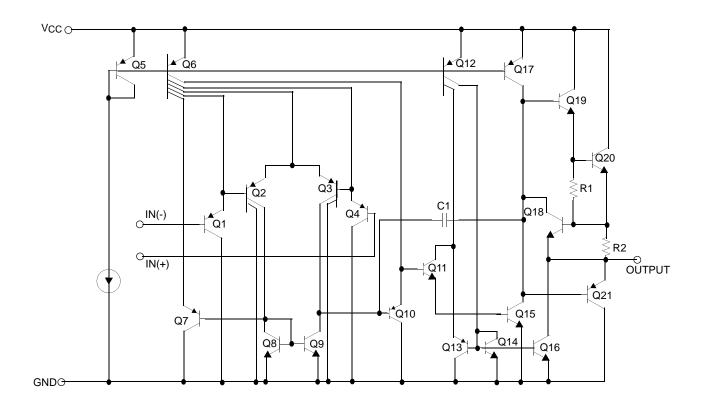

LM324/LM324A, LM2902/LM2902A Quad Operational Amplifier

Features


- Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain: 100dB
- Wide Power Supply Range: LM324/LM324A : 3V~32V (or ±1.5 ~ 16V) LM2902/LM2902A: 3V~26V (or ±1.5V ~ 13V)
- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V to VCC -1.5V
- Power Drain Suitable for Battery Operation

Description

The LM324/LM324A, LM2902/LM2902A consist of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide voltage range. operation from split power supplies is also possible so long as the difference between the two supplies is 3 volts to 32 volts. Application areas include transducer amplifier, DC gain blocks and all the conventional OP Amp circuits which now can be easily implemented in single power supply systems.



Internal Block Diagram

Schematic Diagram

(One Section Only)

Absolute Maximum Ratings

Parameter	Symbol	LM324/LM324A	LM2902/LM2902A	Unit
Power Supply Voltage	Vcc	±16 or 32	±13 or 26	V
Differential Input Voltage	VI(DIFF)	32	26	V
Input Voltage	VI	-0.3 to +32	-0.3 to +26	V
Output Short Circuit to GND Vcc≤15V, TA=25°C(one Amp)	-	Continuous	Continuous	-
Power Dissipation, T _A =25°C 14-DIP 14-SOP	PD	1310 640	1310 640	mW
Operating Temperature Range	TOPR	0 ~ +70	-40 ~ +85	°C
Storage Temperature Range	TSTG	-65 ~ +150	-65 ~ +150	°C

Thermal Data

Parameter	Symbol	Value	Unit
Thermal Resistance Junction-Ambient Max. 14-DIP 14-SOP	Rθja	95 195	°C/W

Electrical Characteristics

$(V_{CC} = 5.0V, V_{EE} = GND, T_A = 25^{\circ})$	^o C, unless otherwise specified)
---	---

Deremeter	Symbol	6.	Conditions		LM324	L .	l	Unit		
Parameter	Symbol	Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio		V to V _{CC} -1.5V 1.4V, R _S = 0Ω	-	1.5	7.0	-	1.5	7.0	mV
Input Offset Current	liO	VCM = 0	V	-	3.0	50	-	3.0	50	nA
Input Bias Current	IBIAS	VCM = 0	V	-	40	250	-	40	250	nA
Input Common-Mode Voltage Range	VI(R)	Note1		0	-	VCC -1.5	0	-	VCC -1.5	V
Supply Current	ICC	- ,	/CC = 30V 2,VCC=26V)	-	1.0	3	-	1.0	3	mA
		RL = ∞,\	/cc = 5V	-	0.7	1.2	-	0.7	1.2	mA
Large Signal Voltage Gain	G∨		5V,RL=2kΩ 1V to 11V	25	100	-	25	100	-	V/mV
		H) Note1	$R_L = 2k\Omega$	26	-	-	22	-	-	V
Output Voltage Swing	VO(H)		RL=10kΩ	27	28	-	23	24	-	V
	VO(L)	VCC = 5	VCC = 5V, RL=10k Ω		5	20	-	5	100	mV
Common-Mode Rejection Ratio	CMRR		-	65	75	-	50	75	-	dB
Power Supply Rejection Ratio	PSRR		-	65	100	-	50	100	-	dB
Channel Separation	CS	f = 1kHz (Note2)	to 20kHz	-	120	-	-	120	-	dB
Short Circuit to GND	ISC	VCC = 1	5V	-	40	60	-	40	60	mA
	ISOURCE		V, VI(-) = 0V 5V, VO(P) = 2V	20	40	-	20	40	-	mA
Output Current	Isink	VI(+) = 0 VCC = 1 VO(P) =	,	10	13	-	10	13	-	mA
	ISINK	VI(+) = 0 VCC = 1 VO(R) =		12	45	-	-	-	-	μA
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-	-	Vcc	V

Note :

1. VCC=30V for LM324 , VCC = 26V for LM2902

2. This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(V_{CC} = 5.0V, V_{EE} = GND, unless otherwise specified) The following specification apply over the range of 0°C \leq T_A \leq +70°C for the LM324 ; and the -40°C \leq T_A \leq +85°C for the LM2902

Parameter	Symbol	Conditions			LM324	ļ	I	Unit		
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO	$V_{ICM} = 0V$ to $V_{CC} - 1.5V$ $V_{O}(P) = 1.4V$, $R_S = 0\Omega$ (Note1)		-	-	9.0	-	-	10.0	mV
Input Offset Voltage Drift	ΔV IO/ ΔT	Rs = 0Ω	(Note2)	-	7.0	-	-	7.0	-	μV/°C
Input Offset Current	liO	VCM = 0	V	-	-	150	-	-	200	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ	Rs = 0Ω	(Note2)	-	10	-	-	10	-	pA/∘C
Input Bias Current	IBIAS	VCM = 0	V	-	-	500	-	-	500	nA
Input Common-Mode Voltage Range	VI(R)	Note1		0	-	Vcc -2.0	0	-	Vcc -2.0	V
Large Signal Voltage Gain	Gv		$V_{CC} = 15V, R_L = 2.0k\Omega$ $V_O(P) = 1V$ to 11V		-	-	15	-	-	V/mV
	Voui	Note1	RL=2kΩ	26	-	-	22	-	-	V
Output Voltage Swing	VO(H)	Noter	RL=10kΩ	27	28	-	23	24	-	V
	VO(L)	$V_{CC} = 5^{1}$	V, RL=10kΩ	-	5	20	-	5	100	mV
Output Current	ISOURCE	VI(+) = 1V, VI(-) = 0V VCC = 15V, VO(P) = 2V		10	20	-	10	20	-	mA
	ISINK	VI(+) = 0V, VI(-) = 1V VCC = 15V, VO(P) = 2V		5	8	-	5	8	-	mA
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-	-	Vcc	V

Note:

1. VCC=30V for LM324 , VCC = 26V for LM2902

2. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (Continued)

$(V_{CC} = 5.0V,$	$V_{EE} = GND$, T _A = 25°C, unles	s otherwise specified)
-------------------	----------------	--------------------------------	------------------------

Devementer	Cumbal	Conditions -		L	M324	Α	L	Unit		
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio		V to VCC -1.5V 1.4V, RS = 0Ω	-	1.5	3.0	-	1.5	2.0	mV
Input Offset Current	lio	VCM = 0	V	-	3.0	30	-	3.0	50	nA
Input Bias Current	IBIAS	VCM = 0	V	-	40	100	-	40	250	nA
Input Common-Mode Voltage Range	VI(R)	Vcc = 3	0V	0	-	VCC -1.5	0	-	Vcc -1.5	V
Supply Current	ICC		0V, RL = ∞ 2,VCC=26V)	-	1.5	3	-	1.0	3	mA
		VCC = 5	V, RL = ∞	-	0.7	1.2	-	0.7	1.2	mA
Large Signal Voltage Gain	Gv		5V, RL= 2kΩ 1V to 11V	25	100	-	25	100	-	V/mV
	V _{O(H)}	Note1	$R_L = 2k\Omega$	26	-	-	22	-	-	V
Output Voltage Swing			$R_L = 10k\Omega$	27	28	-	23	24	-	V
	VO(L)	Vcc = 5	V, RL=10kΩ	-	5	20	-	5	100	mV
Common-Mode Rejection Ratio	CMRR		-	65	85	-	50	75	-	dB
Power Supply Rejection Ratio	PSRR		-	65	100	-	50	100	-	dB
Channel Separation	CS	f = 1kHz (Note2)	to 20kHz	-	120	-	-	120	-	dB
Short Circuit to GND	ISC	VCC = 1	5V	-	40	60	-	40	60	mA
	ISOURCE	VI(+) = 1V, VI(-) = 0V VCC =15V, VO(P) = 2V		20	40	-	20	40	-	mA
Output Current	ISINK	$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} = 2V$		10	20	-	10	13	-	mA
		$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} =$ 200mV		12	50	-	-	-	-	μA
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-	-	Vcc	V

Note:

1. VCC=30V for LM324A ; VCC=26V for LM2902A

2. This parameter, although guaranteed, is not 100% tested in production.

Electrical Characteristics (Continued)

(V_{CC} = 5.0V, V_{EE} = GND, unless otherwise specified) The following specification apply over the range of $0^{\circ}C \le T_A \le +70^{\circ}C$ for the LM324A ; and the -40°C $\le T_A \le +85^{\circ}C$ for the LM2902A

Parameter	Symbol	60	L	M324	A	L	A	Unit		
Falametei	Symbol	Conditions –		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Input Offset Voltage	VIO	$V_{CM} = 0V$ to $V_{CC} - 1.5V$ $V_{O}(P) = 1.4V$, $R_S = 0\Omega$ (Note1)		-	-	5.0	-	-	6.0	mV
Input Offset Voltage Drift	$\Delta V_{IO}/\Delta T$	Rs = 0Ω	(Note2)	-	7.0	30	-	7.0	-	μV/°C
Input Offset Current	lio	VCM = 0	V	-	-	75	-	-	200	nA
Input Offset Current Drift	ΔΙΙΟ/ΔΤ	Rs = 0Ω	(Note2)	-	10	300	-	10	-	pA/∘C
Input Bias Current	IBIAS		-	-	40	200	-	-	500	nA
Input Common-Mode Voltage Range	VI(R)	Note1		0	-	Vcc -2.0	0	-	VCC -2.0	V
Large Signal Voltage Gain	Gv	$V_{CC} = 1$	5V, RL= 2.0kΩ	15	-	-	15	-	-	V/mV
	Vous	Note1	$R_L = 2k\Omega$	26	-	-	22	-	-	V
Output Voltage Swing	VO(H)	Noter	$R_L = 10k\Omega$	27	28	-	23	24	-	V
	VO(L)	$V_{CC} = 5V, R_{L} = 10k\Omega$		-	5	20	-	5	100	mV
	ISOURCE	VI(+) = 1V, VI(-) = 0V VCC = 15V, VO(P) = 2V		10	20	-	10	20	-	mA
Output Current	ISINK		V, VI(-) = 1V 5V, VO(P) = 2V	5	8	-	5	8	-	mA
Differential Input Voltage	VI(DIFF)		-	-	-	Vcc	-	-	Vcc	V

Note:

1. VCC=30V for LM324A ; VCC=26V for LM2902A.

2. These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

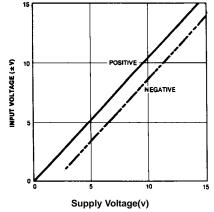


Figure 1. Input Voltage Range vs Supply Voltage

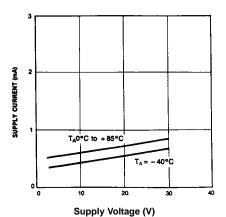


Figure 3. Supply Current vs Supply Voltage

Figure 5. Open Loop Frequency Response

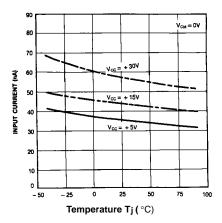


Figure 2. Input Current vs Temperature

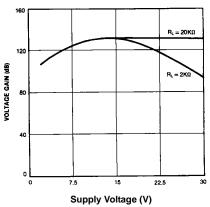


Figure 4. Voltage Gain vs Supply Voltage

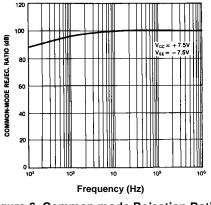


Figure 6. Common mode Rejection Ratio

Typical Performance Characteristics (Continued)

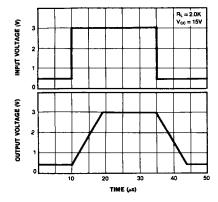


Figure 7. Voltage Follower Pulse Response

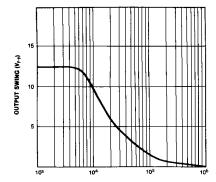


Figure 9. Large Signal Frequency Response

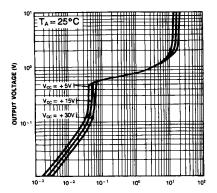


Figure 11. Output Characteristics vs Current Sinking

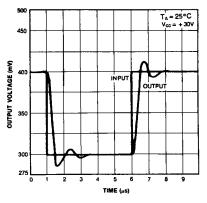


Figure 8. Voltage Follower Pulse Response (Small Signal)

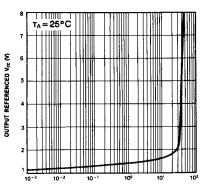


Figure 10. Output Characteristics vs Current Sourcing

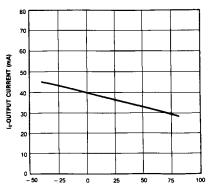


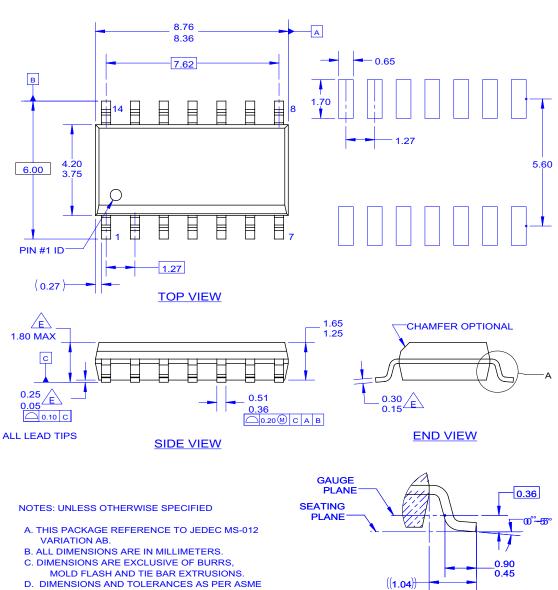
Figure 12. Current Limiting vs Temperature

Dimensions in millimeters

Mechanical Dimensions

Package

6.40 ± 0.20 2.08 0.252 ±0.008 #1 #14 **1.50** ±0.10 **0.059** ±0.004 0.018 ± 0.004 0.46 ± 0.10 <u>19.80</u> MAX 0.780 $\begin{array}{c} 19.40 \pm 0.20 \\ 0.764 \pm 0.008 \end{array}$ 2.54 0.100 #7 #8 7.62 3.25 ± 0.20 0.300 0.20 0.008 MIN 0.128 ±0.008 3.30 ± 0.30 $\frac{5.08}{0.200}$ MAX 0.130 ±0.012 $0.25 \substack{+0.10 \\ -0.05} \\ 0.010 \substack{+0.004 \\ -0.002}$ 0~15°


14-DIP

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

DETAIL "A" SCALE 2:1

- D. DIMENSIONS AND TOLERANCES AS PER ASME
- Y14.5-1994.
- E OUT OF JEDEC STANDARD VALUE. F. LAND PATTERN STANDARD: SOIC127P600X145-14M. G. FILE NAME: MKT-M14C REV2

14-SOP

Ordering Information

Product Number	Package	Operating Temperature
LM324N	- 14-DIP	
LM324AN		0 ~ +70°C
LM324M	- 14-SOP	0~770 C
LM324AM	14-30F	
LM2902N	14-DIP	
LM2902M	- 14-SOP	-40 ~ +85°C
LM2902AM	14-301	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com